Overview of the LHeC Project #### Injector 10-GeV linac L0 km 20. 40. 60 GeV **Total** 10. 30. 50 GeV Circumference LHC proton ~ 9 km Final 2.0 km Electron **Focus** Beam 10-GeV linac Interaction Point / Detector #### Paul Newman Birmingham University - Lepton-hadron collider based on the high lumi LHC - Can we add ep and eA collisions to the existing LHC pp, AA and pA programme? September 7th-11th 2015 Palaiseau, France #### LHeC / FCC-he Context Lepton-hadron scattering at the TeV scale ... LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period FCC-he: 60 GeV electrons x 50 TeV protons from FCC # Baseline[#] Design (Electron "Linac") LHeC CDR, July 2012 [arXiv:1206.2913] Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV - Two 10 GeV linacs, - 3 returns, 20 MV/m - Energy recovery in same structures [CERN plans energy recovery prototype] - ep lumi \rightarrow 10³⁴ cm⁻² s⁻¹ - \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total - eD and eA collisions have always been integral to programme - e-nucleon Lumi estimates ~ 10^{31} (10^{32}) cm⁻² s⁻¹ for eD (ePb) [#] Alternative designs based on electron ring and on higher energy, lower luminosity, linac also exist ## **Recent Developments** #### LHC programme runs to >2035. Longer term at CERN? → FCC? - ... CERN-sponsored ongoing work to evaluate how LHeC fits in. - → Further develop physics aims, accelerator & detector, both LHeC & FCC - → Continue building collaboration - → Design ERL test facility @ CERN #### **ERL Test Facility:** - Test centre for accelerator development, LHeC prototype - Most ambitious design (2 x 150 MeV linacs, 3 passes \rightarrow 900 GeV) has significant physics potential of its own (10^{40} cm⁻² s⁻¹ fixed target) ... EW parameters, proton radius, photonuclear physics, dark photons ... - Conceptual Design Report by end 2015 ## **Physics Overview** - Next experimental facility to see Higgs? - Enhanced PDF precision enhances LHC new heavy particle sensitivity by ~0.5 TeV & transforms LHC precision at EW scale - Elucidates new low x dynamics in both ep and eA - Revolutionises knowledge of nuclear structure # LHeC Kinematic Detector Requirements Access to $Q^2=1$ GeV² in ep mode for all $x > 5 \times 10^{-7}$ requires scattered electron acceptance to 179° Also need 1° acceptance in proton direction to contain hadrons for kinematic reconstruction, maximise acceptance for H, new massive particles, Mueller-Navelet jets ... HERA Experiments: ## **Detector Design Overview** - Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m) - 1º tracking acceptance in both forward & backward directions - Forward & backward beam-line instrumentation integrated # Why PDFs? → Uncertainties for LHC Higgs Theory Cross Section Uncertainties (125 GeV Higgs J Campbell, ICHEP'12) Similarly fermionic modes (bbbar, ccbar) ... tests of Standard Model in Higgs sector become limited by knowledge of PDFs in HL-LHC era # Projected Experimental Uncertainties ATLAS Simulation = scale & PDF contributions # PDFs -> New High Mass LHC Particles - Gluino signature is excess @ large invariant mass - Both signal & background uncertainties driven by error on gluon density ... essentially - BSM sensitivity through excess in high mass Drell-Yan limited by high x antiquark uncertainties as well as valence #### PDF Constraints at LHeC Full simulation of inclusive NC and CC DIS data, including systematics → NLO DGLAP fit using HERA technology... - Low x → novel QCD / unitarity - Medium x → precision Higgs and EW 3 - High x → new particle mass frontier - Per-mille experimental α_s precision - Full Flavour decomposition ## Cross Sections and Rates for Heavy Flavours #### LHeC total cross sections (MC simulated) # Flavour Decomposition Precision c, b measurements (modern Si trackers, beam spot 15 * 35 μ m², increased HF rates at higher scales). Systematics at 10% level →beauty as a low x observable →s, sbar from charged current (Assumes 1 fb⁻¹ and - 50% beauty, 10% charm efficiency - 1% uds → c mistag probability. - 10% c → b mistag) # LHeC Impact on LHC Higgs PDF Unc'ty NNLO pp-Higgs Cross Sections at 14 TeV ... needs N³LO Higgs calculation ... needs improved α_s measurement (also @ LHeC) c.f. experimental uncertainty ~0.25% # **Higgs Production** at LHeC & FCC-eh **Estimated** integrated yields ... | Higgs in e^-p | CC - LHeC | NC - LHeC | CC - FHeC | |---------------------------------------|--------------|--------------|--------------| | Polarisation | -0.8 | -0.8 | -0.8 | | Luminosity [ab ⁻¹] | 1 | 1 | 5 | | Cross Section [fb] | 196 | 25 | 850 | | Decay BrFraction | N_{CC}^{H} | N_{NC}^{H} | N_{CC}^{H} | | $H \rightarrow b\overline{b}$ 0.577 | 113 100 | 13 900 | 2 450 000 | | $H \rightarrow c\overline{c}$ 0.029 | 5 700 | 700 | 123 000 | | $H ightarrow au^+ au^- ~0.063$ | 12 350 | 1 600 | 270 000 | | $H \rightarrow \mu\mu$ 0.00022 | 50 | 5 | 1 000 | | $H \rightarrow 4l$ 0.00013 | 30 | 3 | 550 | | $H \rightarrow 2l2\nu$ 0.0106 | 2 080 | 250 | 45 000 | | $H \rightarrow gg$ 0.086 | 16 850 | 2 050 | 365 000 | | $H \rightarrow WW = 0.215$ | 42 100 | 5 150 | 915 000 | | $H \rightarrow ZZ$ 0.0264 | 5 200 | 600 | 110 000 | | $H \rightarrow \gamma \gamma$ 0.00228 | 450 | 60 | 13 10 000 | | $H \rightarrow Z\gamma$ 0.00154 | 300 | 40 | 6 500 | ## A Direct Higgs Study # Study of H → bbbar in generic simulated LHC detector - 80% lepton polarisation enhances signal by factor 1.7 - Signal/Background ~ 1-2 With 10³⁴ luminosity, x10 more data → ~1% H→bbbar coupling ... way beyond LHC precision ... ongoing studies of LHeC H -> ccbar and FCC-eh possibilities ## Low-x Physics and Parton Saturation • Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects → new high density, small coupling parton regime of non-linear parton evolution dynamics (e.g. Colour Glass Condensate)? ... gluon dynamics → confinement and hadronic mass generation Some limited evidence from HERA, LHC picture (e.g pPb) unclear # LHeC: Accessing saturation region at large Q² LHeC delivers a 2-pronged approach: Enhance target 'blackness' by: - 1) Probing lower x at fixed Q² in ep [evolution of a single source] - 2) Increasing target matter in eA [fixed Q] DENSE REGION DILUTE REGION In A [overlapping many sources at fixed kinematics ... Density $\sim A^{1/3} \sim 6$ for Pb ... worth 2 orders of magnitude in x] ... Reaches saturated region in both ep & eA inclusive data according to models ## **Establishing and Characterising Saturation** With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F_2 stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_p - LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics - Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 \vee F_1$ in ep or F_2 in ep \vee eA #### **Exclusive / Diffractive Channels and Saturation** [Low-Nusinov] interpretation as 2 gluon exchange → enhanced low x gluon sensitivity p p Additional variable t provides impact parameter (b) dependent amplitudes → Large t (small b) probes densest region of proton → Investigations of exclusive VM production, DVCS, inclusive diffraction & diffractive dijets → Any 1⁻ system with mass up to 250 GeV accessible # e.g. J/ψ Photoproduction v W, t & Q² Precise kinematic reconstruction from decay μ tracks over wide W and Q² range to $|t| \sim 2 \; GeV^2$ Significant non-linear effects expected in LHeC kinematic range - "eikonalised" - with IP-dependent saturation - "1 Pomeron": non-saturating #### LHeC as an Electron-Ion Collider Four orders of magnitude increase in kinematic range over previous DIS experiments -> Wide ranging programme ... → Revolutionises knowledge of nuclear partonic structure → Low x / diffactive eA programme gives additional lens on densely packed, weakly coupled, partons →Ultra-clean probe of passage of `struck' partons through cold nuclear matter # Impact of Simulated ePb LHeC F₂ & F_L data - Studies in context of EPS'09 nPDF set, with more flexible low x parameterisation at starting scale ... - LHeC data have huge impact on low x gluon & sea uncertainties # First Thoughts on FCC-he Ongoing work based on similar electron ERL to LHeC, with 50 TeV protons Detector is scaled-up version of LHeC [shower depths x ln(50/7)~2] -Total FCC-he H x-sec ~ 1 pb, lumi ~ 10^{34} cm⁻²s⁻¹, H \rightarrow HH x-sec ~0.5 fb in range?... - Sensitive to quark density down to x~10⁻⁷ for Q²>1 GeV², - Gluons to $\sim 10^{-6}$, - Hadronic final state to W → 4 TeV ... Studies just beginning # **Summary** - LHeC CDR 2012 + ongoing work - Renewed interest following - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity - 2) Higgs discovery, searches and new measurements at LHC→ fresh look at extent to which PDFs / QCD limits HL-LHC sensitivity. - 3) Associated technical developments (High gradient cavities, Energy recovery linacs) - 4) Longer term perspective of LHC and possibility of FCC LHC P2 LHeC - For more on recent updates, see also: - POETIC'15: (Nestor Armesto, Claire Gwenlan, Max Klein) - Slides from recent LHeC Chavannes Workshop (June 2015) - LHeC web: http://lhec.web.cern.ch # Back-Ups Follow #### What can be done with LHC alone? - LHC = current LHC W, Z and jet data - Remarkable what can be achieved with LHC data alone - Can we improve substantially? Often already systs limited #### **Current Status of Nuclear Parton Densities** Complex nuclear effects, not yet fully understood • Quarks from DIS & DY, Gluon mainly from dAu single π^0 rates All partons poorly constrained for x < 10⁻² R_i = Nuclear PDF i / (A * proton PDF i) # **Detector Details** Long tracking region (pixels + strips) → 1° electron hits 2 tracker planes Lar / Tile calorimeter leaning heavily on LHC experience • Beamline insrumentation considered from outset. # F₂^D and Nuclear Shadowing Nuclear shadowing can be described (Gribov-Glauber) as multiple interactions, starting from ep DPDFs ... starting point for extending precision LHeC studies into eA collisions #### In-medium radiation and hadronisation effects How do virtual parton probes lose Virtuality and colour to hadronise? # Ratio of π^0 fragⁿ functions Pb / p (Armesto et al.) Large v: Hadronisation beyond medium. Partonic energy loss Small v: Hadron formation may be inside. Hadronic energy loss LHeC most sensitive to partonic loss. → Baseline `cold matţer' input to use energy loss mechanisms to characterise QGP ### **Exclusive Diffraction in eA** Experimental separation of incoherent diffraction based mainly on ZDC #### Large Diffractive Masses $X(M_x)$ Events Diffractive event yield $(x_{IP} < 0.05, Q^2 > 1 \text{ GeV}^2)$ LHeC (E_a = 50 GeV, 2 fb⁻¹) p HERA (500 pb⁻¹) Diffractive DIS Q2>2 (100 fb-1) 10 NLOJET++ (NLO) 10 10-1 10 10 Diffractive dijets 10 10-4 50 100 150 200 250 M_x / GeV - 'Proper' QCD (e.g. large E_T) with jets and charm accessible - New diffractive channels ... beauty, W / Z bosons - Unfold quantum numbers / precisely measure new 1- states #### Studies with Simulated LHeC Data - First generation simulated `pseudo-data' produced with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA). -Second generation pseudo-data (with full detector simulation) in progress | | LHeC | HERA | |------------------------------------------|------------------|----------------------| | Lumi [cm ⁻² s ⁻¹] | 10 ³³ | 1-5*10 ³¹ | | Acceptance [°] | 1-179 | 7-177 | | Tracking to | 0.1 mrad | 0.2-1 mrad | | EM calorimetry to | 0.1% | 0.2-0.5% | | Hadronic calorimetry | 0.5% | 1-2% | | Luminosity | 0.5% | 1% | - NLO DGLAP fit using HERAPDF1.0, including: - LHeC NC and CC e⁺p and e⁻p cross sections - HERA-1 combined H1+ZEUS data - Fixed target BCDMS data with W>15 GeV (where stated) - ATLAS 2010 W, Z data (where stated) 2 10 9 e/bunch, 25ns, 10cm hydrogen target \rightarrow L(ep) ~ 3 10 40 cm $^{-2}$ s $^{-1}$ | GAMMA BEAM PARAMETERS | | | | | |-----------------------|---------------------------------------------------------------------|----------------|--|--| | Energy | 30 MeV | | | | | Spectral density | 9*10 ⁴ γ/s/eV | ← or much high | | | | Bandwidth | < 5% | | | | | Flux within FWHM bdw | 7*10 ¹⁰ ph/s | | | | | ph/e- within FWHM bdw | 10 ⁻⁶ | | | | | Peak Brilliance | 3*10 ²¹ ph/s*mm ² *mrad ² 0.1% bdw | | | | → Huge physics potential – a new fixed target programme at CERN possibly G_E , G_M , r_p , $\sin^2\theta_W$, dark photons, photonuclear physics: today plenary 6.15pm Courtesy by Alessandra Valloni, Name by Erk Jensen with the Support of OB+MK [+ you?] #### CERN-Jlab Cavity + Cryomodule Collaboration Magic Ms ..MoU.. ..MTP.. Cavity 1 in 2016 Figure 3.9: SNS high β module adapted to house $\beta = 1$ 5-cell cavities for LHeC. The ERL test facility will need up to four cryomodules each containing four 802 MHz five cell cavities. A convenient concept for these can be developed by simply adapting the four-cavity SNS high beta cryomodule designed by JLab [39], to accommodate 5-cell β =1 cavities, as shown in Fig. 3.9. Since the cavities are almost the same length as the original 805 MHz β = 0.81 6-cells no major changes to the module would be required. This #### **Formal Status** #### Current Long Term Planning of the LHC Operation F. Bordry at the FCC Workshop at Washington DC March 2015 ## Precision α_s - Least constrained fundamental coupling by far (known to ~1%) - Do coupling constants unify (with a little help from SUSY)? - (Why) is DIS result historically low? - Simulated LHeC precision from fitting inclusive data - → per-mille (experimental) - → also requires improved theory ## Context of Precision α_s Snowmass13 report – arXiv:1310.5189 | Method | Current relative precision | Future relative precision | | |---------------------|---------------------------------------------------------------------|--------------------------------------------------------|-----------| | e^+e^- evt shapes | $expt \sim 1\% (LEP)$ | < 1% possible (ILC/TLEP) | | | | thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27] | $\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$ | | | e^+e^- jet rates | $expt \sim 2\% (LEP)$ | < 1% possible (ILC/TLEP) | | | | thry $\sim 1\%$ (NNLO, n.p. moderate) [28] | $\sim 0.5\%$ (NLL missing) | L | | precision EW | $\exp t \sim 3\% (R_Z, LEP)$ | 0.1% (TLEP [10]), 0.5% (ILC [11]) | per mille | | | thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29] | $\sim 0.3\%$ (N^4LO feasible, ~ 10 yrs) | Per mine | | τ decays | $\exp t \sim 0.5\%$ (LEP, B-factories) | < 0.2% possible (ILC/TLEP) | ſ | | | thry $\sim 2\%$ (N ³ LO, n.p. small) [8] | $\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs) | Ĺ | | ep colliders | $\sim 1-2\%$ (pdf fit dependent) [30,31], | 0.1% (LHeC + HERA [23]) | per mille | | | (mostly theory, NNLO) [32,33] | $\sim 0.5\%$ (at least N ³ LO required) | Permi | | hadron colliders | $\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$) | < 1% challenging | ſ | | | (NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17,21,34] | (NNLO jets imminent [22]) | | | lattice | $\sim 0.5\%$ (Wilson loops, correlators,) | $\sim 0.3\%$ | | | | (limited by accuracy of pert. th.) [35–37] | $(\sim 5 \text{ yrs } [38])$ | | ... tensions between lattice and DIS α_s results as a sensitive probe of new physics?... **Inner Triplets** **Proton Beam** # Interaction Region & Magnets • Dual dipole magnets (0.15 - 0.3 T) throughout detector region (|z| < 14m) bend electrons into head-on collisions **Proton Beam** - Eliptical beampipe (6m x 3mm Be) accommodates synchrotron fan - 3.5 T Superconducting NbTi/Cu Solenoid in 4.6K liquid helium cryo. ## Inclusive Diffraction / Diffractive ## **PDFs** #### Diffractive Kinematics at x₁₀=0.01 - For DPDFs ... - Low $x_{IP} \rightarrow$ cleanly separate diffraction - Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics? - High $Q^2 \rightarrow$ Lever-arm for gluon, Flavour separation via EW #### **Machine Parameters** | 10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach | PROTONS | ELECTRONS | |--------------------------------------------------------------------|----------------------|-------------------| | Beam Energy [GeV] | 7000 | 60 | | Luminosity [10 ³³ cm ⁻² s ⁻¹] | 16 | 16 | | Normalized emittance γε _{x,y} [μm] | 2.5 | 20 | | Beta Function β [*] _{x,y} [m] | 0.05 | 0.10 | | rms Beam size σ _{x,y} [μm] | 4 | 4 | | rms Beam divergence σ' _{x,y} [μrad] | 80 | 40 | | Beam Current [mA] | 1112 | 25 | | Bunch Spacing [ns] | 25 | 25 | | Bunch Population | 2.2*10 ¹¹ | 4*10 ⁹ | | Bunch charge [nC] | 35 | 0.64 | **HL-LHC** proton beam parameters 1000 times HERA Luminosity and 4 times cms Energy ### **Barrel EM Calorimeter** Liquid Argon Barrel EM Calorimeter inside coil - $-2.3 < \eta < 2.8$ - Possibly accordion geometry - 2.2mm lead + 3.8mm LAr layers - Total depth ~ 20 X₀ - Geant4 simulation of response to electrons at normal incidence [cf ATLAS: 10%/JE + 0.35%] #### **Calorimeters Overview** Current design based on (experience with) ATLAS (and H1), re-using existing technologies - Barrel HAD calorimeter, outside coil - → 4mm Steel + 3mm Scintilating Tile - \rightarrow 7-9 λ , $\sigma_E/E \sim 30\%/\sqrt{E} + 9\%$ [~ ATLAS] - Forward end-cap silicon + tungsten, to cope with highest energies & multiplicities, radiation tolerant EM \rightarrow 30X₀, Had \rightarrow 9 λ - Backward end-cap Pb+Si for EM (25 X_0) Cu+Si for HAD (7 λ) ## **Muon System** Baseline: Provides tagging, but not momentum measurement : Angular coverage \rightarrow 1° vital eg for e.g. elastic J/ Ψ : Technologies used in LHC GPDs and their upgrades (more than) adequate - 2 or 3 Superlayers - Drift tubes / Cathode strip chambers → precision - Resistive plate / Thin Gap chambers → trigger + 2nd coord] **Beamline Instrumentation** - Forward proton & neutron tagging -Backward electron tagging & luminosity monitoring (ep→epγ) ## Inclusive Jets & QCD Dynamics Also differential in Q² with high precision to beyond Q² = 10⁵ GeV² α_s up to scale ~ 400 GeV Detailed studies of QCD dynamics, including novel low x effects in regions not probed at HERA and (probably) not at LHC ## Low-x Physics and Parton Saturation A fundamental QCD problem is looming ... rise of low x parton densities cannot continue ... High energy unitarity issues reminiscent of longitudinal WW scattering in electroweak physics: #### Can Parton Saturation be Established in ep @ LHeC? Simulated LHeC F_2 and F_L data based on a dipole model containing low x saturation (FS04-sat)... ... NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F_2 and F_L both fitted Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables ... $(F_2^c \text{ may work in place of } F_L)$... ## Azimuthal (de)correlations between Jets - ullet small ${f k_{\scriptscriptstyle +}} ightarrow \Delta \phi \sim 180$ - large k₁ from evolution #### **Current Proton PDF** Low x / $M_x \rightarrow$ novel QCD / unitarity Medium x / $M_x \rightarrow$ precision H and EW High x / $M_x \rightarrow$ new particle mass frontier #### Forward Instrumentation and Jets #### DIS and forward jet: $$x_{jet} > 0.03$$ $$0.5< rac{p_{t\;j\,et}^2}{Q^2}<2$$ x range (and sensitivity to novel QCD effects) strongly depend on θ cut Similar conclusions for $\Delta \phi$ decorrelations between jets ## π Structure with Leading Neutrons - With θ_n < 1 mrad, similar x_L and p_t ranges to HERA (a bit more p_t lever-arm for π flux). - Extentions to lower β and higher Q^2 as in leading proton case. $\rightarrow F_2^{\pi}$ At β <5.10⁻⁵ (cf HERA reaches β ~10⁻³) Also relevant to absorptive corrections, cosmic ray physics ... #### Forward and Diffractive Detectors - Very forward tracking / calorimetry with good resolution ... - Proton and neutron spectrometers ... - Reaching $x_{IP} = 1 E_p'/E_p$ - = 0.01 in diffraction with rapidity gap method requires η_{max} cut around 5 ...forward instrumentation essential! - Roman pots, FNC should clearly be an integral part. - Also for t measurements - Not new at LHC © - Being considered integrally with interaction region ## Current Low x Understanding in LHC Ion Data 4.5 η dependence of pPb charged particle spectra best described by shadowing-only models (saturation models too steep?) ... progress with pPb, but uncertainties still large, detailed situation far from clear 3 2.5 3.5 Uncertainties in low-x nuclear PDFs preclude precision statements on medium produced in AA (e.g. extent of screening of c-cbar potential) #### Minimum Bias pA data ## e.g. Strange and Anti-strange Quarks Evidence from LHC that strange density is larger than thought: SU(3) symmetric sea?... Assuming 10% charm tagging efficiency, 1% light quark background ... with thanks to many experimentalist, theorist & accelerator science colleagues, especially Nestor Armesto, Max Klein, Uta Klein and Anna Stasto ... #### LHeC study group ... J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54} P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴ A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸ M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, M.Kraemer ⁷⁵, G.Kramer ¹⁸, D.Kuchler ¹⁶, M.Kuze ⁵⁸, T.Lappi ²¹, c, P.Laycock ²⁴, E.Levichev ⁴⁰, S.Levonian ¹⁷, V.N.Litvinenko ³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰ Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri²⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini²⁵, J.Rojo^{16,21}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a} K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski⁶⁶, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶ A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²