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Outline

• 3D picture of the nucleon: 


• exclusive ω production: SDMEs and AUT


• AUT and ALT in semi-inclusive DIS


• Bose-Einstein correlations in DIS


• Λ polarization in photoproduction
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Exclusive ω production
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• SDMEs:

• unpolarized & longitudinally polarized e+/e- beam

• unpolarized H & D target


• AUT:

• unpolarized e+/e- beam

• transversely polarized H target
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Fig. 1. Definition of angles in the process eN ! eN!, where
! ! ⇡

+
⇡
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⇡

0. Here, � is the angle between the ! production
plane and the lepton scattering plane in the center-of-mass
system of the virtual photon and the target nucleon. The vari-
ables ⇥ and � are respectively the polar and azimuthal angles
of the unit vector normal to the decay plane in the !-meson
rest frame.

while the azimuthal angle � of the unit vector n is given
by

cos � =
(q ⇥ p0) · (p0 ⇥ n)

|q ⇥ p0| · |p0 ⇥ n| , (20)

sin � = � [(q ⇥ p0) ⇥ p0] · (n⇥ p0)

|(q ⇥ p0) ⇥ p0| · |n⇥ p0| . (21)

3 Data analysis

3.1 HERMES experiment

The data analyzed in this paper were accumulated with
the HERMES spectrometer during the running period of
1996 to 2007 using the 27.6 GeV longitudinally polarized
electron or positron beam of HERA, and gaseous hydro-
gen or deuterium targets. The HERMES forward spec-
trometer, which is described in detail in Ref. [22], was
built of two identical halves situated above and below the
lepton beam pipe. It consisted of a dipole magnet in con-
junction with tracking and particle identification detec-
tors. Particles were accepted when their polar angles were
in the range ±170 mrad in the horizontal direction and
±(40�140) mrad in the vertical direction. The spectrom-
eter permitted a precise measurement of charged-particle
momenta, with a resolution of 1.5%. A separation of lep-
tons was achieved with an average e�ciency of 98% and
a hadron contamination below 1%.

3.2 Selection of exclusively produced ! mesons

The following requirements were applied to select exclu-
sively produced ! mesons from reaction (1):
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Fig. 2. Two-photon invariant mass distribution after appli-
cation of all criteria to select exclusively produced ! mesons.
The Breit–Wigner fit to the mass distribution is shown as a
continuous line and the dashed line indicates the PDG value
of the ⇡

0 mass.

i) Exactly two oppositely charged hadrons, which are as-
sumed to be pions, and one lepton with the same charge
as the beam lepton are identified through the analysis of
the combined responses of the four particle-identification
detectors [22].
ii) A ⇡0 meson that is reconstructed from two calorime-
ter clusters as explained in Ref. [23] is selected requir-
ing the two-photon invariant mass to be in the interval
0.11 GeV < M(��) < 0.16 GeV. The distribution of
M(��) is shown in Fig. 2. This distribution is centered
at m⇡0 = 134.69± 19.94 MeV, which agrees well with the
PDG [24] value of the ⇡0 mass.
iii) The three-pion invariant mass is required to obey 0.71
GeV M(⇡+⇡�⇡0)  0.87 GeV.
iv) The kinematic requirements for exclusive production
of ! mesons are the following:
a) The scattered-lepton momentum lies above 3.5 GeV.
b) The constraint �t0 < 0.2 GeV2 is used.
c) For exclusive production the missing energy �E must
vanish. Here, the missing energy is calculated both for pro-

ton and deuteron as �E =
M2

X�M2
p

2Mp
, with Mp being the

proton mass and M2
X = (p + q � p⇡+ � p⇡� � p⇡0)2 the

missing mass squared, where p, q, p⇡+ , p⇡� , and p⇡0 are
the four-momenta of target nucleon, virtual photon, and
each of the three pions respectively. In this analysis, tak-
ing into account the spectrometer resolution, the missing
energy has to lie in the interval �1.0 GeV < �E < 0.8
GeV, which is referred to as “exclusive region” in the fol-
lowing.
d) The requirement Q2 > 1.0 GeV2 is applied in order to
facilitate the application of pQCD.
e) The requirement W > 3.0 GeV is applied in order to

W(�,�,⇥)

~  ~

e+N ! e+N + !

! ! ⇡+ + ⇡� + ⇡0(2�)

Fit angular distribution               of ω decay pions

"
"

Spin density matrix elements (SDMEs)

describing final spin state of ω


and transverse target-spin asymmetries (AUT)



Exclusive ω production

7

natural parity exchange

JP=0+, 1-, …

unnatural parity exchange

JP=0-, 1+, …

➡ GPD H, E

➡ GPD H, E

γ*

e e

N(p) N(p')t

ω

5

�

�

�
n

lepton
scattering plane

   production plane

 decay plane

helicity frame
(   at rest)

z

y

x

�⇤ N

N

e

e

!

⇡0

⇡+

⇡�

!

!

!

Fig. 1. Definition of angles in the process eN ! eN!, where
! ! ⇡

+
⇡

�
⇡

0. Here, � is the angle between the ! production
plane and the lepton scattering plane in the center-of-mass
system of the virtual photon and the target nucleon. The vari-
ables ⇥ and � are respectively the polar and azimuthal angles
of the unit vector normal to the decay plane in the !-meson
rest frame.

while the azimuthal angle � of the unit vector n is given
by

cos � =
(q ⇥ p0) · (p0 ⇥ n)

|q ⇥ p0| · |p0 ⇥ n| , (20)

sin � = � [(q ⇥ p0) ⇥ p0] · (n⇥ p0)

|(q ⇥ p0) ⇥ p0| · |n⇥ p0| . (21)

3 Data analysis

3.1 HERMES experiment

The data analyzed in this paper were accumulated with
the HERMES spectrometer during the running period of
1996 to 2007 using the 27.6 GeV longitudinally polarized
electron or positron beam of HERA, and gaseous hydro-
gen or deuterium targets. The HERMES forward spec-
trometer, which is described in detail in Ref. [22], was
built of two identical halves situated above and below the
lepton beam pipe. It consisted of a dipole magnet in con-
junction with tracking and particle identification detec-
tors. Particles were accepted when their polar angles were
in the range ±170 mrad in the horizontal direction and
±(40�140) mrad in the vertical direction. The spectrom-
eter permitted a precise measurement of charged-particle
momenta, with a resolution of 1.5%. A separation of lep-
tons was achieved with an average e�ciency of 98% and
a hadron contamination below 1%.

3.2 Selection of exclusively produced ! mesons

The following requirements were applied to select exclu-
sively produced ! mesons from reaction (1):

) [MeV]γγM (

100 110 120 130 140 150 160 170

E
v

e
n

ts
/3

M
e
V

50

100

150

200

250

Fig. 2. Two-photon invariant mass distribution after appli-
cation of all criteria to select exclusively produced ! mesons.
The Breit–Wigner fit to the mass distribution is shown as a
continuous line and the dashed line indicates the PDG value
of the ⇡

0 mass.

i) Exactly two oppositely charged hadrons, which are as-
sumed to be pions, and one lepton with the same charge
as the beam lepton are identified through the analysis of
the combined responses of the four particle-identification
detectors [22].
ii) A ⇡0 meson that is reconstructed from two calorime-
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M(��) is shown in Fig. 2. This distribution is centered
at m⇡0 = 134.69± 19.94 MeV, which agrees well with the
PDG [24] value of the ⇡0 mass.
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Results ω SDMEs 
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Eur. Phys. J. C 74 (2014) 3110

• 5 classes of SDMEs

• unpolarized and polarized SDMEs

• proton & deuteron similar
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• 5 classes of SDMEs

• unpolarized and polarized SDMEs

• proton & deuteron similar

• s-channel helicity conservation (          ):

• fulfilled for class A & B

• class C - slight violation: 

• class D - slight violation:}
r500 6= 0 3(2)�

��⇤ = �!

by          for p(d)3(2.5)�

r511 + r51�1 �= r61�1 6= 0
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Results ω and ρ SDMEs
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• ω:            and 


• ρ:             and

r11�1 < 0

r11�1 > 0

=r21�1 > 0

=r21�1 < 0

exclusive ρ0: Eur. Phys. J. C 62 (2009) 659

Eur. Phys. J. C 74 (2014) 3110

• ω: large unnatural parity exchange

• ρ: large natural parity exchange
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u1 = 1� r0400 + 2 r041�1 � 2 r111 � 2 r11�1

/ 2 ✏|U10|2 + |U11 + U�11|2 (U=unnatural-parity amplitude)
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Test of unnatural-parity exchange

• large unnatural parity exchange seen

• model for protons - S. Goloskokov and P. Kroll, Eur. Phys. J A 50 146 (2014)


without pion-pole contribution

with pion-pole contribution

pion-pole contribution seems to account completely 

for unnatural-parity exchange

talk Tue 09h40 

by S. Goloskokov

γ*

N(p) N(p')t

ω

π0
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Test of unnatural-parity exchange

• large unnatural parity exchange seen

• model for protons - S. Goloskokov and P. Kroll, Eur. Phys. J A 50 146 (2014)


without pion-pole contribution

with pion-pole contribution

pion-pole contribution seems to account completely 

for unnatural-parity exchange
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ω
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Kinematic dependencies
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• no pronounced kinematic dependence observed

• again, need for pion-pole contribution observed

�⇤
L ! !L �⇤

T ! !T

Eur. Phys. J. C 74 (2014) 3110
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Fig. 5. The five amplitudes describing the strength of the sine modulations of the cross section for hard exclusive ω-meson
production. The full circles show the data in two bins of Q2 or −t′. The open squares represent the results obtained for the
entire kinematic region. The inner error bars represent the statistical uncertainties, while the outer ones indicate the statistical
and systematic uncertainties added in quadrature. The results receive an additional 8.2% scale uncertainty corresponding to
the target polarization uncertainty. The solid (dash-dotted) lines show the calculation of the GK model [11,21] for a positive
(negative) πω transition form factor, and the dashed lines are the model results without the pion pole.

Table 1. The amplitudes of the five sine and two cosine mod-
ulations as determined in the entire kinematic region. The first
uncertainty is statistical, the second systematic. The results
receive an additional 8.2% scale uncertainty corresponding to
the target polarization uncertainty.

amplitude

A
sin(φ+φS)
UT −0.06 ± 0.20 ± 0.02

A
sin(φ−φS)
UT −0.12 ± 0.19 ± 0.03

A
sin(φS)
UT 0.26 ± 0.27 ± 0.05

A
sin(2φ−φS)
UT 0.03 ± 0.16 ± 0.01

A
sin(3φ−φS)
UT 0.13 ± 0.15 ± 0.03

A
cos(φ)
UU −0.01 ± 0.11 ± 0.10

A
cos(2φ)
UU −0.17 ± 0.11 ± 0.05

Here, R denotes the set of 7 asymmetry amplitudes of
the unseparated fit or 14 asymmetry amplitudes of the
longitudinal-to-transverse separated fit and the sum runs
over the N experimental-data events. The normalization
factor

Ñ (R) =
NMC∑

j=1

W(R;φj ,φj
S) (7)

is determined using NMC events from a PYTHIA Monte-
Carlo simulation, which are generated according to an
isotropic angular distribution and processed in the same
way as experimental data. The number of Monte-Carlo
events in the exclusive region amounts to about 40,000.

Each asymmetry amplitude is corrected for the back-
ground asymmetry according to

Acorr =
Ameas − fbgAbg

1− fbg
, (8)

whereAcorr is the corrected asymmetry amplitude, Ameas

is the measured asymmetry amplitude, fbg is the frac-
tion of the SIDIS background and Abg is its asymmetry
amplitude. While Ameas is evaluated in the exclusive re-
gion, Abg is obtained by extracting the asymmetry from
the experimental SIDIS background in the region 2 GeV
< ∆E < 20 GeV.

The systematic uncertainty is obtained by adding in
quadrature two components. The first one, ∆Acorr =
Acorr − Ameas, is due to the correction by background
amplitudes. In the most conservative approach adopted
here, it is estimated as the difference between the asym-
metry amplitudes Acorr and Ameas. This approach also
covers the small uncertainty on fbg. The second compo-
nent accounts for effects from detector acceptance, effi-
ciency, smearing, and misalignment. It is determined as
described in Ref. [16]. An additional scale uncertainty
arises because of the systematic uncertainty on the tar-
get polarization, which amounts to 8.2%.

Results

The results for the five AUT and two AUU amplitudes,
as determined in the entire kinematic region, are shown
in Table 1. These results are presented in Table 3 in two
intervals of Q2 and −t′, with the definition of intervals

arXiv: 1508.07612

• large unnatural parity exchange seen

• model for protons - S. Goloskokov and P. Kroll, Eur. Phys. J A 50 146 (2014)
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• AUT and ALT

• unpolarized & longitudinally polarized e+/e- beam

• transversely polarized H target


• ALU:

• longitudinally polarized e+/e- beam

• unpolarized H and D targetσ
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• unpolarized e+/e- beam

• H, D, 3He, 4He, N, Ne, Kr, Xe target 
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2

Introduction

Hadron production in deep-inelastic scattering (DIS) of
leptons o↵ nuclei is a powerful tool to study the quark
hadronization process. The distance scale over which a
struck quark that received a su�ciently large energy-
momentum transfer from an incident lepton develops into
a colorless hadronic particle extends well beyond the size
of a single nucleon. Therefore, the distribution of hadrons
in the final state may be modified by interactions of the
developing hadronic state with the nuclear medium out-
side the struck nucleon. In general, this intermediate state
is some mixture of quarks and gluonic fields that have
not reached their asymptotic (confined) states, and so
any modification should depend on the evolution of that
state. Similarly the fully formed hadron may still pass
through the nuclear medium and be subject to rescatter-
ing processes (see, e.g., Ref. [1]).

One means of studying the final hadronic state is the
use of Bose–Einstein correlations (BEC) in the distri-
bution of bosons or pions in particular. These correla-
tions arise from interference between di↵erent parts of
the symmetrized wave function of identical bosons from
incoherent sources. This well-known technique of inten-
sity interferometry was first developed by Hanbury Brown
and Twiss to measure stellar radii [2]. Its first use in
particle physics, half a century ago, was to study the
pp̄ annihilation process [3,4] with incident anti-protons
of 1 GeV momentum. Since then many measurements
of BEC have been performed in hadron-hadron scatter-
ing experiments. In addition, several studies of BEC in
the e

+
e

� annihilation process have been performed (see,
e.g., Ref. [5]), especially by the LEP experiments. Mea-
surements of BEC from deep-inelastic lepton scattering
experiments are less abundant. The results from experi-
ments using charged leptons as incident particles can be
found in Refs. [6,7,8,9,10], while the results from neu-
trino experiments are found in Refs. [11,12,13]. Several
reviews [5,14,15,16] summarize the present theoretical
and experimental knowledge of BEC. The theory of BEC
in particle physics was originally developed in the papers
of Kopylov and Podgoretskii [17,18,19] and Cocconi [20].
It should be noted that most of the theoretical work has
focused on the understanding of BEC in heavy-ion col-
lisions, in which a “fireball” source distribution, created
by the collision roughly at rest involving many parton el-
ementary interactions, decays into hadrons. Only a few
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Fig. 1. Schematic illustration of the Bose–Einstein e↵ect.

references consider the quite di↵erent case of fragmenta-
tion in DIS and e

+
e

� processes, in which quite di↵erent
hadron-momentum and spatial-source distribution might
be assumed (see, e.g., Ref. [21,22]). Estimates of BEC in
e

+
e

� annihilation from string-fragmentation models [22]
indicate that correlation parameters are mostly depen-
dent on string-breaking parameters, because the strongest
correlations are from pions resulting from adjacent breaks
along a string.

To better understand the underlying physics of BEC
one may consider a simple example of the emission and
detection of two identical bosons, e.g., two pions, from
points r

↵

and r
�

, which are observed with momenta ka

and kb at detectors a and b (Fig. 1). The two pions are
indistinguishable and the total wave function of the two-
pion system must be symmetric under the exchange of
them:

 2⇡ =
1p
2

✓
 

a↵

 

b�

+  

b↵

 

a�

◆
, (1)

where  

a↵

is the wave function of a pion produced at
point r↵ and observed at detector a while  

b�

is the
wave function of a pion produced at point r� and ob-
served at detector b. Assuming plane waves, i.e.,  

a↵

⇡
exp(ikar↵), one may obtain | 2⇡|2 = 1+cos(�k·�r) with
�k = ka � kb and �r = r↵ � r�. Thus the correlation
function resulting from the interference of the two terms
in Eq. (1) will take the following form:

R(ka,kb) / 1 + cos(�k · �r). (2)

This expression shows that the BEC e↵ect measures the
projection of the spacial distance (�r) between two par-
ticle sources on the direction of the momentum di↵erence
(�k) between the observed pions. One can generalize two-
point sources to a continuous space-time distribution of

• incoherent source of identical bosons

• symmetry of wave function under exchange of identical bosons

constructive interference

• measurements of stelar radii by Hanbury Brown and Twiss

• first in particle physics: pp collisions

• heavy-ion collisions, study of fireball source distribution

• e+e- annihilation

• measurements in DIS are far less abundant

Measurement of source distribution
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exp(ikar↵), one may obtain | 2⇡|2 = 1+cos(�k·�r) with
�k = ka � kb and �r = r↵ � r�. Thus the correlation
function resulting from the interference of the two terms
in Eq. (1) will take the following form:

R(ka,kb) / 1 + cos(�k · �r). (2)

This expression shows that the BEC e↵ect measures the
projection of the spacial distance (�r) between two par-
ticle sources on the direction of the momentum di↵erence
(�k) between the observed pions. One can generalize two-
point sources to a continuous space-time distribution of
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λ = 1 -> completely incoherent sources

rG
T 2 = �(p1 � p2)

2

Extraction from experimental correlation function from like-sign unidentified hadrons

R(p1, p2) = D(p1, p2)/Dr(p1, p2)

• reference sample free from BEC, built from 

• unlike-sign pairs (MUS) 

• event mixing (MEM)
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Introduction

Hadron production in deep-inelastic scattering (DIS) of
leptons o↵ nuclei is a powerful tool to study the quark
hadronization process. The distance scale over which a
struck quark that received a su�ciently large energy-
momentum transfer from an incident lepton develops into
a colorless hadronic particle extends well beyond the size
of a single nucleon. Therefore, the distribution of hadrons
in the final state may be modified by interactions of the
developing hadronic state with the nuclear medium out-
side the struck nucleon. In general, this intermediate state
is some mixture of quarks and gluonic fields that have
not reached their asymptotic (confined) states, and so
any modification should depend on the evolution of that
state. Similarly the fully formed hadron may still pass
through the nuclear medium and be subject to rescatter-
ing processes (see, e.g., Ref. [1]).

One means of studying the final hadronic state is the
use of Bose–Einstein correlations (BEC) in the distri-
bution of bosons or pions in particular. These correla-
tions arise from interference between di↵erent parts of
the symmetrized wave function of identical bosons from
incoherent sources. This well-known technique of inten-
sity interferometry was first developed by Hanbury Brown
and Twiss to measure stellar radii [2]. Its first use in
particle physics, half a century ago, was to study the
pp̄ annihilation process [3,4] with incident anti-protons
of 1 GeV momentum. Since then many measurements
of BEC have been performed in hadron-hadron scatter-
ing experiments. In addition, several studies of BEC in
the e

+
e

� annihilation process have been performed (see,
e.g., Ref. [5]), especially by the LEP experiments. Mea-
surements of BEC from deep-inelastic lepton scattering
experiments are less abundant. The results from experi-
ments using charged leptons as incident particles can be
found in Refs. [6,7,8,9,10], while the results from neu-
trino experiments are found in Refs. [11,12,13]. Several
reviews [5,14,15,16] summarize the present theoretical
and experimental knowledge of BEC. The theory of BEC
in particle physics was originally developed in the papers
of Kopylov and Podgoretskii [17,18,19] and Cocconi [20].
It should be noted that most of the theoretical work has
focused on the understanding of BEC in heavy-ion col-
lisions, in which a “fireball” source distribution, created
by the collision roughly at rest involving many parton el-
ementary interactions, decays into hadrons. Only a few
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Fig. 1. Schematic illustration of the Bose–Einstein e↵ect.

references consider the quite di↵erent case of fragmenta-
tion in DIS and e

+
e

� processes, in which quite di↵erent
hadron-momentum and spatial-source distribution might
be assumed (see, e.g., Ref. [21,22]). Estimates of BEC in
e

+
e

� annihilation from string-fragmentation models [22]
indicate that correlation parameters are mostly depen-
dent on string-breaking parameters, because the strongest
correlations are from pions resulting from adjacent breaks
along a string.

To better understand the underlying physics of BEC
one may consider a simple example of the emission and
detection of two identical bosons, e.g., two pions, from
points r

↵

and r
�

, which are observed with momenta ka

and kb at detectors a and b (Fig. 1). The two pions are
indistinguishable and the total wave function of the two-
pion system must be symmetric under the exchange of
them:
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This expression shows that the BEC e↵ect measures the
projection of the spacial distance (�r) between two par-
ticle sources on the direction of the momentum di↵erence
(�k) between the observed pions. One can generalize two-
point sources to a continuous space-time distribution of
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Two-point sources: 

R(T ) = 1 + � exp(�T 2r2G)

• Gaussian shape of source

•    : size of source

•  

• λ = 0 -> coherent sources; no correlation

λ = 1 -> completely incoherent sources

rG
T 2 = �(p1 � p2)

2

Extraction from experimental correlation function from like-sign unidentified hadrons

R(p1, p2) = D(p1, p2)/Dr(p1, p2)

• reference sample free from BEC, built from 

• unlike-sign pairs (MUS) 

• event mixing (MEM)
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Introduction

Hadron production in deep-inelastic scattering (DIS) of
leptons o↵ nuclei is a powerful tool to study the quark
hadronization process. The distance scale over which a
struck quark that received a su�ciently large energy-
momentum transfer from an incident lepton develops into
a colorless hadronic particle extends well beyond the size
of a single nucleon. Therefore, the distribution of hadrons
in the final state may be modified by interactions of the
developing hadronic state with the nuclear medium out-
side the struck nucleon. In general, this intermediate state
is some mixture of quarks and gluonic fields that have
not reached their asymptotic (confined) states, and so
any modification should depend on the evolution of that
state. Similarly the fully formed hadron may still pass
through the nuclear medium and be subject to rescatter-
ing processes (see, e.g., Ref. [1]).

One means of studying the final hadronic state is the
use of Bose–Einstein correlations (BEC) in the distri-
bution of bosons or pions in particular. These correla-
tions arise from interference between di↵erent parts of
the symmetrized wave function of identical bosons from
incoherent sources. This well-known technique of inten-
sity interferometry was first developed by Hanbury Brown
and Twiss to measure stellar radii [2]. Its first use in
particle physics, half a century ago, was to study the
pp̄ annihilation process [3,4] with incident anti-protons
of 1 GeV momentum. Since then many measurements
of BEC have been performed in hadron-hadron scatter-
ing experiments. In addition, several studies of BEC in
the e

+
e

� annihilation process have been performed (see,
e.g., Ref. [5]), especially by the LEP experiments. Mea-
surements of BEC from deep-inelastic lepton scattering
experiments are less abundant. The results from experi-
ments using charged leptons as incident particles can be
found in Refs. [6,7,8,9,10], while the results from neu-
trino experiments are found in Refs. [11,12,13]. Several
reviews [5,14,15,16] summarize the present theoretical
and experimental knowledge of BEC. The theory of BEC
in particle physics was originally developed in the papers
of Kopylov and Podgoretskii [17,18,19] and Cocconi [20].
It should be noted that most of the theoretical work has
focused on the understanding of BEC in heavy-ion col-
lisions, in which a “fireball” source distribution, created
by the collision roughly at rest involving many parton el-
ementary interactions, decays into hadrons. Only a few
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references consider the quite di↵erent case of fragmenta-
tion in DIS and e

+
e

� processes, in which quite di↵erent
hadron-momentum and spatial-source distribution might
be assumed (see, e.g., Ref. [21,22]). Estimates of BEC in
e

+
e

� annihilation from string-fragmentation models [22]
indicate that correlation parameters are mostly depen-
dent on string-breaking parameters, because the strongest
correlations are from pions resulting from adjacent breaks
along a string.

To better understand the underlying physics of BEC
one may consider a simple example of the emission and
detection of two identical bosons, e.g., two pions, from
points r

↵

and r
�

, which are observed with momenta ka

and kb at detectors a and b (Fig. 1). The two pions are
indistinguishable and the total wave function of the two-
pion system must be symmetric under the exchange of
them:
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where  
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is the wave function of a pion produced at
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served at detector b. Assuming plane waves, i.e.,  
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exp(ikar↵), one may obtain | 2⇡|2 = 1+cos(�k·�r) with
�k = ka � kb and �r = r↵ � r�. Thus the correlation
function resulting from the interference of the two terms
in Eq. (1) will take the following form:

R(ka,kb) / 1 + cos(�k · �r). (2)

This expression shows that the BEC e↵ect measures the
projection of the spacial distance (�r) between two par-
ticle sources on the direction of the momentum di↵erence
(�k) between the observed pions. One can generalize two-
point sources to a continuous space-time distribution of

R(k↵,k�) / 1 + cos(�k.�r)

Goldhaber parametrisation of continuous

space-time distribution of sources

Two-point sources: 

R(T ) = 1 + � exp(�T 2r2G)

• Gaussian shape of source

•    : size of source

•  

• λ = 0 -> coherent sources; no correlation

λ = 1 -> completely incoherent sources
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2

Extraction from experimental correlation function from like-sign unidentified hadrons

R(p1, p2) = D(p1, p2)/Dr(p1, p2)

• reference sample free from BEC, built from 

• unlike-sign pairs (MUS) 

• event mixing (MEM)
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Fig. 3. Consistency check of the two chosen reference samples.
The quantity RTST is defined in the text. The curve is a linear
fit to the data for T between 0.05 GeV and 1.3 GeV.

contamination in the MUS, since these biases also exist
in the simulated event distributions.

As a test of the validity of R(T ) using the simulation
results with a double ratio, the MEM was used with
unlike-sign hadron pairs from the hydrogen data sample
to construct the double ratio

R

TST = (unlike/mixed)exp/ (unlike/mixed)MC

, (8)

shown as a function of T in Fig. 3. This test ratio is
expected to have no BECs, and ideally would have a
value of unity over the entire T range. At very low T

( 0.05 GeV), at T ⇡ 0.4 GeV, and at T > 0.9 GeV
this double ratio deviates from unity significantly. As
shown by a linear fit to R

TST there is a slight linear
dependence over most of the range of T , indicating some
small residual bias. The deviation near 0.4 GeV in the
simulation is likely due to insu�cient description of K

S

production, which contributes to the N

unlike distribu-
tions (see Fig. 2). The deviations at very low and at
large T likely arise from some combination of e↵ects in
both the simulation of the MUS and the MEM con-
struction of the reference sample. The very low T region,
T < 0.05 GeV, of the double ratio distributions is ex-
cluded from further analysis due to lack of statistics. A
fit to the correlation function R

TST (shown in Fig. 3)
with the Goldhaber parametrization [Eq. (6)] over the
range 0.05 GeV< T < 1.30 GeV gives �=0.000±0.003
and r

G

=0.0±1.4 fm, suggesting that the fluctuations at
large T and the slight non-zero linear dependence on T do
not cause a significant bias of the extracted parameters
� and r

G

.

Results

The double-ratio correlation functions obtained from hy-
drogen data are shown in Fig. 4 for both types of the
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hydrogen data, MUS

Fig. 4. Double ratio correlation function for like-sign hadron
pairs obtained with MEM and MUS based on hydrogen tar-
get data.

reference sample. The curves in the figure are results of
fits using the Goldhaber parametrization [Eq. (6)]. The
fits are performed over the range of 0.05 GeV < T <

1.30 GeV. The values for the two parameters obtained
from the fits are given in Table 2.

The systematic uncertainties are estimated by varia-
tions of the fit range in T , the bin width, and the polyno-
mial form for the long-range correlations term, i.e., using
a linear dependence (1 + �

0
T ). The results of the two

di↵erent methods are consistent (see Table 2). Values of
the fit parameter � from the quadratic form of P(T ) are
�0.08±0.01 and �0.05±0.01 respectively for the MEM

and MUS.
The kinematic dependence of the BEC parameters

on the invariant mass W of the photon-nucleon system
has been studied for the hydrogen target data sample. In
Fig. 5 the resulting parameters r

G

and � are presented
for like-sign hadron pairs as a function of W obtained
with the MEM and MUS methods. Within the present
systematic and statistical uncertainties there is no clear
dependence of the parameters on the invariant mass W

Table 2. Results for the Goldhaber parametrization fitted
to the HERMES hydrogen data, both for the mixed-event
method (MEM) and the method of unlike-sign pairs (MUS).

Method Goldhaber parameters

MEM rG = 0.64± 0.03(stat)+0.04
�0.04(sys) fm

� = 0.28± 0.01(stat)+0.00
�0.05(sys)

MUS rG = 0.72± 0.04(stat)+0.09
�0.09(sys) fm

� = 0.28± 0.02(stat)+0.02
�0.04(sys)

rG = 0.64± 0.03(stat)+0.04
�0.04(sys) fm rG = 0.72± 0.04(stat)+0.09

�0.09(sys) fm

� = 0.28± 0.01(stat)+0.00
�0.05(sys) fm � = 0.28± 0.02(stat)+0.02

�0.04(sys) fm

MEM MUS

arXiv:1505.03102
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Fig. 5. Parameter rG and � as a function of W , obtained
with MEM and MUS methods on hydrogen. The inner and
outer error bars indicate the statistical and total uncertainties.
For the latter the statistical and systematic uncertainties are
added in quadrature.

in this range. Previous measurements from the HERA H1
experiment [8] over a broad range at high W (65 GeV <

W < 240 GeV) found only slight evidence of an increase
in r

G

.
As mentioned above, BEC has been studied in a num-

ber of lepton-hadron and e

+
e

� experiments. The Gold-
haber parametrization is used in most of these analyses.
The parameter r

G

as a function of the average value of
W in lepton-nucleon scattering experiments is shown in
Fig. 6. The parameter � for a given experiment may de-
pend on the hadron fractions and on the experimental
details, hence the results of � obtained here are not com-
pared to those in other measurements. In the majority of
these experiments the extracted values of r

G

depend upon
the method of the construction of the reference sample.
Even for a single experiment, e.g., EMC, the parame-
ter r

G

obtained with the MUS is twice as large as that
obtained with MEM . From Fig. 6 no clear dependence
of the parameter r

G

on W can be deduced, from neither
methods (MEM and MUS). The following conclusions are
drawn from a comparison of these results from the di↵er-
ent experiments:

1. Most values of the parameter r

G

are in the range of
0.4 fm to 1.0 fm.

2. The results strongly depend on the choice of the refer-
ence sample. Analyses of the same data set with di↵er-
ent reference samples often give incompatible results
for r

G

(and �).
3. The MUS typically gives higher values for the param-

eter r
G

than the MEM .

The HERMES results on hydrogen are in general agree-
ment with those of previous lepton-nucleon scattering ex-
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Fig. 6. Goldhaber radius rG, as a function of W , obtained
in lepton nucleon scattering experiments [6,7,8,9,11,12,13].
Di↵erent markers are used to indicate the di↵erent methods
for the construction of the reference sample and the kinds of
uncertainties included.

periments over a broad range in W , and agree well with
the BBCN neutrino experiment, which is at a slightly
higher mean W than HERMES. Similar results are seen
in e

+
e

� collisions at LEP (see Ref. [5]).
A possible nuclear dependence in BEC was examined

using an extensive HERMES data set (cf. Table 1). The
correlation function for like-sign hadron pairs produced
in scattering o↵ the nuclear targets 2H, 3He, 4He, N, Ne,
Kr, and Xe was determined using the same approximate
parametrization as given in Eq. 6. Systematic uncertain-
ties are estimated separately for each target and each
reference sample (MEM and MUS). The parameters r

G

and � are presented in Fig. 7 as a function of the tar-
get atomic mass A. No dependence of these parameters
on target atomic mass is observed within the estimated
uncertainties. Fit results with a constant over the whole
range of the atomic mass for the four sets of data points
are presented in Table 3. Here, the total uncertainty of
each particular point is taken as the quadratic sum of sta-

Table 3. Fit of a constant to the Goldhaber parameters as
a function of the target atomic mass A. Results are given for
both the mixed-event method (MEM) and the method of
unlike-sign pairs (MUS).

Method Value �2/NDF

MEM rG = 0.634± 0.017 fm 1.5
� = 0.289± 0.006 2.1

MUS rG = 0.636± 0.021 fm 1.2
� = 0.289± 0.011 1.4

Comparison to other experiments

31

• general agreement between experiments, with 

• HERMES and BBCNC agree well

• MUS values higher than MEM values

0.4 fm < rG < 1.0 fm

arXiv:1505.03102
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Fig. 7. The parameters rG (top panel) and � (bottom panel)
are shown as a function of the target atomic mass A. The inner
part of the error bars indicate the statistical uncertainty and
the total error bars have systematic uncertainties added in
quadrature. The horizontal lines correspond to the average
value of the parameters.

tistical and systematic uncertainties. The parameters ex-
tracted with the two reference samples are in good agree-
ment.

To date there are no theoretical estimates for the mag-
nitude of nuclear e↵ects on BEC in DIS. In the absence
of some hitherto unknown e↵ect of multi-particle corre-
lations, hadrons produced are expected to interact with
the nuclear medium. Within the sensitivity of this exper-
iment no clear dependence of the parameters � and r

G

on
the target atomic mass is observed, consistent with earlier
results by the BBCN Collaboration [12]. This is similar to
the rather weak dependence of the double-hadron yields
on the target atomic mass observed at HERMES [32], in
contrast to much stronger e↵ects observed in the distri-
butions of single-hadron yields [1,29,30,31].

In conclusion, a study of the Bose–Einstein correla-
tions between two like-sign hadrons produced in semi-
inclusive deep-inelastic electron/positron scattering o↵
nuclear targets ranging from hydrogen to xenon has been
carried out. Two di↵erent methods of constructing the
reference sample are used in this study, and Bose–Einstein
correlations are clearly observed in all the data samples.
The results obtained using the two reference sample meth-
ods are in good agreement, suggesting that most of the
systematic uncertainties connected with the construction
of the reference samples are taken into account by the use
of double ratios corrected via an accurate experimental
simulation. Within the total experimental uncertainties,
no dependence of the parameters r

G

and � on the target
atomic mass is observed.

We gratefully acknowledge the DESY management for its sup-
port and the sta↵ at DESY and the collaborating institutions
for their significant e↵ort. This work was supported by the
Ministry of Education and Science of Armenia; the FWO-
Flanders and IWT, Belgium; the Natural Sciences and En-
gineering Research Council of Canada; the National Natu-
ral Science Foundation of China; the Alexander von Hum-
boldt Stiftung, the German Bundesministerium für Bildung
und Forschung (BMBF), and the Deutsche Forschungsgemein-
schaft (DFG); the Italian Istituto Nazionale di Fisica Nucle-
are (INFN); the MEXT, JSPS, and G-COE of Japan; the
Dutch Foundation for Fundamenteel Onderzoek der Materie
(FOM); the Russian Academy of Science and the Russian Fed-
eral Agency for Science and Innovations; the Basque Founda-
tion for Science (IKERBASQUE) and the UPV/EHU under
program UFI 11/55; the U.K. Engineering and Physical Sci-
ences Research Council, the Science and Technology Facilities
Council, and the Scottish Universities Physics Alliance; as well
as the U.S. Department of Energy (DOE) and the National
Science Foundation (NSF).

References

1. HERMES Collaboration, A. Airapetian et al., Nucl. Phys.
B 780, 1 (2007).

2. R. Hanbury Brown and R.Q. Twiss, Nature 178, 1046
(1956).

3. G. Goldhaber, W.B. Fowler, S. Goldhaber, T.F. Hoang,
Phys. Rev. Lett. 3, 181 (1959).

4. G. Goldhaber, S. Goldhaber, W. Lee, A. Pais, Phys. Rev.
120, 300 (1960).

5. G. Alexander, Rep. Prog. Phys. 66, 481 (2003).
6. EMC, M. Arneodo et al., Zeit. Phys. C 32, 1 (1986).
7. E665 Collaboration, M.R. Adams et al., Phys. Lett. B 308,
418 (1993).

8. H1 Collaboration, C. Adlo↵ et al., Zeit. Phys. C 75, 437
(1997).

9. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 583,
231 (2004).

10. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B
652, 1 (2007).

11. SKAT Collaboration, V.V. Ammosov et al., Sov. J. Nucl.
Phys. 53, 609 (1991).

12. BBCN Collaboration, V.A. Korotkov et al., Zeit. Phys. C
60, 37 (1993).

13. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B
686, 3 (2004).

14. R.M. Weiner, Phys. Rept. 327, 249 (2000).
15. W. Kittel, Acta Phys. Polonica B 32, 3927 (2001).
16. K. Zalewski, arXiv:hep-ph/0607222.
17. G.I. Kopylov, M.I. Podgoretskii, Sov. J. Nucl. Phys. 15,
219 (1972).

18. G.I. Kopylov, Phys. Lett. B 50, 472 (1974).
19. G.I. Kopylov, M.I. Podgoretskii, Sov. J. Nucl. Phys. 18,
336 (1974).

20. G. Cocconi, Phys. Lett. B 49, 459 (1974).
21. J.D. Bjorken, Lect. Notes Phys. 56, 93 (1976).
22. B. Andersson and W. Hofmann, Phys. Lett. B 169, 364
(1986).

23. M. Gyulassy, S.K. Kau↵mann, and L.W. Wilson, Phys.
Rev. C 20, 2267 (1979).

Nuclear-mass dependence

32

• no dependence on nuclear mass A observed

arXiv:1505.03102



Λ polarization in quasi-real photo-
production
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Λ
• unpolarized e+/e- beam

• H, D, He, Ne, Kr, Xe target 



the (B) term, indicating large ℓT dependence at 1 ≤ ℓT ≤ 3 GeV. Experimentally,
P pp

Λ grows up as ℓT increases up to ℓT ∼ 1 GeV and stays constant at 1 ≤ ℓT ≤ 3
GeV. So the P pp

Λ observed at R608 can not be wholly ascribed to the twist-3 effect
studied here which is designed to describe large ℓT polarization.
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Figure 1: P pp
Λ at

√
S = 62 GeV.
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S = 200 GeV.

We next discuss the polarization P ep
Λ in pe → Λ↑(ℓ)X where the final electron

is not observed. In our O(α0
s) calculation, the exchanged photon remains highly

virtual as far as the observed Λ has a large transverse momentum ℓT with respect
to the ep axis. Therefore experimentally one needs to integrates only over those
virtual photon events to compare with our formula.
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Using the twist-3 distribution and fragmentation functions used to describe
P pp

Λ , we show in Fig. 4 the obtained P ep
Λ corresponding to (A’)(chiral-odd) and

(B’)(chiral-even) contributions. Remarkable feature of Fig. 4 is that in both chiral-
even and chiral-odd contributions (i) the sign of P ep

Λ is opposite to the sign of P pp
Λ

and (ii) the magnitude of P ep
Λ is much larger than that of P pp

Λ , in particular, at
large xF , and it even overshoots one. (In our convention, xF > 0 corresponds
to the production of Λ in the forward hemisphere of the initial proton in the ep
case.) The origin of these features can be traced back to the color factor in the
dominant diagrams for the twist-3 polarized cross sections in ep and pp collisions.
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• Large transverse Λ polarization PΛ observed in unpolarized 

hadron scattering experiments


• Vast majority: negative polarization values observed,  

except positive for K-p and Σ-N


• Magnitude increases with xF and pT, reaching plateau for pT=1 GeV 



•               scattering?

• SIDIS (high Q2) PΛ            , polarising FF

• current measurement: inclusive (Q2≈0) 

the (B) term, indicating large ℓT dependence at 1 ≤ ℓT ≤ 3 GeV. Experimentally,
P pp

Λ grows up as ℓT increases up to ℓT ∼ 1 GeV and stays constant at 1 ≤ ℓT ≤ 3
GeV. So the P pp

Λ observed at R608 can not be wholly ascribed to the twist-3 effect
studied here which is designed to describe large ℓT polarization.
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and (ii) the magnitude of P ep
Λ is much larger than that of P pp

Λ , in particular, at
large xF , and it even overshoots one. (In our convention, xF > 0 corresponds
to the production of Λ in the forward hemisphere of the initial proton in the ep
case.) The origin of these features can be traced back to the color factor in the
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• Large transverse Λ polarization PΛ observed in unpolarized 

hadron scattering experiments


• Vast majority: negative polarization values observed,  

except positive for K-p and Σ-N


• Magnitude increases with xF and pT, reaching plateau for pT=1 GeV 

Λ: The Final State Polarimeter

In Λ rest frame, proton prefers to be emitted along
Λ spin direction parity-violating weak decay

� p

/

R
... apply
parity ...

�p

/

R ... and
rotate ...

� p

/

R

dN
dΩp

∼ (1 + αP⃗Λ · k̂p) = (1 + αPΛ cos θp)

α = 0.642 ... θp is relative to true Λ polarization direction

Λ spin structure

Constituent q Model SU(3) from nucleon∗
∆u ∆d ∆s ∆u ∆d ∆s

p +4/3 -1/3 0 +0.83 -0.43 -0.10
n -1/3 +4/3 0 -0.43 +0.83 -0.10

∗ Burkardt & Jaffe : use measured p, n values +
SU(3)-symmetric flavour rotation to obtain hyperon values

Λ 0 0 1 -0.17 -0.17 +0.63
Σ0 +2/3 +2/3 -1/3 +0.37 +0.37 -0.43
Ξ0 -1/3 0 +4/3 -0.43 -0.10 0.83

parity-violating weak decay of Λ: in Λ rest frame, 
proton preferably emitted along Λ spin direction

dN

d⌦p
=

dN0

d⌦p
(1 + ↵P⇤

cos ✓p)

ep ! ⇤" X

/ D?
1T



Atomic-mass dependence
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atomic-mass number A
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Phys. Rev. D 90 (2014) 072007

• positive PΛ for light nuclei

• PΛ consistent with zero for heavier nuclei



Kinematic dependence

37

-0.1

0

0.1

0.2
H+D
Kr+Xe

ζ

〈 p
T  〉 

 [G
eV

]

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

P nΛ

p!
kmax is its maximum possible value, but this variable is not

available in an inclusive measurement. Nevertheless, as
shown in Fig. 3, a simulation of the reaction using the
PYTHIA Monte Carlo reveals a useful correlation between !
and xF. In particular, all events at ! ! 0:25 are produced in
the kinematic region xF > 0, and for ! < 0:25 there is a
mixture of events originating from the kinematic regions
with xF > 0 and xF < 0. An indication that the dominant
production mechanism changes at ! values around 0.25 can
be observed in the ratio of ! to "! yields displayed in Fig. 4.
The yields are not corrected for acceptance as PYTHIA
Monte Carlo studies indicate that the detection efficiencies
for ! and "! are the same. Above ! " 0:25, an approxi-
mately constant ratio of about 4 is seen. At lower values the
ratio increases significantly, likely indicating the influence
of the nucleon target remnant in ! formation.

The ! and "! polarizations are shown as functions of ! in
Fig. 5. The ! polarization is about 0.10 in the region ! <
0:25, and about 0.05 at higher ! . Combining all kinematic
points together, the average ! transverse polarization is

 P!
n # 0:078$ 0:006%stat& $ 0:012%syst&: (16)

For the "! measurement, no kinematic dependence is ob-
served within the statistical uncertainties. The net "! trans-
verse polarization is

 P "!
n # '0:025$ 0:015%stat& $ 0:018%syst&: (17)

It should be noted that for each point in ! the value of the
hyperon’s mean transverse momentum hpTi is different as
is shown in the lower panel of Fig. 5. Here pT is defined
with respect to the eN system rather than to the "(N
system as, again, the virtual-photon direction was not
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FIG. 3. Correlation between xF, evaluated in the "(N system,
and the light-cone fraction ! determined in the eN system, as
determined from a PYTHIA Monte Carlo simulation.
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FIG. 4. Ratio of ! to "! yields versus light-cone fraction !
observed in the data, after background subtraction.
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FIG. 5. Transverse polarizations P!
n and P "!

n (upper panel) and
mean hpTi (lower panel) as functions of ! # %E! ) pz!&=%Ee )
pe&. The inner error bars represent the statistical uncertainties,
and the outer error bars represent the statistical and systematic
uncertainties added in quadrature.

TRANSVERSE POLARIZATION OF ! AND . . . PHYSICAL REVIEW D 76, 092008 (2007)

092008-7

⇣ = (E⇤ + pz⇤)/(Ee + pe)

• H+D: PΛ larger in backward region       possibly influence of current and 
target fragmentation

forward

Phys. Rev. D 90 (2014) 072007



Kinematic dependence
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H+D,      ζ < 0.2
H+D,   ζ > 0.3
Kr+Xe,   0 < ζ < 1 

pT [GeV]
0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.1

0.20

 〈 
ζ 

〉 

0.2

0.4

P nΛ

1.4

 0.05

0.15

• H+D: PΛ increases with pT in backward region, while constant in forward region

Phys. Rev. D 90 (2014) 072007



Summary

• 3D picture of the nucleon:


• ω SDMEs and AUT from exclusive DIS: good model description with inclusion of 
pion pole.


• Asymmetries in semi-inclusive DIS: 3D extraction: contribute to understanding of 
various TMD PDFs @ twist 2 and twist 3.


• Bose-Einstein correlations in DIS: clear signals observed, without evidence for 
target-mass dependence.


• Λ polarization in quasi-real photoproduction: positive for light nuclei; compatible 
with zero for Kr and Xe.
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Thank you
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