Phenomenological status of GPDs

Dieter Müller

Cape Town University \& Ruder Bošković Institute

* Accessing GPDs in deeply virtual processes
* GPD models
* Data description/predictions (partially includes DVMP)

Prospects

* Conclusions
see also talks of V. Braun (A. Manashov, B. Pirnay)
K. Kumerički (KK)
K. Semenov-Tian-Shansky (M. Polyakov)
some new work in collaboration with G. Duplančić and K. Passek-Kumerički (P-K)

GPD related hard exclusive processes

- Deeply virtual Compton scattering (clean probe)

$$
\begin{aligned}
& e p \rightarrow e^{\prime} p^{\prime} \gamma \\
& e p \rightarrow e^{\prime} p^{\prime} \mu^{+} \mu^{-} \\
& \gamma p \rightarrow p^{\prime} e^{-} e^{+}
\end{aligned}
$$

factorization proof for transversal cross sections [Collins Freund (99)]

- Deeply virtual meson production (flavor filter)

$$
\begin{aligned}
& e p \rightarrow e^{\prime} p^{\prime} \pi \\
& e p \rightarrow e^{\prime} p^{\prime} \rho \\
& e p \rightarrow e^{\prime} n \pi^{+} \\
& e p \rightarrow e^{\prime} n \rho^{+}
\end{aligned}
$$

scanned area of the surface as

 a functions of lepton energy

$$
e p \rightarrow e^{\prime} p^{\prime} \mu^{+} \mu^{-}
$$

- etc.
factorization proof for longitudinal cross sections [Collins, Frankfurt, Strikman (96)]

GPDs embed non-perturbative physics

GPDs appear in various hard exclusive processes,
[DM et. al (91/94)
e.g., hard electroproduction of photons (DVCS)

Radyushkin (96); Ji (96);
Collins, Frankfurt,
Strikman (96)]
 $\mathcal{H}_{0+}, \mathcal{E}_{0+}, \widetilde{\mathcal{H}}_{\underset{\sim}{+}}, \widetilde{\mathcal{E}}_{0+} \quad$ twist-3 associated CFFs
$\mathcal{H}_{-+}, \mathcal{E}_{-+}, \widetilde{\mathcal{H}}_{-+}, \widetilde{\mathcal{E}}_{-+}$twist-2 (gluon transversity) + twist-4 contamination
$\mathcal{F}\left(\xi, \mathcal{Q}^{2}, t\right)=\int_{-1}^{1} d x C\left(x, \xi, \alpha_{s}(\mu), \mathcal{Q} / \mu\right) F(x, \xi, t, \mu)+O\left(\frac{1}{\mathcal{Q}^{2}}\right)$
$4+4+4$ CFFs hard scattering part
Compton form factors observables
perturbation theory (our conventions/microscope)
higher twist
depends on approximation

Deeply virtual meson production (DVMP)

 GPDs are universally defined within the collinear framework
skepticisms that pQCD
is applicable
(e.g., large NLO corrections within fixed GPDs)
consequently, one would be left with DVCS or one might use hand-bag model, i.e., universality is lost

Goloskokov and Kroll (GK) provide a systematic analysis

$$
\frac{1}{u(\xi-x)-i \epsilon} \Rightarrow \frac{1}{k_{\perp}^{2}+u(\xi-x)-i \epsilon}
$$

Sudakov resumation in impact space
freezing coupling constant
`integrating out' transverse degrees of freedom by hand meson WF width is used to fit normalization
RDDA + NLO PDF (CTEQ6) + PDF evolution

A partonic duality interpretation

 quark GPD (anti-quark $x \rightarrow-x$):$$
\begin{aligned}
& F(x, \eta, t)= \\
& \theta(-\eta \leq x \leq 1) \omega(x, \eta, t)+\theta(\eta \leq x \leq 1) \omega(x,-\eta, t) \\
& \omega(x, \eta, t)=\frac{1}{\eta} \int_{0}^{\frac{x+\eta}{1+\eta}} d y(a+b x) f(y,(x-y) / \eta, t)
\end{aligned}
$$

dual interpretation on partonic level:

central region $-\eta<x<\eta$ mesonic exchange in t-channel
support extension is unique [DM et al. 92]

[DM, A. Schäfer (05) KMP-K (07)]
?ambiguous (D-term) Polyakov Weiss (99)

outer region η < x
partonic exchange in s-chắnnel

GPD models

VGG model (99) $H^{q}(x, \eta, t)=F_{q}(t) q\left(x, \mu^{2}\right)$ [Vanderhaeghen, Guidal, Guichon] Radyushkin (99) RDDA
(a holographic model [KM (10)])

$$
\begin{aligned}
H^{q}(x, \eta, t=0) & =\int_{-1}^{1} d y \int_{-1+|y|}^{1-|y|} d z \delta(x-y-z \eta) \frac{q(y)}{1-y} \Pi\left(\frac{z}{1-y}\right) \\
\Pi(z) & \propto\left(1-z^{2}\right)^{b}
\end{aligned}
$$

D-term added to complete polynomiality [Polyakov \& Weiss (99)] any GPD can be represented as DD part + D-term [Belitsky, DM et al. (00), Teryaev (01)] ? Are DD and D-term dependent? (YES, if $\mathrm{J}=0$-fixe pole is universal; NO otherwise) see Kirill's talk assumption for GK model (same for models that are implemented in VGG code)
$q(x) \Rightarrow q(x, t)=q(x) e^{g(x) t} \stackrel{\text { simplified to }}{\Rightarrow} q(x, t) \propto e^{-\beta t} x^{-\alpha-\alpha^{\prime} t}(1-x)^{\beta}(1+\cdots)$
KM valence quark model (suited for dispersion relation or LO analysis)

$$
H(x, x, t)=\frac{n r}{1+x}\left(\frac{2 x}{1+x}\right)^{-\alpha-\alpha^{\prime} t}\left(\frac{1-x}{1+x}\right)^{b}\left(1-\frac{1-x}{1+x} \frac{t}{M^{2}}\right)^{-1}
$$

+ double partial wave expansion of GPDs see Kreso`s and Kirill's talk

Status of theory

 \checkmark twist-two DVCS coefficients at NLO \checkmark twist-two DVMP coefficients at NLO[Belitsky, DM (97); Mankiewicz et. al (97); Ji,Osborne (97/98);
Pire, Szymanowski, Wagner (11);
DM, Pire, Szymanowski, Wagner (11)]
[Belitsky, DM (01);
Ivanov, Szymanowski,Krasnikov (04)]
checked \& extended Duplancic, P-K, DM (15)
NLO effects are well understood generically large- : logarithmical enhancement valence region: weak evolution implies moderate effects DM, T. Lautenschlager, P-K. small-६: model dependence
\checkmark anomalous dimensions and evolution kernels at NLO
A. Schäfer (13)
[Belitsky, DM (98) + Freund (01) Braun, Manashov (14)] evolution effects can be called moderate, except for H/E at small- ξ NLO analyses have to include NLO evolution
\checkmark gluon transversity at NLO [Belitsky, DM (00)]
\checkmark next-to-next-to-leading order for DVCS in a specific conformal subtraction scheme $N L O \rightarrow$ NNLO corrections can be called moderate w.r.t. LO \rightarrow NLO [DM.KK,P-K 07]
\checkmark twist-three including quark-gluon-quark correlation at LO
\checkmark partially, twist-three sector at NLO [Kivel, Mankiewicz (03)]
[Anikin,Teryaev, Pire (00); Polyakov et. al (00), Belitsky DM (00); Kivel et. al, Weiss, Radyushkin (00)]
? 'target mass corrections' (not understood)
[Belitsky DM (01)]
\checkmark kinematical twist-four corrections [Braun, Manashov (11)] (complicated, see Volodya`s talk)

Strategies to analyze DVCS data

 (ad hoc) modeling: VGG code [Goeke et. al (01), Guidal et. al (05) based on RDDA] (dead BMK model [Belitsky, DM , Kirchner (01) based on RDDA] end reached ~05) ‘aligned jet' model [Freund, McDermott, Strikman (02)] (immediately dead)closing the loop after ~1 decade Goloskokov/Kroll (05) based on RDDA (pinned down by DVMP) ‘dual' model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07] " -- " [KMP-K (07) in MBs-representation] (Io-SO(3)-PWE is dead) polynomials [Belitsky et al. (98), Liuti et. al (07), Moutarde (09)] (dead end)
dynamical models not applied [Radyushkin et.al (02); Tiburzi et.al (04); Hwang DM (07,14)] (respecting Lorentz symmetry) (might be something for the future)
flexible models: any representation by including unconstrained degrees of freedom (for fitting)

CFFs (real and imaginary parts) and GPD fits/predictions

i. CFF extraction (local) [BMK (01), HALL-A (06,15)] and [KK,DM, Murray (13)] least square fits (model independent ©) [Guidal, Moutarde (08...)] neural networks - a start up [KMS (11)] see Michel's talk
ii. `dispersion integral' fits [KMP-K (08),KM (08...)]
iii. flexible GPD model fits [KM (08...), AFKM (13), KMM (13), LSM (13)]
vi. model comparisons \& predictions

VGG code, however also BMK01 (up to ~05)
Goloskokov/Kroll model based on RDDA
[DVCS: by `us' (12) also by Kroll,Moutarde,Sabatie (13)]

DIS+DVCS+DVMP phenomenology at small- x_{B} (H1,ZEUS)

 works somehow without DIS at LO [T. Lautenschlager, DM, A. Schäfer (13)] works at NLO $\left(Q^{2}>4 \mathrm{GeV}^{2}\right)$, done with Bayes theorem (probability distribution function)

GK model versus DVCS measurements H1 \& ZEUS [Meskauskas, DM (11), Kroll, Moutarde, Sabatie (12)]
 as in our flexible GPD LO analysis
also GK model does not describe
DVMP(handbag) + DVCS + DIS on the other hand it is known from [Freund \& McDermott 01] that RDDA based models do not describe H1 \& ZEUS DVCS data

Claims [Kroll, Moutarde, Sabatie (2012)] :
GK model is better than older RDDA based models GPD universality shows up (DVMP, DVCS)

> a complete measurement allows in principle to pin down all CFFs
> adopting twist-two hypothesis together with certain conventions (4 CFFs, 8 parameters) (Michel’s philosophy: use noise together with hypotheses and model constraints, except for one point, which was not reported, our results are compatible for HERMES

> larger statistics: asymmety vahue

HERMES recoil detector data for beam spin asymmetry

GK and VGG models are compatible with HERMES data, only if recoil detector data are used

they were and are incompatible with old and new CLAS/HALL A data
claim [Kroll et. al (13)] that discrepancy is on the same order as in HERMES kinematics
disproved
by Fourier transform [Kumericki et. al (11)]

Tension in longitudinally polarized proton data

 GPD H is the big player, however, also \hat{H} is accessible tension between HERMES and old CLAS single spin asymmetry measurements $A_{\mathrm{UL}}^{\sin (\phi)}=-0.73 \pm 0.032$ (sys) ± 0.008 (sta) (HERMES overall)tension is perhaps gone with new CLAS data but not on GPD level tension for the second harmonic remains
$A_{\mathrm{UL}}^{\sin (\phi)} \sim A_{\mathrm{UL}}^{\sin (2 \phi)}=-0.106 \pm 0.032(\mathrm{sys}) \pm 0.008$ (sta)(overall)

- no significant twist-three contribution in all other DVCS measurements
- second harmonic is not describable with any reasonable GPD model
- tension in HERMES data set (see slide 27 of Kreso`s talk)

D-term form factor and $\mathrm{J}=0$ fixed pole extraction

- D-term form factor comes out negative - $\mathrm{J}=0$ fixed pole is in principle extractable
- How robust and how model biased is that?

model:	KM10	KM10a	KM10b	KMM12	KMM12b	KM15p
\mathcal{D}	-6.0	-1.6	-4.4	-0.9	-2.5	-3.2
$\mathcal{H}_{-1}^{\text {val }}$	-4.6	-5.8	-5.3	-6.0	-5.4	-4.0
$\mathcal{H}_{-1}^{\text {sea }}$	15.9	16.4	13.8	15.9	13.6	18.8
\mathcal{H}_{∞}	-17.3	-12.2	-12.8	-10.9	-9.8	-17.4

Role of old and new HALL A cross section measurements

$$
\begin{aligned}
& \frac{d \sigma^{\cos (0 \phi)}}{d x_{B} d \mathcal{Q}^{2} d t}=\frac{\mathcal{N}}{x_{B} c_{0}^{\mathcal{P}} t}\left[\frac{c_{0, \mathrm{unp}}^{\mathrm{BH}}}{\left(1+\epsilon^{2}\right)^{2}}+\frac{x_{B}}{y} c_{0, \mathrm{unp}}^{\mathrm{I}}+\frac{x_{B}^{2} c_{0}^{\mathcal{P}} t}{\mathcal{Q}^{2}}\left(c_{0, \mathrm{unp}}^{\mathrm{VCS}}+\frac{w_{1}}{2} C_{1, \mathrm{u}, \mathrm{p}}^{\sim}+\frac{w_{2}}{2} c_{2, \mathrm{unp}}^{\operatorname{CS}}\right)\right] \\
& \frac{d \sigma^{\cos (\phi)}}{d x_{B} d \mathcal{Q}^{2} d t}=\frac{-\mathcal{N}}{x_{B} c_{0}^{\mathcal{P}} t}\left[\frac{c_{1, \mathrm{unp}}^{\mathrm{BH}}}{\left(1+\epsilon^{2}\right)^{2}}+\frac{x_{B}}{y} c_{1, \mathrm{unp}}^{\mathrm{I}}+\frac{x_{B}^{2} c_{0}^{\mathcal{P}} t}{\mathcal{Q}^{2}}\left(\frac{2-w_{2}}{2} c_{1, \mathrm{unP}}^{\sim}+w_{1} c_{0, \mathrm{unp}}^{\mathrm{VCS}}+\frac{w_{1}}{2} c_{2, \mathrm{unp}}^{\mathrm{NS}}\right)\right]
\end{aligned}
$$

III defined fitting problem

HALL A $(06,15)$ extraction of CFF combinations (shown on previous slide) adopting (any) twist-two approximation yields to an underestimate of errors for real part of linear CFF combination and the bilinear CFF form
CLAS (15) uses `model independent' fitter code, referring to `VGG models’ error and mean estimates are model dependent, it looks to me that results are human biased

The Future

\checkmark COMPASS II
\checkmark JLAB@12 GeV
? ENC@GSI
? LHeC@CERN
Aschenauer, Firzo KK, DM (13)
? EIC@BNL or EIC@JLAB (also access to $E^{\text {sea }}$, i.e. Jsea $)$

from stage II $20 \times 250 \mathrm{GeV}^{2}$ simulations

Prospect: quantifying partonic content

Summary

GPDs are intricate and (thus) a promising tool

$>$ to reveal the transverse distribution of partons (to some extend done at small x_{B})
$>$ to address the spin content of the nucleon (not possible at present in pheno.)
$>$ providing a bridge to non-perturbative methods (lattice, also LCWFs models)
$>$ modeling in terms of effective LCWFs seems t doable (requires efforts) first decade of hard exclusive leptoproduction measurements

- CFFs have their own interest, bridging low and high virtuality regimes
- global model fits to DVCS can be straightforwardly improved
- DVCS and DVMP data are describable in global NLO fits at small x
- moving on: to NLO, kinematical twist, full GPD models, DVCS+DVMP+...
- covering the kinematical region between HERA (COMPASS) experiments within a high luminosity machine and dedicated detectors is needed to quantify exclusive and inclusive QCD phenomena: handle on GPD E \& 3D
- support for theory is needed (otherwise no robust phenomenology will show up)
- some kind of education is desired before one can enter GPD phenomenology

interference of DVCS and Bethe-Heitler processes

12 Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}, \cdots$ elastic form factors F_{1}, F_{2} (helicity amplitudes)

$$
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{e^{6}\left(1+\epsilon^{2}\right)^{-2}}{x_{\mathrm{Bj}}^{2} y^{2} t \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathrm{BH}}+\sum_{n=1}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)\right\}
$$

$$
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\frac{e^{6}}{y^{2} \mathcal{Q}^{2}}\left\{c_{0}^{\mathrm{DVCS}}+\sum_{n=1}^{2}\left[c_{n}^{\mathrm{DVCS}} \cos (n \phi)+s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]\right\}, \frac{\int_{\text {helicity }} \frac{1: 1}{\text { ampl }}}{}
$$

$$
\mathcal{I}=\frac{ \pm e^{6}}{x_{\mathrm{Bj}} y^{3} t \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}} \cos (n \phi)+s_{n}^{\mathcal{I}} \sin (n \phi)\right]\right\}
$$

$$
\begin{aligned}
& \text { harmonics } \\
& \frac{\square}{\text { helicity atmpl. }} \text { 1:1 }
\end{aligned}
$$

all harmonics are given by twist-2 and -3 GPDs:

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\} \propto \frac{\Delta}{\mathcal{Q}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{3}\right), \quad c_{0}^{\mathcal{I}} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right) \\
& \left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-3(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right), \quad\left\{\begin{array}{l}
c_{3} \\
s_{3}
\end{array}\right\} \propto \frac{\Delta \alpha_{s}}{\mathcal{Q}}(\mathrm{tw}-2)^{\mathrm{T}}+O\left(1 / \mathcal{Q}^{3}\right) \\
& c_{0}^{\mathrm{CS}} \propto(\mathrm{tw}-2)^{2}, \quad\left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\}^{\mathrm{CS}} \propto \frac{\Delta}{Q}(\mathrm{tw}-2)(\mathrm{tw}-3), \quad\left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\} \propto \alpha_{s}(\mathrm{tw}-2)(\mathrm{tw}-2)^{\mathrm{GT}}
\end{aligned}
$$

e.g., $n=1$ odd harmonic is approximately given by `CFF' combination

$$
\left\{\begin{array}{c}
c_{\text {,unp }}^{\mathcal{I}} \\
s_{1, \text {,unp }}^{I}
\end{array}\right\}=8 K\left\{\begin{array}{c}
-\left(2-2 y+y^{2}\right) \\
\lambda y(2-y)
\end{array}\right\}\left\{\begin{array}{c}
\Re \mathrm{e} \\
\Im \mathrm{~mm}
\end{array}\right\} \mathcal{C}_{\text {unp }}^{\mathcal{I}}(\mathcal{F}), \mathcal{C}_{\text {unp }}^{\mathcal{I}}=F_{1} \mathcal{H}+\frac{x_{\mathrm{B}}}{2-x_{\mathrm{B}}}\left(F_{1}+F_{2}\right) \widetilde{\mathcal{H}}-\frac{\Delta^{2}}{4 M^{2}} F_{2} \mathcal{E}
$$

relations among harmonics and (helicity dependent) CFFs are not more based on a $1 / Q$ expansion:
[Belitsky, DM (10) -Belitsky, DM, Ji (12), see also Braun et. al (14)

$$
\begin{align*}
s_{1, \text { unp }}^{\mathcal{I}}=\frac{8 \widetilde{K} \lambda \sqrt{1-y-\frac{y^{2} \gamma^{2}}{4}}(2-y) y}{Q\left(1+\gamma^{2}\right)} \Im m\{ & \left\{\mathcal{C}_{\text {unp }}^{\mathcal{I}}\left(\left[1-\frac{\varkappa}{2 Q^{2}} \frac{Q^{2}+t}{\sqrt{1+\gamma^{2}}}\right] \mathcal{F}_{++}+\left[1-\frac{2+\varkappa}{2 Q^{2}} \frac{Q^{2}+t}{\sqrt{1+\gamma^{2}}}\right] \mathcal{F}_{-+}+\frac{\left(Q^{2}+t\right) \varkappa_{0}}{Q^{2} \sqrt{1+\gamma^{2}}} \mathcal{F}_{0+}\right)\right. \\
& \left.+\frac{-t\left(Q^{2}+t\right)}{\sqrt{1+\gamma^{2} Q^{4}}} \Delta \mathcal{C}_{\text {unp }}^{\mathcal{I}}\left(\mathcal{F}_{-+}+\frac{\varkappa}{2}\left[\mathcal{F}_{++}+\mathcal{F}_{-+}\right]-\varkappa_{0} \mathcal{F}_{0+}\right)\right\}, \tag{70}
\end{align*}
$$

new improved C coefficients ensure the cancellation of kinematical singularities relations among CFFs and GPDs are always based on a $1 / Q$ expansion

Conformal partial wave expansion

- GPD support is a consequence of Poincaré covariance (polynomiality)

$$
H_{j}\left(\eta, t, \mu^{2}\right)=\int_{-1}^{1} d x c_{j}(x, \eta) H\left(x, \eta, t, \mu^{2}\right), \quad c_{j}(x, \eta)=\eta^{j} C_{j}^{3 / 2}(x / \eta)
$$

- conformal moments evolve autonomously (to LO and beyond in a special scheme)

$$
\mu \frac{d}{d \mu} H_{j}\left(\eta, t, \mu^{2}\right)=-\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{j}^{(0)} H_{j}\left(\eta, t, \mu^{2}\right)
$$

- inverse relation is given as series of (mathematical) generalized distributions:

$$
H(x, \eta, t)=\sum_{j=0}^{\infty}(-1)^{j} p_{j}(x, \eta) H_{j}(\eta, t), p_{j}(x, \eta) \propto \theta(|x| \leq \eta) \frac{\eta^{2}-x^{2}}{\eta^{j+3}} C_{j}^{3 / 2}(-x / \eta)
$$

- various ways of resummation were proposed: see Kreso`s and Kirill's tallk
- smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]
${ }^{\circ}$ mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
- `dual' parameterization [M. Polyakov, A. Shuvaev (02), Polyakov (07), Semenov-Tian-Shansky] - based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)] Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

