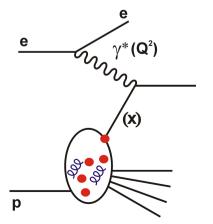
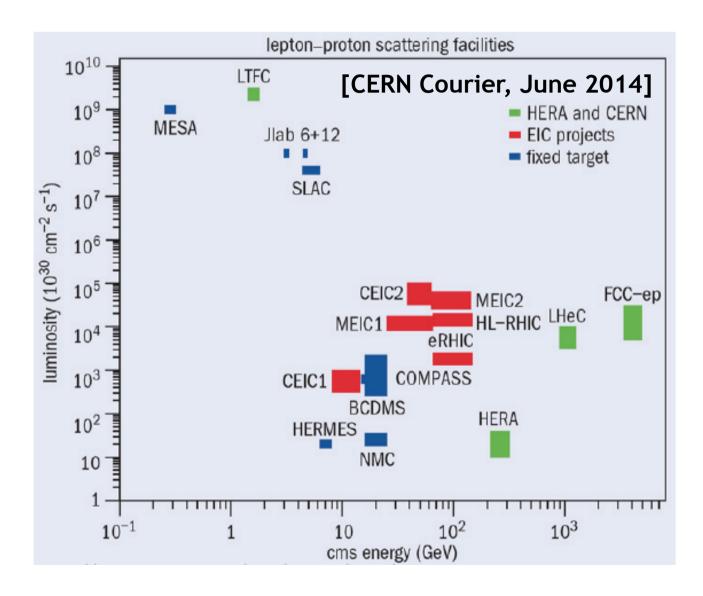
Overview of the LHeC Project

Injector 10-GeV linac L0 km 20. 40. 60 GeV **Total** 10. 30. 50 GeV Circumference LHC proton ~ 9 km Final 2.0 km Electron **Focus** Beam 10-GeV linac Interaction Point / Detector

Paul Newman Birmingham University




- Lepton-hadron collider based on the high lumi LHC
- Can we add ep and eA collisions to the existing LHC pp, AA and pA programme?

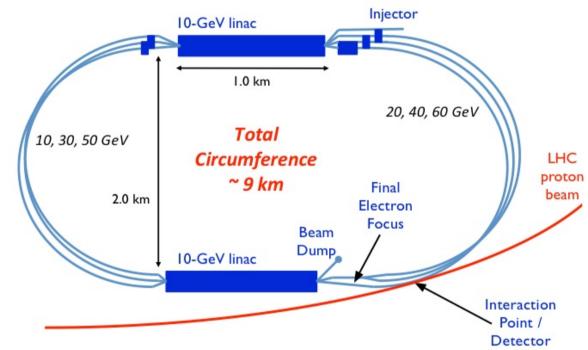
September 7th-11th 2015 Palaiseau, France

LHeC / FCC-he Context

Lepton-hadron scattering at the TeV scale ...

LHeC: 60 GeV
electrons x LHC
protons & ions

→ 10³⁴ cm⁻² s⁻¹


→ Simultaneous
running with ATLAS /
CMS sometime in
HL-LHC period

FCC-he: 60 GeV electrons x 50 TeV protons from FCC

Baseline[#] Design (Electron "Linac") LHeC CDR, July 2012 [arXiv:1206.2913]

Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures
 [CERN plans energy recovery prototype]

- ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb)

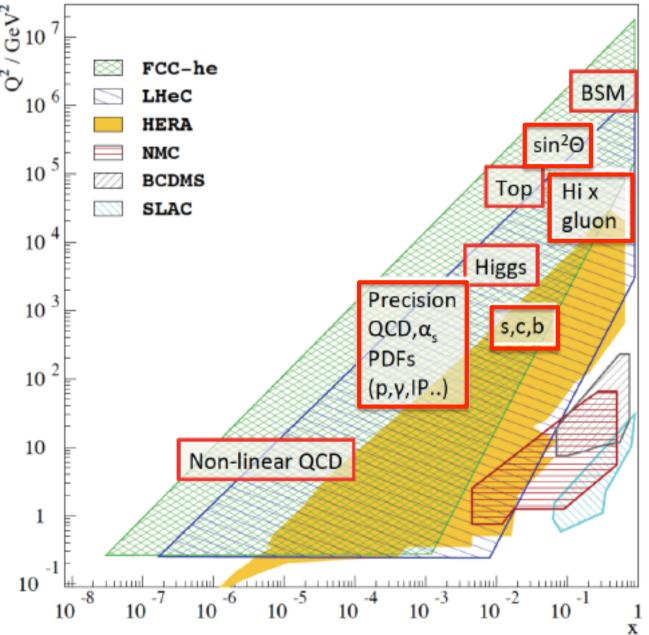
[#] Alternative designs based on electron ring and on higher energy, lower luminosity, linac also exist

Recent Developments

LHC programme runs to >2035. Longer term at CERN? → FCC?

- ... CERN-sponsored ongoing work to evaluate how LHeC fits in.
 - → Further develop physics aims, accelerator & detector, both LHeC & FCC
 - → Continue building collaboration
 - → Design ERL test facility @ CERN

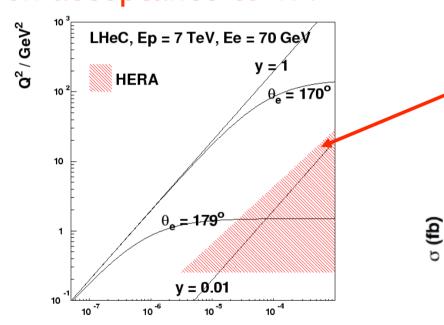
ERL Test Facility:

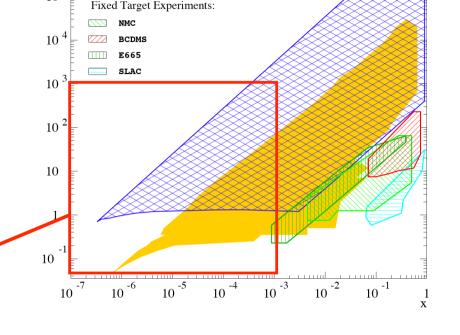

- Test centre for accelerator development, LHeC prototype
- Most ambitious design (2 x 150 MeV linacs, 3 passes \rightarrow 900 GeV) has significant physics potential of its own (10^{40} cm⁻² s⁻¹ fixed target) ... EW parameters, proton

radius, photonuclear physics,

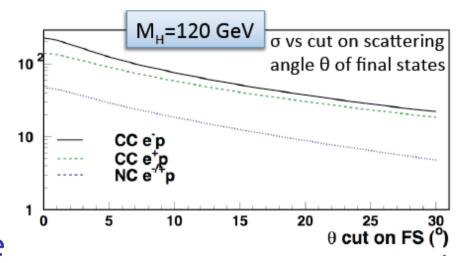
dark photons ...

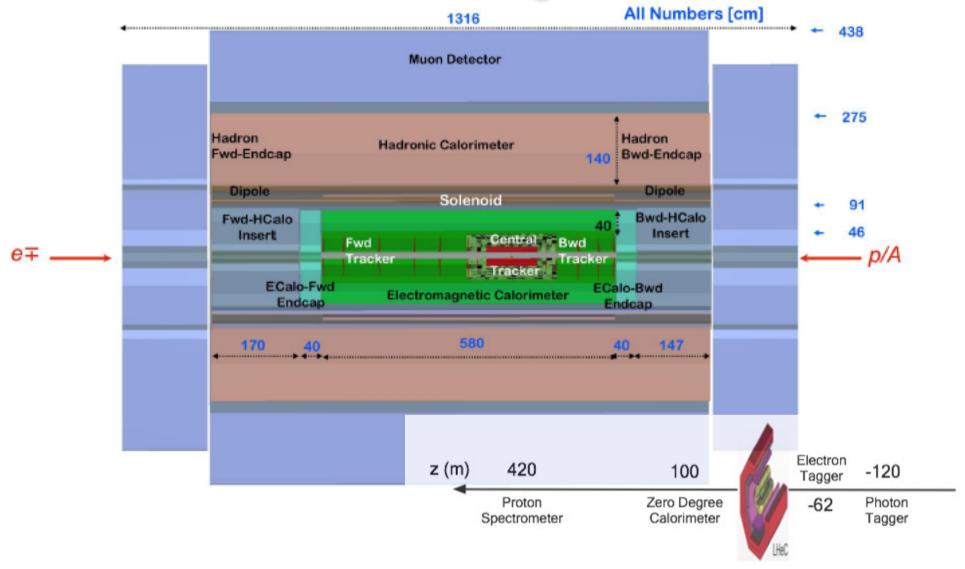
- Conceptual Design Report by end 2015


Physics Overview


- Next experimental facility to see Higgs?
- Enhanced PDF
 precision enhances
 LHC new heavy
 particle sensitivity by
 ~0.5 TeV & transforms
 LHC precision at EW
 scale
- Elucidates new low x dynamics in both ep and eA
- Revolutionises knowledge of nuclear structure

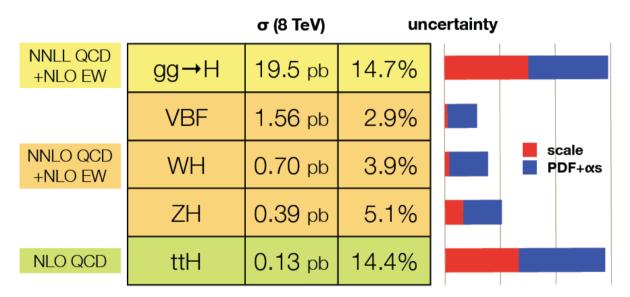
LHeC Kinematic Detector Requirements


Access to $Q^2=1$ GeV² in ep mode for all $x > 5 \times 10^{-7}$ requires scattered electron acceptance to 179°


Also need 1° acceptance in proton
direction to contain hadrons for
kinematic reconstruction, maximise
acceptance for H, new massive particles, Mueller-Navelet jets ...

HERA Experiments:

Detector Design Overview


- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- 1º tracking acceptance in both forward & backward directions
- Forward & backward beam-line instrumentation integrated

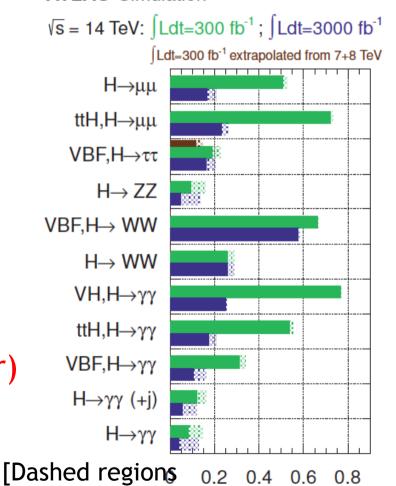
Why PDFs? → Uncertainties for LHC Higgs

Theory Cross Section

Uncertainties

(125 GeV Higgs
J Campbell, ICHEP'12)

Similarly fermionic modes (bbbar, ccbar)

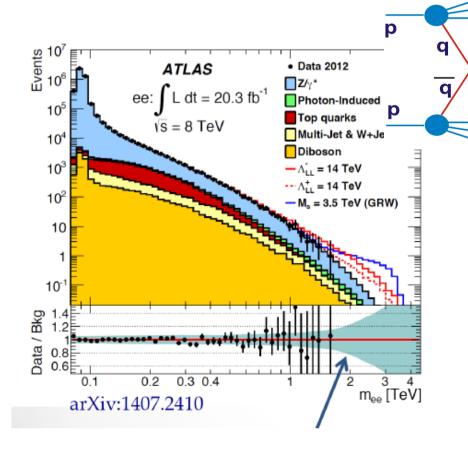

... tests of Standard Model in Higgs sector become limited by knowledge of PDFs in HL-LHC era

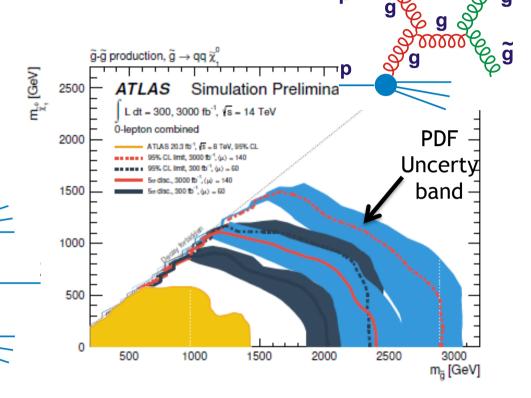
Projected Experimental Uncertainties

ATLAS Simulation

= scale & PDF

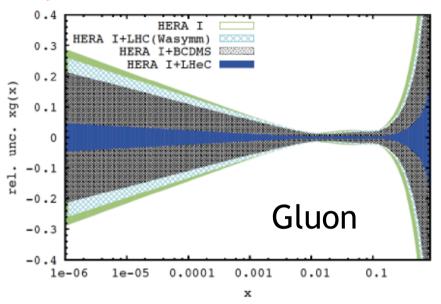
contributions

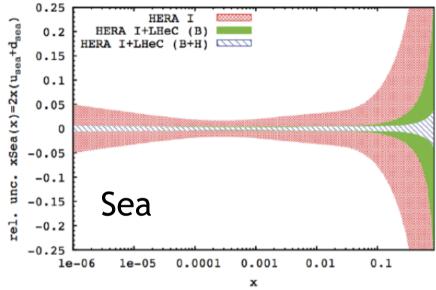



PDFs -> New High Mass LHC Particles

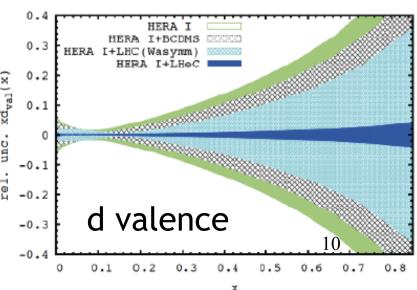
- Gluino signature is excess @ large invariant mass

- Both signal & background uncertainties driven by error on gluon density ... essentially

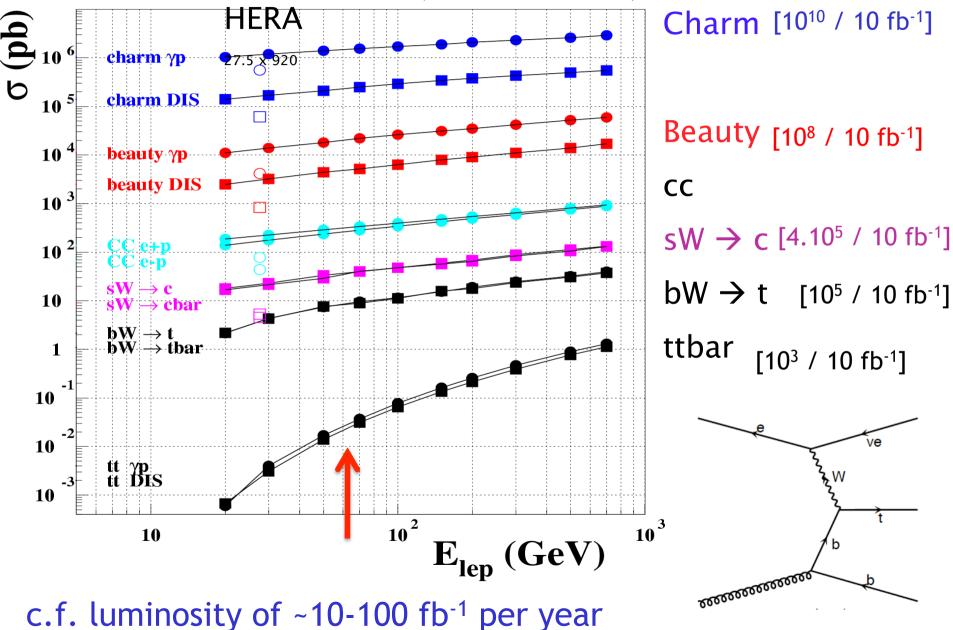




- BSM sensitivity through excess in high mass Drell-Yan limited by high x antiquark uncertainties as well as valence


PDF Constraints at LHeC

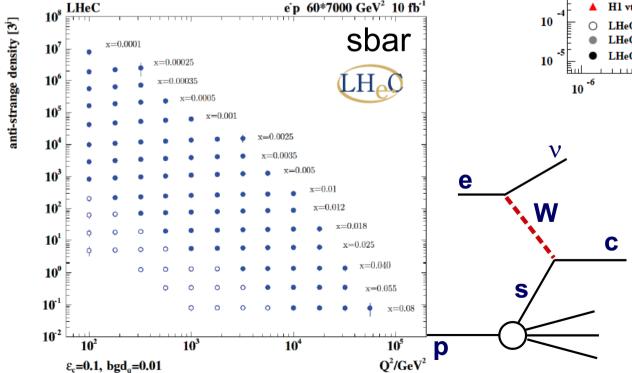
Full simulation of inclusive NC and CC DIS data, including systematics → NLO DGLAP fit using HERA technology...

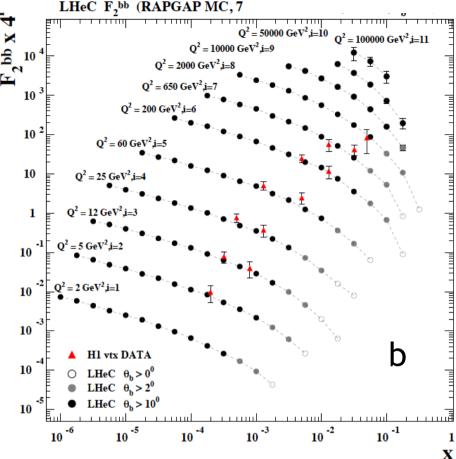


- Low x → novel QCD / unitarity
- Medium x → precision Higgs and EW 3
- High x → new particle mass frontier
- Per-mille experimental α_s precision
- Full Flavour decomposition

Cross Sections and Rates for Heavy Flavours

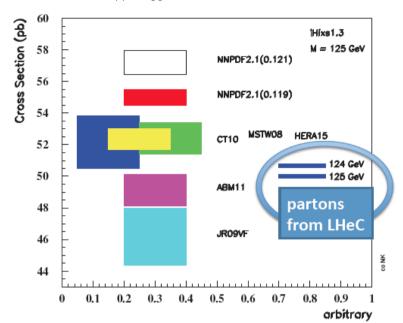
LHeC total cross sections (MC simulated)


Flavour Decomposition


Precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales).

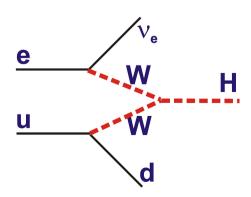
Systematics at 10% level

→beauty as a low x observable


→s, sbar from charged current

(Assumes 1 fb⁻¹ and
- 50% beauty, 10%
charm efficiency
- 1% uds → c
mistag probability.
- 10% c → b mistag)

LHeC Impact on LHC Higgs PDF Unc'ty NNLO pp-Higgs Cross Sections at 14 TeV

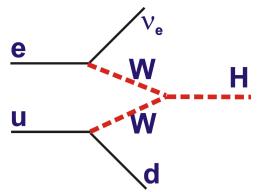


... needs N³LO Higgs calculation

... needs improved α_s measurement (also @ LHeC)

c.f. experimental uncertainty ~0.25%

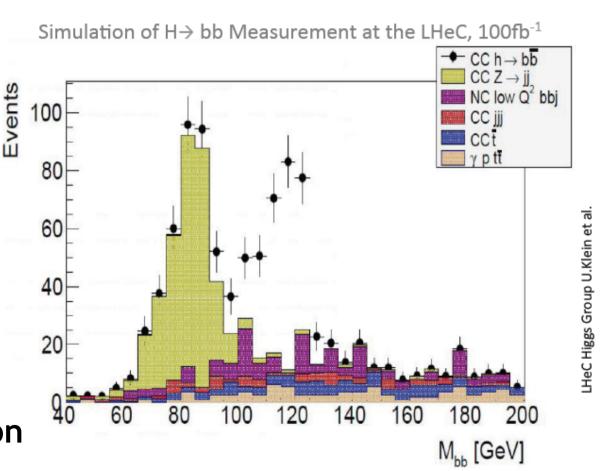
Higgs Production at LHeC & FCC-eh



Estimated integrated yields ...

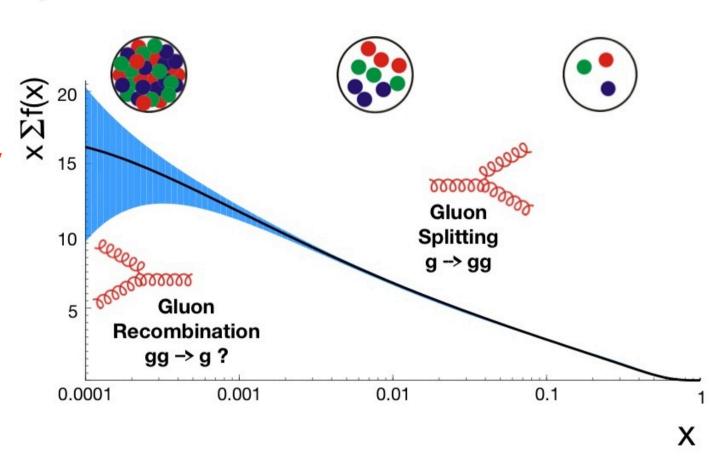
Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	2 450 000
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H ightarrow au^+ au^- ~0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l2\nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	13 10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500

A Direct Higgs Study


Study of H → bbbar in generic simulated LHC detector

- 80% lepton polarisation enhances signal by factor 1.7

- Signal/Background ~ 1-2


With 10³⁴ luminosity,
 x10 more data
 → ~1% H→bbbar
 coupling ...
 way beyond LHC precision

... ongoing studies of LHeC H -> ccbar and FCC-eh possibilities

Low-x Physics and Parton Saturation

• Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects

→ new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? ... gluon dynamics → confinement and hadronic mass generation

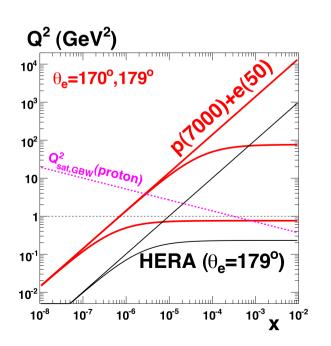
Some limited evidence from HERA, LHC picture (e.g pPb) unclear

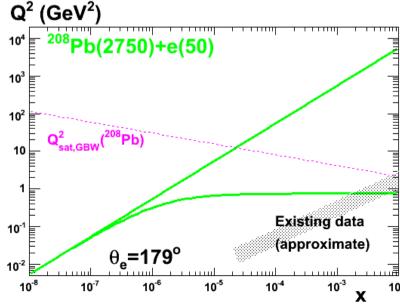
LHeC: Accessing saturation region at large Q²

LHeC delivers a 2-pronged approach:

Enhance target 'blackness' by:

- 1) Probing lower x at fixed Q² in ep [evolution of a single source]
- 2) Increasing target matter in eA

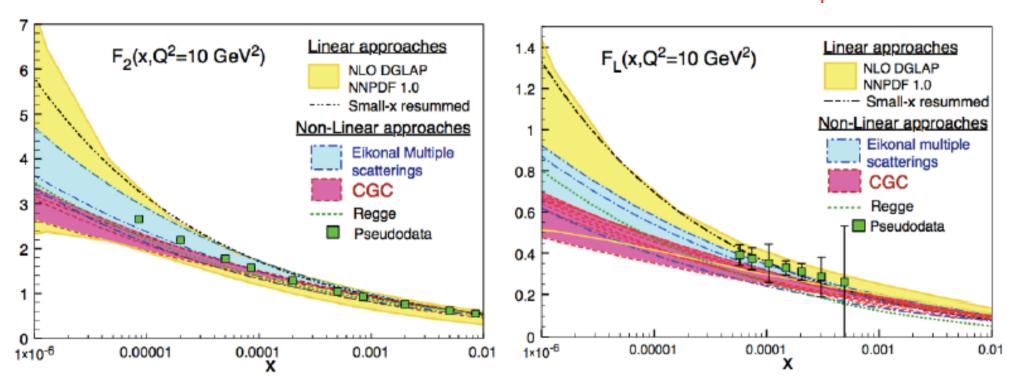

[fixed Q]


DENSE REGION

DILUTE REGION

In A

[overlapping many sources at fixed kinematics ... Density $\sim A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x]



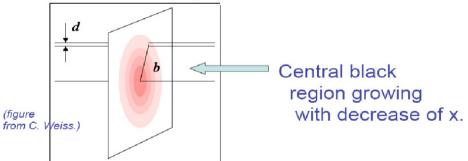
... Reaches saturated region in both ep & eA inclusive data according to models

Establishing and Characterising Saturation

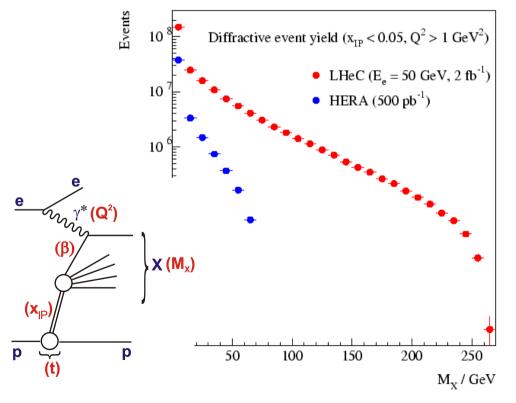
With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F_2 stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p

- LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics
- Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 \vee F_1$ in ep or F_2 in ep \vee eA

Exclusive / Diffractive Channels and Saturation

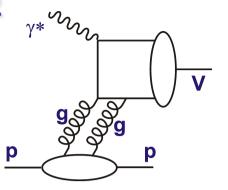

 [Low-Nusinov] interpretation as 2 gluon exchange → enhanced low x gluon sensitivity

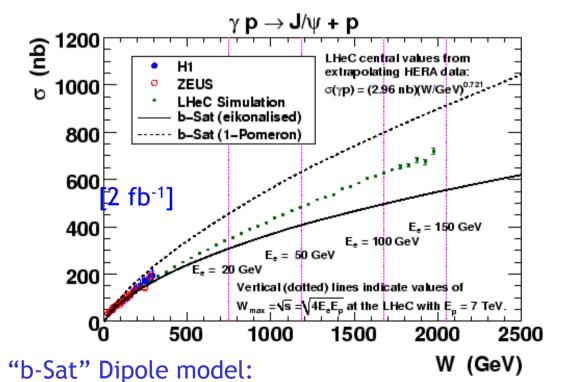
p p


Additional variable t provides impact parameter

(b) dependent amplitudes → Large t (small b)

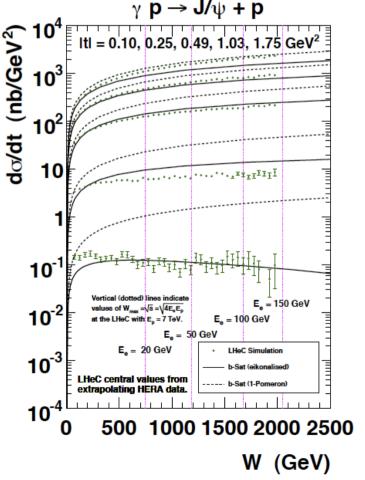
probes densest region of proton


→ Investigations of exclusive VM production, DVCS, inclusive diffraction & diffractive dijets

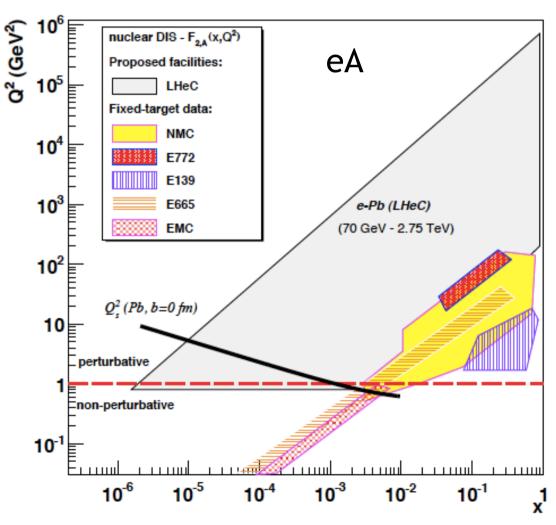

→ Any 1⁻ system with mass up to 250 GeV accessible

e.g. J/ψ Photoproduction v W, t & Q²

Precise kinematic reconstruction from decay μ tracks over wide W and Q² range to $|t| \sim 2 \; GeV^2$



 Significant non-linear effects expected in LHeC kinematic range


- "eikonalised" - with IP-dependent saturation

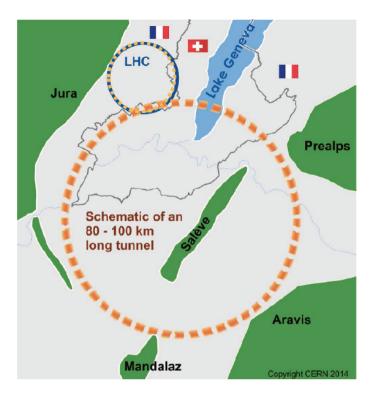
- "1 Pomeron": non-saturating

LHeC as an Electron-Ion Collider

Four orders of magnitude increase in kinematic range over previous DIS experiments -> Wide ranging programme ...

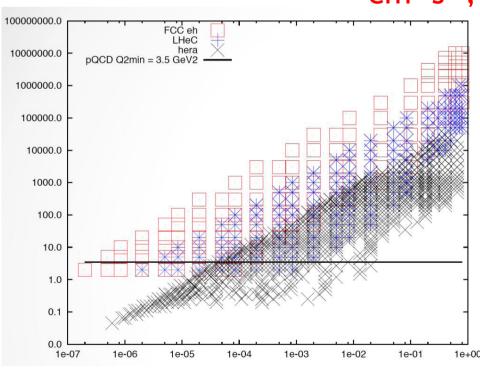
→ Revolutionises knowledge of nuclear partonic structure

→ Low x / diffactive eA programme gives additional lens on densely packed, weakly coupled, partons


→Ultra-clean probe of passage of `struck' partons through cold nuclear matter

Impact of Simulated ePb LHeC F₂ & F_L data

- Studies in context of EPS'09 nPDF set, with more flexible low x parameterisation at starting scale ...
- LHeC data have huge impact on low x gluon & sea uncertainties



First Thoughts on FCC-he

Ongoing work based on similar electron ERL to LHeC, with 50 TeV protons

Detector is scaled-up version of LHeC [shower depths x ln(50/7)~2]

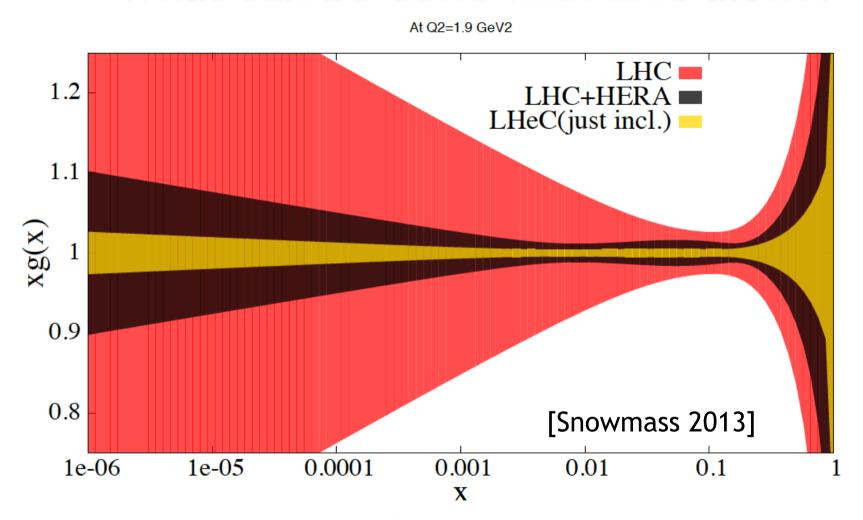
-Total FCC-he H x-sec ~ 1 pb, lumi ~ 10^{34} cm⁻²s⁻¹, H \rightarrow HH x-sec ~0.5 fb in range?...

- Sensitive to quark density down to x~10⁻⁷ for Q²>1 GeV²,
- Gluons to $\sim 10^{-6}$,
- Hadronic final state to
 W → 4 TeV

... Studies just beginning

Summary

- LHeC CDR 2012 + ongoing work
- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - 2) Higgs discovery, searches and new measurements at LHC→ fresh look at extent to which PDFs / QCD limits HL-LHC sensitivity.
 - 3) Associated technical developments (High gradient cavities, Energy recovery linacs)
 - 4) Longer term perspective of LHC and possibility of FCC

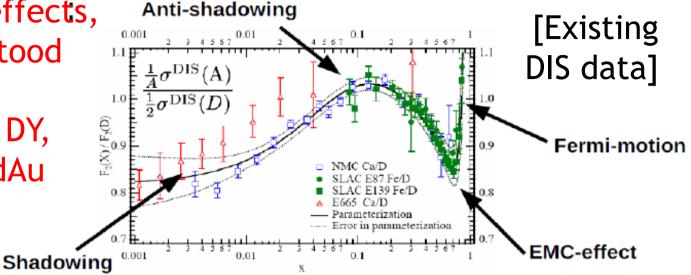

LHC P2

LHeC

- For more on recent updates, see also:
 - POETIC'15: (Nestor Armesto, Claire Gwenlan, Max Klein)
 - Slides from recent LHeC Chavannes Workshop (June 2015)
 - LHeC web: http://lhec.web.cern.ch

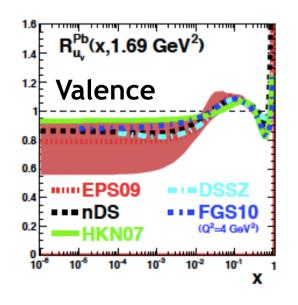
Back-Ups Follow

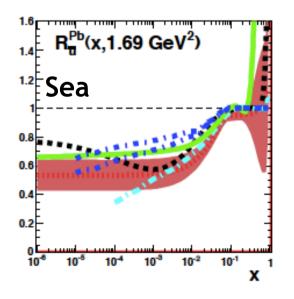
What can be done with LHC alone?

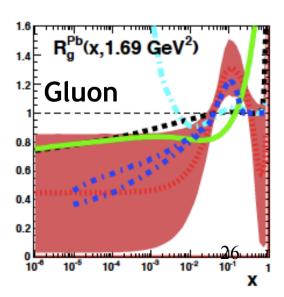

- LHC = current LHC W, Z and jet data
- Remarkable what can be achieved with LHC data alone
- Can we improve substantially? Often already systs limited

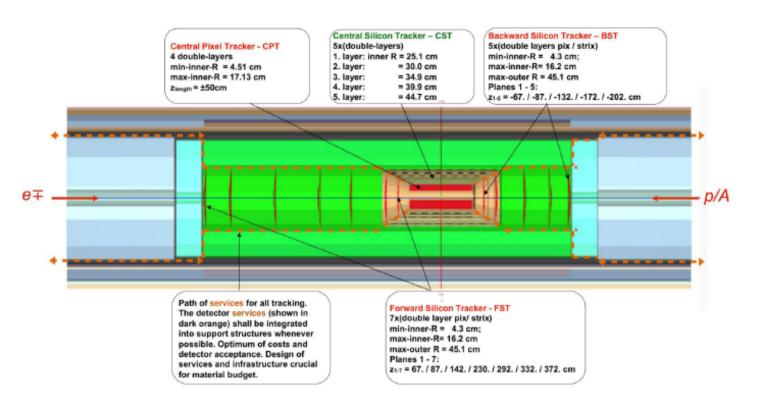
Current Status of Nuclear Parton Densities

Complex nuclear effects,

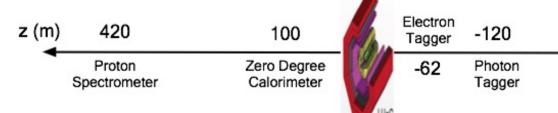

not yet fully understood


• Quarks from DIS & DY, Gluon mainly from dAu single π^0 rates




 All partons poorly constrained for x < 10⁻²

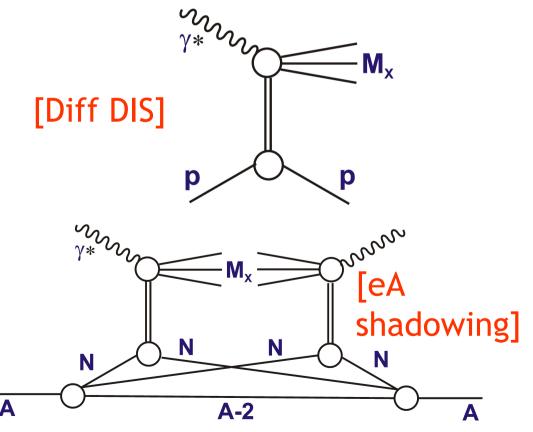
R_i = Nuclear PDF i / (A * proton PDF i)

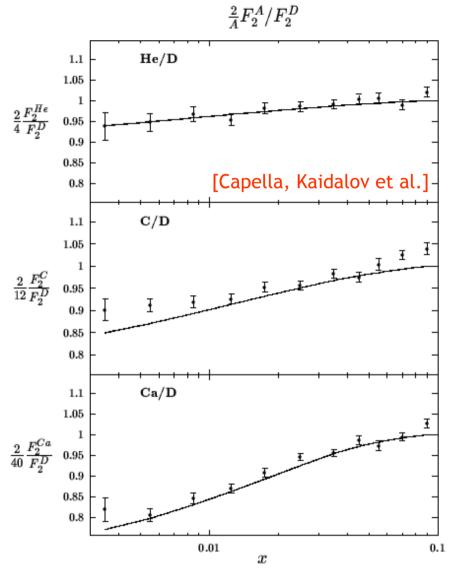


Detector Details

Long tracking region (pixels + strips) → 1° electron hits
 2 tracker planes

 Lar / Tile calorimeter leaning heavily on LHC experience

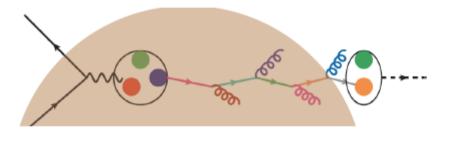




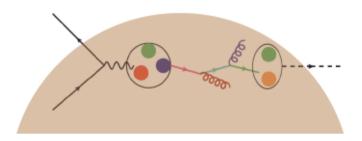
• Beamline insrumentation considered from outset.

F₂^D and Nuclear Shadowing

Nuclear shadowing can be described (Gribov-Glauber) as multiple interactions, starting from ep DPDFs

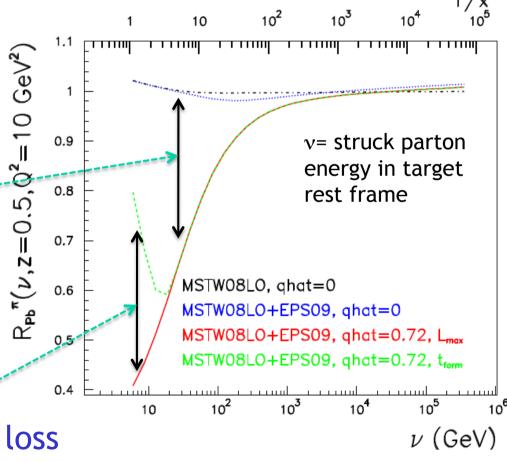


... starting point for extending precision LHeC studies into eA collisions

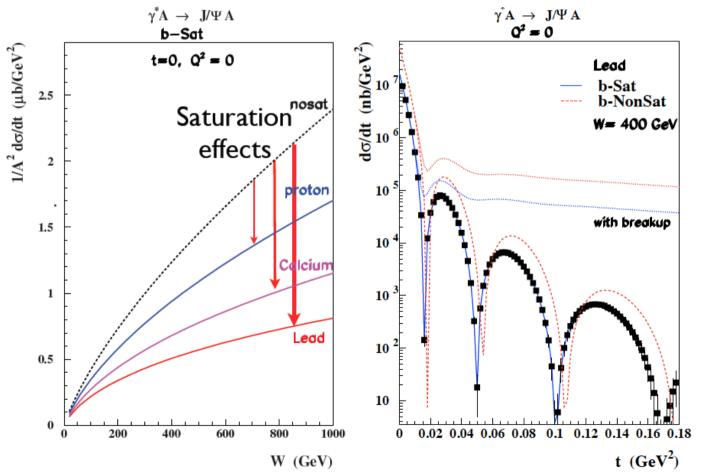

In-medium radiation and hadronisation effects

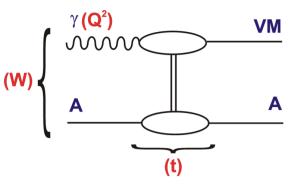
How do virtual parton probes lose Virtuality and colour to hadronise?

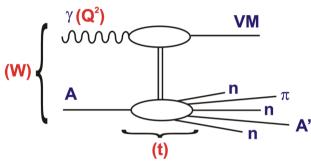
Ratio of π^0 fragⁿ functions Pb / p (Armesto et al.)



Large v: Hadronisation beyond medium. Partonic energy loss


Small v: Hadron formation


may be inside. Hadronic energy loss



LHeC most sensitive to partonic loss. → Baseline `cold matţer' input to use energy loss mechanisms to characterise QGP

Exclusive Diffraction in eA

Experimental separation of incoherent diffraction based mainly on ZDC

Large Diffractive Masses $X(M_x)$ Events Diffractive event yield $(x_{IP} < 0.05, Q^2 > 1 \text{ GeV}^2)$ LHeC (E_a = 50 GeV, 2 fb⁻¹) p HERA (500 pb⁻¹) Diffractive DIS Q2>2 (100 fb-1) 10 NLOJET++ (NLO) 10 10-1 10 10 Diffractive dijets 10 10-4 50 100 150 200 250 M_x / GeV

- 'Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1- states

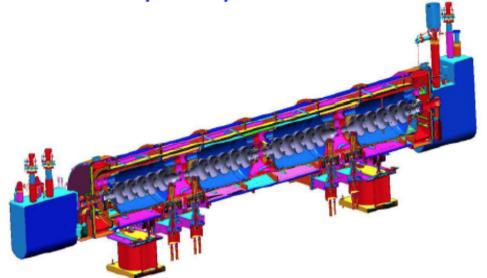
Studies with Simulated LHeC Data

- First generation simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

-Second generation pseudo-data (with full detector simulation) in progress

	LHeC	HERA
Lumi [cm ⁻² s ⁻¹]	10 ³³	1-5*10 ³¹
Acceptance [°]	1-179	7-177
Tracking to	0.1 mrad	0.2-1 mrad
EM calorimetry to	0.1%	0.2-0.5%
Hadronic calorimetry	0.5%	1-2%
Luminosity	0.5%	1%

- NLO DGLAP fit using HERAPDF1.0, including:
 - LHeC NC and CC e⁺p and e⁻p cross sections
 - HERA-1 combined H1+ZEUS data
 - Fixed target BCDMS data with W>15 GeV (where stated)
 - ATLAS 2010 W, Z data (where stated)


2 10 9 e/bunch, 25ns, 10cm hydrogen target \rightarrow L(ep) ~ 3 10 40 cm $^{-2}$ s $^{-1}$

GAMMA BEAM PARAMETERS				
Energy	30 MeV			
Spectral density	9*10 ⁴ γ/s/eV	← or much high		
Bandwidth	< 5%			
Flux within FWHM bdw	7*10 ¹⁰ ph/s			
ph/e- within FWHM bdw	10 ⁻⁶			
Peak Brilliance	3*10 ²¹ ph/s*mm ² *mrad ² 0.1% bdw			

→ Huge physics potential – a new fixed target programme at CERN possibly G_E , G_M , r_p , $\sin^2\theta_W$, dark photons, photonuclear physics: today plenary 6.15pm

Courtesy by Alessandra Valloni, Name by Erk Jensen with the Support of OB+MK [+ you?]

CERN-Jlab Cavity + Cryomodule Collaboration

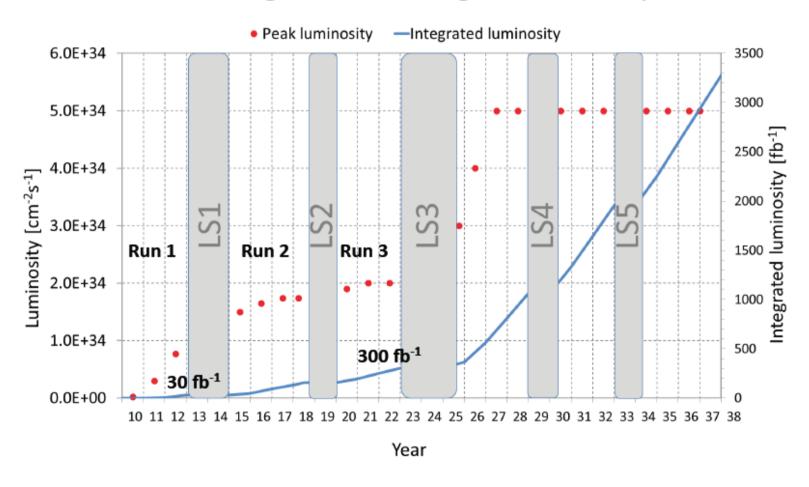
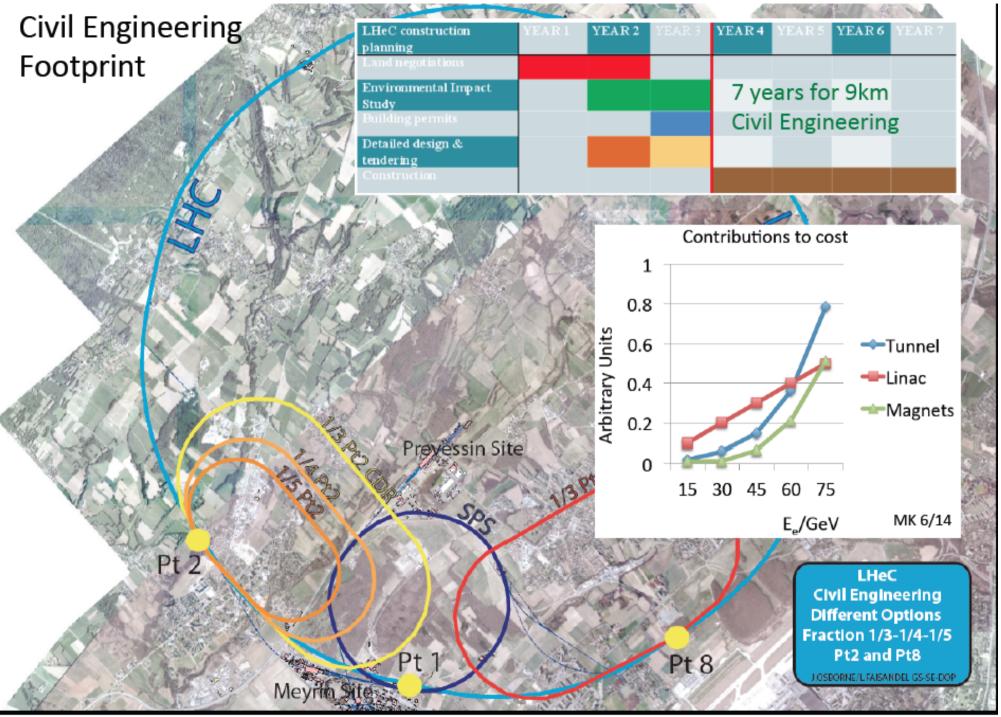
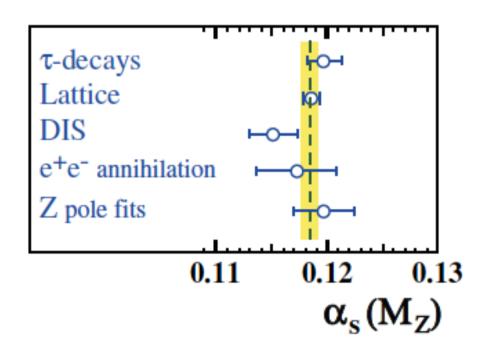

Magic Ms ..MoU.. ..MTP.. Cavity 1 in 2016

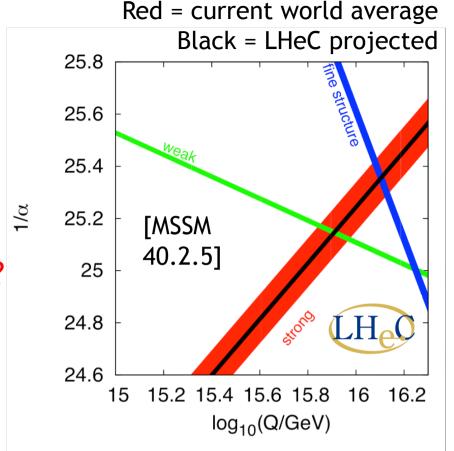
Figure 3.9: SNS high β module adapted to house $\beta = 1$ 5-cell cavities for LHeC.


The ERL test facility will need up to four cryomodules each containing four 802 MHz five cell cavities. A convenient concept for these can be developed by simply adapting the four-cavity SNS high beta cryomodule designed by JLab [39], to accommodate 5-cell β =1 cavities, as shown in Fig. 3.9. Since the cavities are almost the same length as the original 805 MHz β = 0.81 6-cells no major changes to the module would be required. This

Formal Status

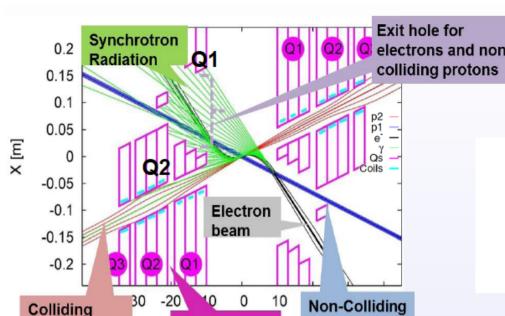
Current Long Term Planning of the LHC Operation




F. Bordry at the FCC Workshop at Washington DC March 2015

Precision α_s

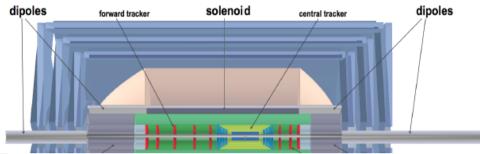
- Least constrained fundamental coupling by far (known to ~1%)
- Do coupling constants unify (with a little help from SUSY)?
- (Why) is DIS result historically low?


- Simulated LHeC precision from fitting inclusive data
- → per-mille (experimental)
- → also requires improved theory

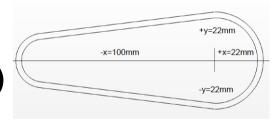
Context of Precision α_s

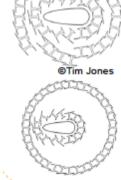
Snowmass13 report – arXiv:1310.5189

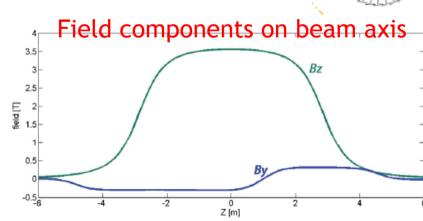
Method	Current relative precision	Future relative precision	
e^+e^- evt shapes	$expt \sim 1\% (LEP)$	< 1% possible (ILC/TLEP)	
	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]	$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	
e^+e^- jet rates	$expt \sim 2\% (LEP)$	< 1% possible (ILC/TLEP)	
	thry $\sim 1\%$ (NNLO, n.p. moderate) [28]	$\sim 0.5\%$ (NLL missing)	L
precision EW	$\exp t \sim 3\% (R_Z, LEP)$	0.1% (TLEP [10]), 0.5% (ILC [11])	per mille
	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29]	$\sim 0.3\%$ (N^4LO feasible, ~ 10 yrs)	Per mine
τ decays	$\exp t \sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)	ſ
	thry $\sim 2\%$ (N ³ LO, n.p. small) [8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)	Ĺ
ep colliders	$\sim 1-2\%$ (pdf fit dependent) [30,31],	0.1% (LHeC + HERA [23])	per mille
	(mostly theory, NNLO) [32,33]	$\sim 0.5\%$ (at least N ³ LO required)	Permi
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)	< 1% challenging	ſ
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17,21,34]	(NNLO jets imminent [22])	
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$	
	(limited by accuracy of pert. th.) [35–37]	$(\sim 5 \text{ yrs } [38])$	


... tensions between lattice and DIS α_s results as a sensitive probe of new physics?...

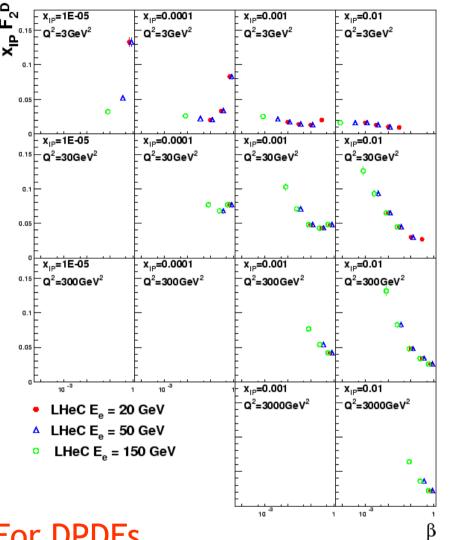
Inner Triplets

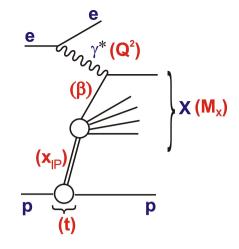

Proton Beam

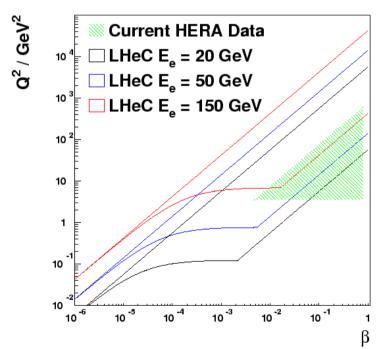

Interaction Region & Magnets


• Dual dipole magnets (0.15 - 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions

Proton Beam




- Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan
- 3.5 T Superconducting NbTi/Cu Solenoid in 4.6K liquid helium cryo.


Inclusive Diffraction / Diffractive

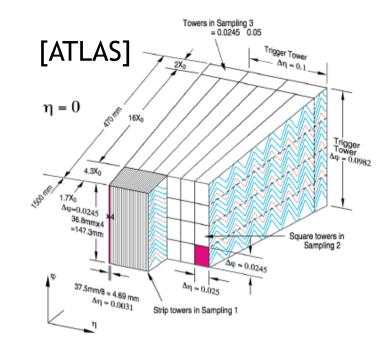
PDFs

Diffractive Kinematics at x₁₀=0.01

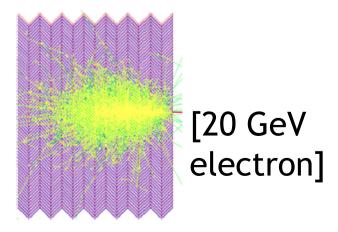
- For DPDFs ...
- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics?
- High $Q^2 \rightarrow$ Lever-arm for gluon, Flavour separation via EW

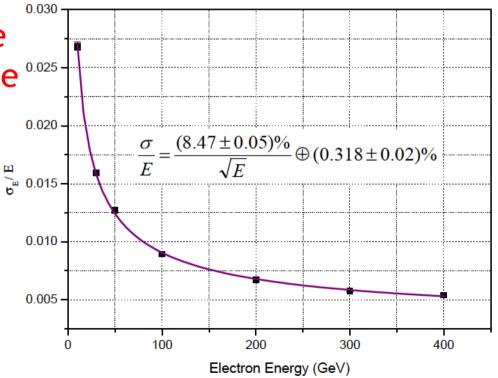
Machine Parameters

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ _{x,y} [μm]	4	4
rms Beam divergence σ' _{x,y} [μrad]	80	40
Beam Current [mA]	1112	25
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

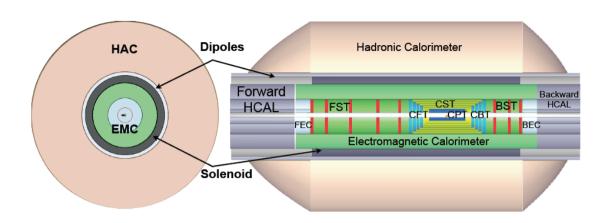

HL-LHC proton beam parameters

1000 times HERA Luminosity and 4 times cms Energy

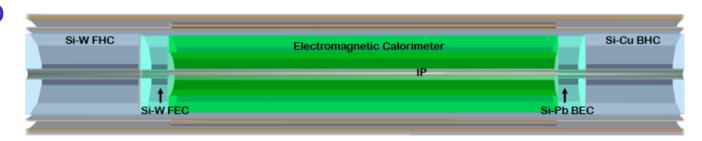

Barrel EM Calorimeter


Liquid Argon Barrel EM Calorimeter inside coil

- $-2.3 < \eta < 2.8$
- Possibly accordion geometry
- 2.2mm lead + 3.8mm LAr layers
- Total depth ~ 20 X₀



- Geant4 simulation of response to electrons at normal incidence [cf ATLAS: 10%/JE + 0.35%]



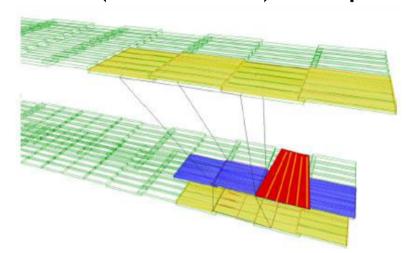
Calorimeters Overview

Current design based on (experience with) ATLAS (and H1), re-using existing technologies

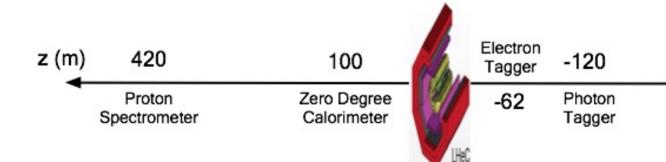
- Barrel HAD calorimeter, outside coil
 - → 4mm Steel + 3mm Scintilating Tile
 - \rightarrow 7-9 λ , $\sigma_E/E \sim 30\%/\sqrt{E} + 9\%$ [~ ATLAS]
- Forward end-cap silicon + tungsten, to cope with highest energies & multiplicities, radiation tolerant EM \rightarrow 30X₀, Had \rightarrow 9 λ
- Backward end-cap Pb+Si for EM (25 X_0) Cu+Si for HAD (7 λ)

Muon System

Baseline: Provides tagging, but not momentum measurement

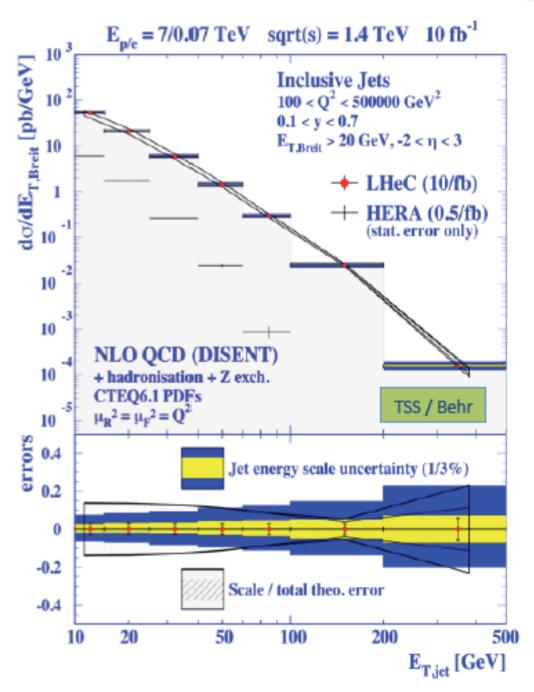

: Angular coverage \rightarrow 1° vital eg for e.g. elastic J/ Ψ

: Technologies used in LHC GPDs and their upgrades


(more than) adequate

- 2 or 3 Superlayers

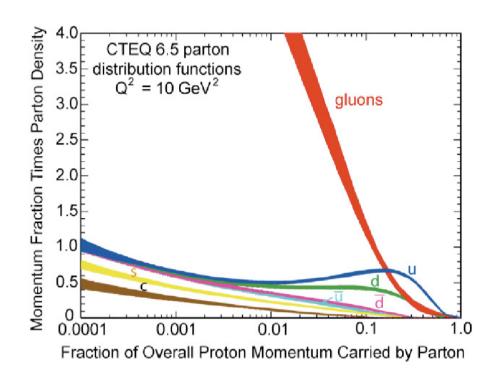
- Drift tubes / Cathode strip chambers → precision
- Resistive plate / Thin Gap chambers → trigger + 2nd coord]


Beamline Instrumentation

- Forward proton & neutron tagging

-Backward electron tagging & luminosity monitoring (ep→epγ)

Inclusive Jets & QCD Dynamics



Also differential in Q² with high precision to beyond Q² = 10⁵ GeV²

 α_s up to scale ~ 400 GeV

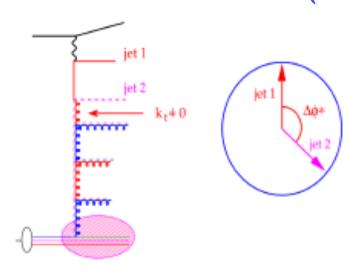
Detailed studies of QCD dynamics, including novel low x effects in regions not probed at HERA and (probably) not at LHC

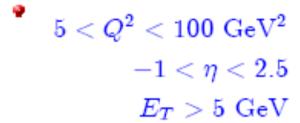
Low-x Physics and Parton Saturation

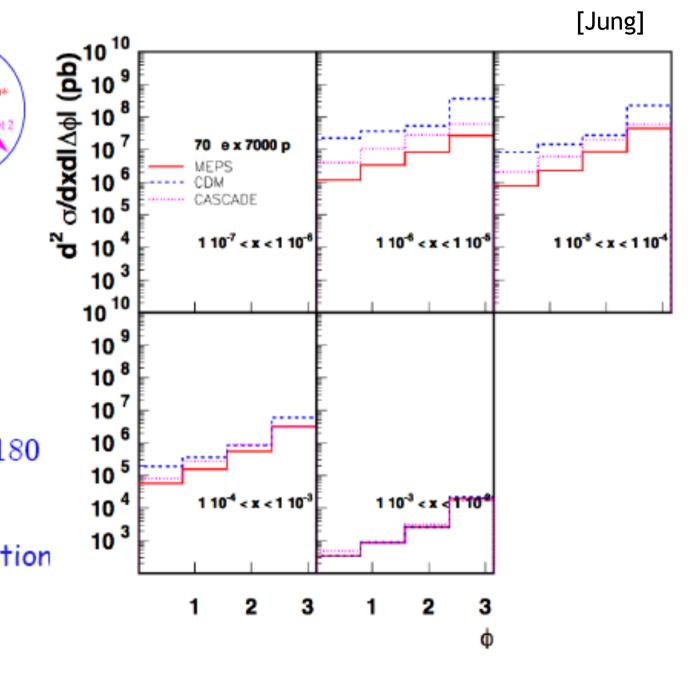
A fundamental QCD problem is looming ... rise of low x parton densities cannot continue

... High energy unitarity issues reminiscent of longitudinal WW scattering in electroweak physics:

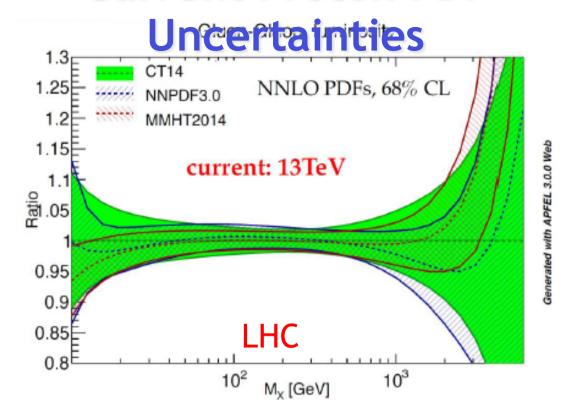
Can Parton Saturation be Established in ep @ LHeC?


Simulated LHeC F_2 and F_L data based on a dipole model containing low x saturation (FS04-sat)...

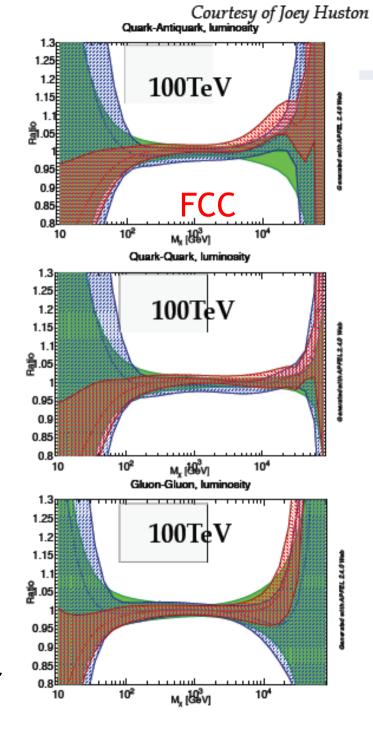

... NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F_2 and F_L both fitted

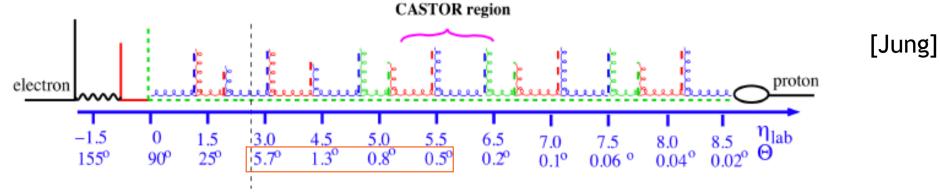

Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables ... $(F_2^c \text{ may work in place of } F_L)$...

Azimuthal (de)correlations between Jets



- ullet small ${f k_{\scriptscriptstyle +}}
 ightarrow \Delta \phi \sim 180$
- large k₁ from evolution

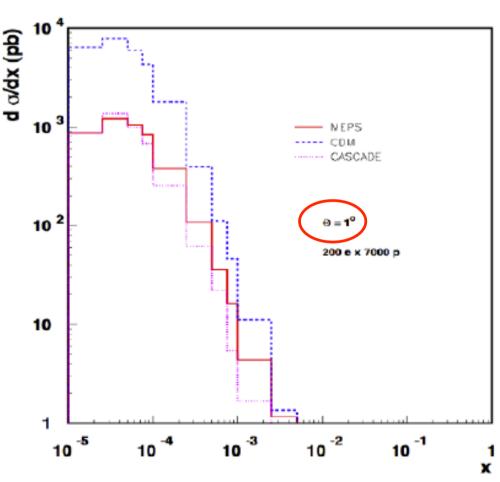

Current Proton PDF


Low x / $M_x \rightarrow$ novel QCD / unitarity

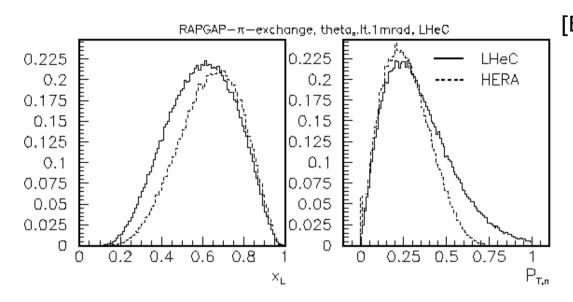
Medium x / $M_x \rightarrow$ precision H and EW

High x / $M_x \rightarrow$ new particle mass frontier

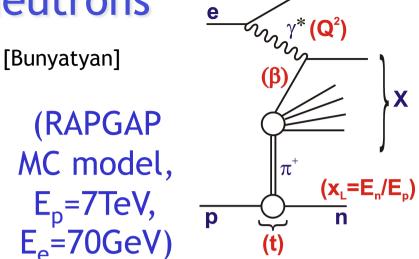
Forward Instrumentation and Jets

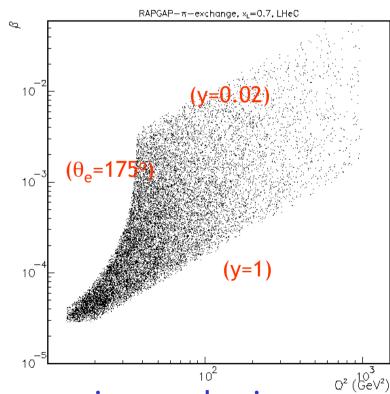

DIS and forward jet:

$$x_{jet} > 0.03$$


$$0.5<rac{p_{t\;j\,et}^2}{Q^2}<2$$

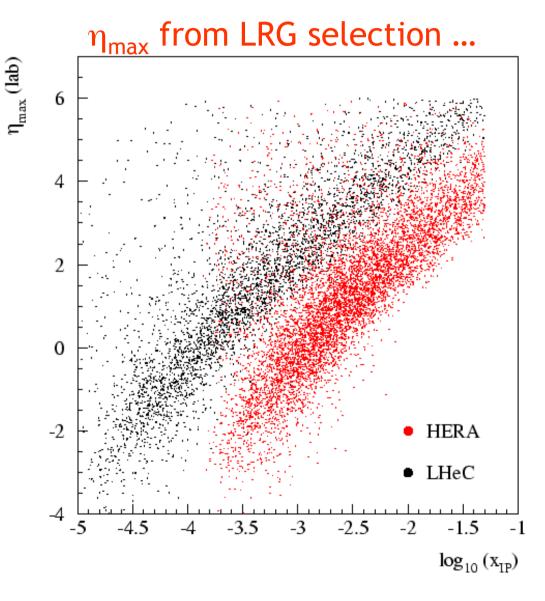
x range (and sensitivity to novel QCD effects) strongly depend on θ cut


Similar conclusions for $\Delta \phi$ decorrelations between jets

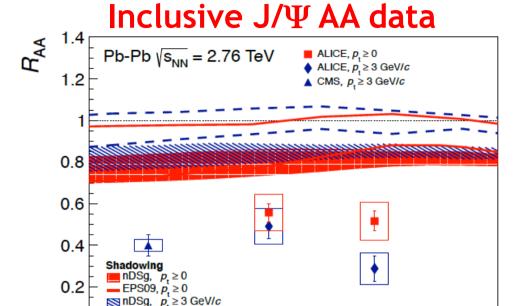


π Structure with Leading Neutrons

- With θ_n < 1 mrad, similar x_L and p_t ranges to HERA (a bit more p_t lever-arm for π flux).
- Extentions to lower β and higher Q^2 as in leading proton case. $\rightarrow F_2^{\pi}$ At β <5.10⁻⁵ (cf HERA reaches β ~10⁻³)



Also relevant to absorptive corrections, cosmic ray physics ...

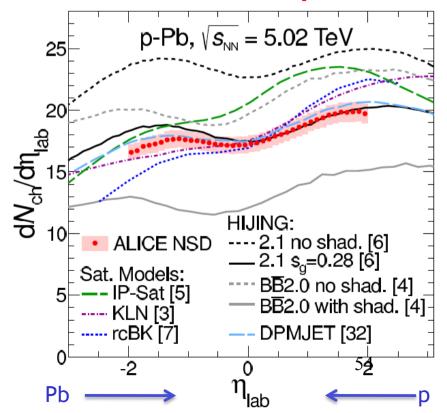

Forward and Diffractive Detectors

- Very forward tracking / calorimetry with good resolution ...
- Proton and neutron spectrometers ...
- Reaching $x_{IP} = 1 E_p'/E_p$
- = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential!
- Roman pots, FNC should clearly be an integral part.
 - Also for t measurements
 - Not new at LHC ©
 - Being considered integrally with interaction region

Current Low x Understanding in LHC Ion Data

4.5

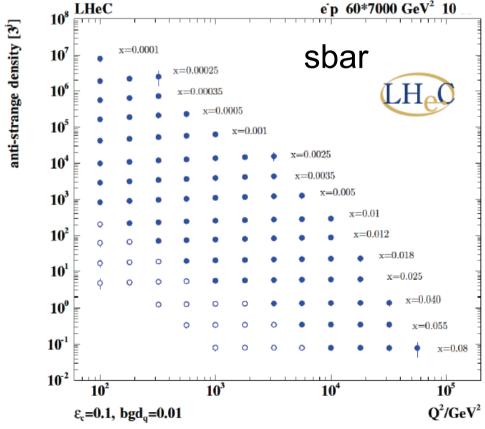
η dependence of pPb charged particle spectra best described by shadowing-only models (saturation models too steep?) ... progress with pPb, but uncertainties still large, detailed situation far from clear


3

2.5

3.5

Uncertainties in low-x nuclear PDFs preclude precision statements on medium produced in AA (e.g. extent of screening of c-cbar potential)


Minimum Bias pA data

e.g. Strange and Anti-strange Quarks

Evidence from LHC that strange density is larger than thought: SU(3) symmetric sea?...

Assuming 10% charm tagging efficiency, 1% light quark background

... with thanks to many experimentalist, theorist & accelerator science colleagues, especially Nestor Armesto, Max Klein, Uta Klein and Anna Stasto ...

LHeC study group ...

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54} P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴ A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸ M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, M.Kraemer ⁷⁵, G.Kramer ¹⁸, D.Kuchler ¹⁶, M.Kuze ⁵⁸, T.Lappi ²¹, c, P.Laycock ²⁴, E.Levichev ⁴⁰, S.Levonian ¹⁷, V.N.Litvinenko ³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰ Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri²⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini²⁵, J.Rojo^{16,21}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a} K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski⁶⁶, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶ A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²