Deeply Virtual Compton Scattering on the Neutron

Meriem BEN ALI

(PhD student)
Laboratoire LPC Clermont Ferrand
Faculté des sciences de Monastir (FSM)
POETIC VI
07-09-2015

Introduction

* Elastic Scattering $\left(\mathrm{W}^{2}=\mathrm{M}^{2}\right)$

Form Factors

(Transverse position of partons)

Two independent informations about the nucleon structure
 Inelastic ($\mathrm{W}^{2} \gg \mathrm{M}^{2}$) Scattering (DIS)

Parton Distribution
Functions (PDFs)
(Longitudinal momentum distribution of the partons in the nucleon)

* Deeply Virtual Compton Scattering (DVCS)

New Structure Functions
(Generalized Parton Distributions GPDs)

GPDs relate :
Spatial parton distribution in the transverse plane

Generalized Parton Distribution GPDs

* 4 GPDs functions of three variables:
$\checkmark x \pm \xi$: longitudinal momentum fraction $\checkmark \xi=\frac{x_{B}}{2-x_{B}}$: GPDs skewness invariant $\checkmark \mathrm{t}$: squared momentum transfer.
>2 GPDs nucleon spin preserved $\left\{\begin{array}{l}H_{q}(x, \xi, t) \\ E_{q}(x, \xi, t)\end{array}\right.$
>2 GPDs nucleon spin flipped $\left\{\begin{array}{l}\widetilde{E}_{q}(x, \xi, t) \\ \tilde{H}_{q}(x, \xi, t)\end{array}\right.$
$*$ Link to Parton distribution funct

\[\)| $(\xi=\mathbf{t}=\mathbf{0})$ |
| :---: |

\]

$H_{q}(x, 0,0) \begin{cases}=q(x) ; & x>0 \\
=-\bar{q}(x) & x<0\end{cases}$
(3) $\tilde{H}_{q}(x, 0,0) \begin{cases}=\Delta q(x) ; & x>0 \\
=\Delta \bar{q}(-x) ; & x<0\end{cases}$

$$
\begin{aligned}
& \text { Link to Form Factors }(\square \xi) \\
& \int_{-1}^{1} d x \boldsymbol{H}_{q}(x, \xi, t)=F_{1}(t) \\
& \int_{-1}^{1} d x E_{q}(x, \xi, t)=F_{2}(t) \\
& \int_{-1}^{1} d x \tilde{H}_{q}(x, \xi, t)=G_{A}(t) \\
& \int_{-1}^{1} d x \widetilde{H}_{q}(x, \xi, t)=G_{p}(t)
\end{aligned}
$$

* Access to quark angular momentum, via Ji sum rule [X. Ji 1997]:

$$
J_{q}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}=\int_{-1}^{+1} d x x\left[H_{q}(x, \xi, 0)+E_{q}(x, \xi, 0)\right]
$$

How to measure GPDs?

Deeply Virtual Compton Scattering (DVCS) $e N \rightarrow e N \gamma$
The simplest process that can be described in terms of GPDs by measuring its cross section
At Bjorken regime ($Q^{2} \rightarrow \infty$ and $v \rightarrow \infty$)

Known term

$$
d^{5} \sigma=\left|T^{B H}\right|^{2}+2 T^{B H} \operatorname{Re}\left(T^{D V C S}\right)+\left|T^{\text {DVCS }}\right|^{2}
$$

\checkmark The total cross-section accesses the real part of DVCS and the $\left|\mathrm{T}^{\mathrm{DVCS}}\right|^{2}$ term which are sensitive to an integral of GPDs over \mathbf{x}
$T^{D V C S} \propto P \int_{-1}^{+1} \frac{G P D(x, \xi, t)}{x-\xi} d x+i \Pi G P D(x= \pm \xi, \xi, t)+\ldots$
Real part
Imaginary part
\checkmark The polarized cross-section difference accesses the imaginary part of DVCS and therefore GPDs at $\mathbf{x}= \pm \xi$

Deeply Virtual Compton Scattering

* Measure cross section at different kinematics (2 beam energies)

- Separates the $\operatorname{Re}\left(T^{D V C S}\right.$ of DVCS and the $\left|T^{\mathrm{DVCS}}\right|^{2}$ \&
- Better constrain theoretical models of GPDs
* Measure n-DVCS cross section is important
- Neutron has different flavors from the proton
- Sensitive to GPD E:
(The less constrained GPD and which is important to access quarks orbital momentum via Ji's sum rule)

CEBAF

The E08-025 (n-DVCS) experiment was performed at JLab Hall A in 2010.
> Goal : Measure the n-DVCS total cross-sections

* Hall A at Jefferson Lab (Newport, Virginia, USA)
 - Ebeam $=4.45 \mathrm{GeV}$ and Ebeam=5.54 GeV

- $\mathrm{I}=3 \mu \mathrm{~A}$
- Beam Polarization $=72 \%$ et 76%
- Beam energy resolution $\sim 10^{-4}$
(High precision experiments)

Experimental apparatus
High Resolution Spectrometers

-Maximal momentum	$4 \mathrm{GeV} / \mathrm{c}$
-Momentum acceptance	$\pm 5 \%$
-Momentum Resolution	$\sim 10^{-4}$
-Solid angle $\Delta \Omega$	7 msr

$$
e p \rightarrow e \gamma p
$$

$$
e d \rightarrow e \gamma n(p)
$$

*The data were taken at two kinematics:
\checkmark Beam energy $=4.45 \mathbf{G e V} \& 5.54 \mathrm{GeV}$ $\checkmark \mathbf{Q}^{2}=1.75 \mathrm{GeV}^{2}$
$\checkmark \mathrm{x}_{\mathrm{Bj}}=0.36$
$\checkmark \mathrm{t} \sim[-0.5,-0.1] \mathrm{GeV}^{2}$
\checkmark Maximal luminosity $=3.10^{37} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Electromagnetic Calorimeter

- $13 \times 16 \mathrm{PbF}_{2}$ blocks (Čerenkov light detection)
- Block size: $3 \times 3 \mathrm{~cm}^{2} \times 20 \mathrm{X}_{0}$
- Each block is connected to (PMT + base + ARS)
-The energy deposit determination is based on a wave form analysis of the ARS signals.

Calorimeter energy calibration

* The calibration method is based on the comparison between the measured energy of a detected π^{0} from $\mathrm{H}\left(\mathrm{e}, \mathrm{e} \pi^{0}\right) \mathrm{p}$ events and its expected energy calculated with its scattering angle.

Calorimeter energy calibration: Results

Invariant mass peak position

(Missing mass) ${ }^{2}$ peak position

After the π^{0} calibration we reproduce: the $\boldsymbol{\pi}^{0}$ mass $\&$ the proton mass
Each group number correspond to 1 or 2 days of data taking

This method allows a daily calibration of the calorimeter

Selection of the n-DVCS events

* In order to select the DVCS events in both targets:
$(\text { Missing mass })^{2}=\left(e+N-e^{\prime}-\gamma\right)^{2}$

-subtracting the accidentals,
\cdot subtracting single photons coming from π^{0} decay (π^{0} contamination),
- adding Fermi momentum to H2 data,
- normalizing H2 and D2 data to the same luminosity, we obtain the difference (D(e, $\left.\left.\mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathbf{X}-\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathbf{X}\right)$

$$
\begin{aligned}
& \text { ——— } \mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma\right) \mathbf{X}-\mathrm{acc}-\boldsymbol{\pi}^{0} \text { cont } \\
& -\quad \mathbf{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathbf{X}-\mathrm{acc}-\boldsymbol{\pi}^{0} \text { cont } \\
& \ldots-\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathbf{X}-\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathbf{X}
\end{aligned}
$$

$D-D\left(e, e^{\prime} \gamma\right) p n=p\left(e, e^{\prime} \gamma\right) p+n\left(e, e^{\prime} \gamma\right) n+d\left(e, e^{\prime} \gamma\right) d$

Ebeam=4.45 GeV

Ebeam $=5.54 \mathrm{GeV}$

Extraction of the cross section

* The total unpolarized cross section of $\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma\right) \mathrm{p}$:

$$
\frac{d^{4} \sigma}{d Q^{2} d x_{B} d t d \varphi}=|T B H|^{2}+|T D V C S|^{2}+\underset{\text { The in }}{I}
$$

The interference term * The data $\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma\right) \mathrm{X}-\mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma\right) \mathrm{X}\left(\right.$ with $\left.\mathrm{Mx}^{2}<1.15 \mathrm{GeV}\right)$ are fitted by a GEANT4 simulation assuming a cross section of the form [A.V. Belitsky, D. Muller Phys. Rev., D82:074010, 2010]

Calculated with n and d elastic form factors

Dependence in φ

Separate the different neutron contributions $X_{\text {in }}$ (and separate th coherent deuteron contributions X

Extraction of the cross section

Binning: 4 bins on \mathbf{t} (squared momentum transfer) $\times 20$ bins on φ

A χ^{2} minimization between the smeared simulation and experimental data:

conclusion

\checkmark These results show for the first time the existence of a positive contribution of n-DVCS (+ d-DVCS)

Expérimental cross section > (n-BH+d-BH)

\checkmark These results are relatively stable as a function of $\mathrm{M}_{\mathrm{X}}{ }^{2}$ cut and the experimental cross section is almost independent of the experimental binning.
\checkmark The errors bars in the previous plots are purely statistical errors, systematic errors are under estimation.

* Stability and correlation studies to estimate separately the contributions of n-DVCS and d-DVCS still to be done.
* A global fit will be performed using both energies (high and low) data to extract CFFs.
* Other Phd works on the same subject and data (C. Desnault, IPN-Orsay)

Thank you for your attention

Extraction of the cross section

In the new BKM Formalism we have: $\left\{\begin{array}{l}9 \mathrm{CFFs} \text { for the neutron } \\ 9 \mathrm{CFFs} \text { for the coherent deuton }\end{array}>\begin{array}{l}\mathbf{1 8} \text { Contributions !! } \\ \text { (we can't fit everything) }\end{array}\right.$

We chose to fit only 6 CFFs:

$$
\begin{cases}3 X_{i n}=\operatorname{Re}\left(C^{I}\right)_{n}, & \underset{A N e}{\operatorname{Re}\left(C_{F e f f}^{I}\right)_{n},}, C_{n}{ }^{\text {DVCS }} \\ 3 X_{i d}=\operatorname{Re}\left(C^{I}\right)_{d}, & \operatorname{Re}\left(C^{I}{ }_{\text {Feff }}\right)_{d}, \\ C_{d}{ }^{\text {DVCS }}\end{cases}
$$

BUT:
These coefficients $X_{i n}$ and $X_{i d}$ are effective coefficients
AND
These coefficients are not stable (event if the χ^{2} of the fit is good) as a function of:

* Cut on Mx ${ }^{2}$
* the binning on Mx^{2}
*The number of contributions to fit

Only the BH_contributions and the total experimental cross section will be shown

