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Elastic Electron Scattering

Electrons are Not Ambidextrous Krishna Kumar, November 4 2014
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Energy E -> !: 0 < ! < 1 for Emin < E < ∞
Momentum Transfer Q2 -> " = Q2/(4M2)

GE,M(Q2) - electric and magnetic form factors

FFs encode charge, magnetic moment, RMS radii, …
GE(Q2) = 1 - (1/6) RCh2 Q2 + …

GM(Q2) = µp[1 - (1/6) RM2 Q2 + …]
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Proton Radius from e-scattering
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Measure cross section down to low Q2

How low in Q2 should/can one go?!
 up to now Qmin2 = 4 x 10-3 GeV2

1% uncertainty in RCh - measure 1 to few x 10-4 precision!

The radius is defined as the slope of the FF at origin,!
data are at finite Q2: extrapolation is unavoidable



Proton Radius from e-scattering

Bernauer et al., ‘10

A1 @ MAMI

RCh = 0.879(8)

!
!
!

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Proton$radius$puzzle$$

Electron$scaWering$facili/es$MAMI,$Jlab:$$

uniquely$posi/oned$to$deliver$high(precision$hadron$data$$$

MAMI$achieved$1%$measurement$of$RE$

recent$cross$sec/on$data$$$$A1@MAMI$

High$momentum$resolu/on$$~$10(4$$

Bernauer$et$al.$(2010)$



Proton Radius from e-scattering

• Individual data points - per cent level accuracy;!
!

• Need large angle coverage to extract the radius to 1%!
!

• Large statistics serves as a lever arm for extracting 
“1”to 0.05% precision;!
!

• Higher Q2 data influence the extracted radius!
!

• The lower in Q2 one goes, the lesser are higher order 
terms important - plans with ISR @ Mainz, PRad @ JLab, !
         Q2 ≥ 10-4 GeV2



Proton Radius from e-scattering
- Bernauer et al.: used full statistics (low and moderate Q2)!
 studied systematics due to different fit functions !
 (polynomial, splines, dipole, double dipole etc.)!
 #2 close to 1 with 1400 d.o.f.

REp = 0.879(8) fm

- Lorenz ’12,13: Dispersion relation fit GE,M (Q2) =
Z 1

4m2
⇡

dt ⇢E,M (t)
t + Q2

Model of the spectral function: 2π continuum + VDM + QCD asymptotics!
Radius mainly sensitive to the lowest states (2π, 3π) which are taken as !
exact -> fit function might not be flexible enough, #2 > 1.1!
Consistent with previous DR fits (Höhler ‘76, Mergell ’96, …)

REp = 0.84(1) fm

- Hill, Paz ‘10: Conformal mapping + Fourier series for the spectral fn.
REp = 0.87(2) fm

Data tend to larger radii; Need extra input to get smaller radii



Principal (energy) Q.N.: N=1,2,3…; !
Orbital momentum Q.N.: L=S,P,D…; p

e�(µ�)$

If only one photon were exchanged:

Electrons occupy stationary orbits
Energy levels

No extrapolation problem in atoms;!
typical momentum transfer in H-atom: !
 keV2 in e-H, MeV2 µ-H

REᴾ from Lamb Shift in Hydrogen



1S

2S,P,D,...

...

2P

2S

+ . . .

Radiative corrections: level splittings!

REᴾ from Lamb Shift in Hydrogen

nS-nP splitting (Lamb shift) - authentic prediction of SM (QED)
Precise calculations of QED corrections: p.p.m. level precision



The proton is not a point-like charge - has a finite size!
 - Lamb shift is sensitive to the proton radius

REᴾ from Lamb Shift in Hydrogen

Finite SizeQED

few p.p.m. correction!
exceeds the QED precision!
can be extracted 



REᴾ from Lamb Shift in Hydrogen

CODATA
RCh = 0.8779(94) fm

Pohl et al [CREMA Coll.] ’10, Antognini et al. ‘13
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Almost all individual e-H points are within 1.5' from the muonic point!
BUT they all lie systematically at larger radii - correlated systematics? !
All QED corrections have been studied up to (6 - under control!
Electron scattering is the most precise single measurement and is !
in nice agreement with the statistical average of the e-H data.

Most of the measurements are old - may be a good idea to remeasure!
New experiments with projected 1% radius extraction - under way:!
2S-2P measurement - York U. (Canada);!
2S-4S measurement - MPI Garching;!
1S-3S measurement - Laboratoire Kastler Brossel (Paris);

REᴾ from e-H



What’s special about �-H?
QED: the only difference is the mass

e�

p
µ�

p

Hydrogen atom muonic Hydrogen
Bohr radius

Fine structure constant
Reduced lepton-proton mass



What’s special about �-H?
QED: the only difference is the mass

e�

p
µ�

p

Hydrogen atom muonic Hydrogen
Bohr radius

Fine structure constant
Reduced lepton-proton mass

Finite size Lamb shift:

�H unstable (�2S ~ �s) - 7 o.o.m. still make it 10 times more precise



REᴾ from �-H

Using the proton radius from eH and scattering, expect

Observed splitting - off by 8%, radius off by 4%
h
�EMeasured

2P�2S ��EQED
2P�2S

iMeasured
⇡ �3.7 meV

h
�EMeasured

2P�2S ��EQED
2P�2S

i
Expected

⇡ �4.0 meV

What if the �H experiment is wrong? !
Exp. precision: �eV, much smaller than missing 300 �eV;!
Pohl et al. and Antognini et al. measured 2P1/2 - 2S and 2P3/2 - 2S 
transitions, found consistency;!
No other facility able to redo the �H experiment exists at the 
moment.



What has gone wrong?$$Lamb$shiw:$QED$correc/ons$

Calculated!by!several!groups!

1!loop!electron!

2!loop!electron!

ΔE!=!205.0282!meV!!

ΔE!=!1.5081!meV!!

Muon!selfLenergy,!vacuum!polarizaBon! ΔE!=!L0.6677!meV!!

ΔE!=!0.1509!meV!!

other!QED!correcBons!calculated!:!all!of!size!0.005!meV!or!smaller <<!0.3!meV!

Pachucki (1996, 1999)  

Borie (1976, 2005) 
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1-loop eVP

�E = 205.0073 meV

2-loop eVP

�E = 1.5081 meV �E = 0.1509 meV
Muon SE + VP �E = -0.6703 meV

QED corrections up to (6 calculated: all < 0.005 meV

QED corrections?

Further hadronic structure corrections - start at (Z()5!
Include the third Zemach radius:

�EMeasured
2P�2S ��EQED

2P�2S = � (Z↵)4m3
r

12


R2

p �
Z↵

2
R3

(2)

�

Correction 0.03 meV - 10 times smaller than the discrepancy



Proton Radius Puzzle: New Physics?

Stringent constraints from (g-2)e: substantial %-e non-universality

µ�p

e�

p

New 
Physics

(g-2)e (g-2)%

e-H %-H
Account for all constraints!



Proton Radius Puzzle: New Physics?

m
X

g’

�

p

g

�R2
E ⇠ �

6gg0

4⇡↵m2

Attractive scenario: !
scalar exchange would !

naturally pick up mass (Yukawa)
Tucker-Smith, Yavin ’11; Batell et al, ’11;  

Brax, Burrage ’11; Rislow, Carlson ’12, ’14; …



Proton Radius Puzzle: New Physics?
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Attractive scenario: !
scalar exchange would !

naturally pick up mass (Yukawa)still more: K-decay constraints
• Experiments have hunted for K± → !± + invisible, 

“invisible” meaning neutral but not photon(s), finding 
bound (w/ cuts so that 60 MeV < ! K.E. < 100 MeV)

28

B(K � µX)|
exptl cuts

< 2� 10�6

• Relevant here because of possible decay

Q

K(k)

• We have mass and 
putative coupling.  Can 
calculate BR.

Would contribute to decays K�� + invisible

muon magnetic moment
• Muon a! = (g-2)!/2 has 2 ppm discrepancy

26

3

III. MUON MAGNETIC MOMENT

The muon anomalous moment is accurately measured.
The theory for the anomalous moment is also quite accu-
rate, with the bulk of the error coming from uncertainties
in hadronic contributions. There is a small but persistent
discrepancy between experiment and theory. In terms of
aµ = (g � 2)µ/2,

aµ(data) = (116 592 089± 63)⇥ 10�11 [0.5 ppm],

aµ(thy.) = (116 591 840± 59)⇥ 10�11 [0.5 ppm],

�aµ = (249± 87)⇥ 10�11 [2.1 ppm± 0.7 ppm].
(7)

The data is from [13, 14] and the latest theory number
is from [15].

This discrepancy is four orders of magnitude in frac-
tional terms smaller than the one due to the Lamb shift.
Every particle that contributes to the Lamb shift also
contributes to the magnetic moment at the one loop level,
as in Fig. 3. The contributions of the pseudoscalar and
axial vector, whose couplings are not constrained by the
Lamb shift, have opposite sign to those from the scalar
and polar vector, and can be tuned to respect this much
smaller discrepancy.

p 1 p 2

q

k

p 1− k p 2− k

FIG. 3: One-loop magnetic moment correction

For scalar and pseudoscalar particles, we consider their
masses to be the same. The magnetic moment result is
known in the literature [16, 17],
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(The expressions continue nicely to r < 4.) Low and high
mass limits are
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Eq. (8) can be rearranged to solve for (Cµ
P )

2. The result
is plotted as the dashed line in Fig. 1. One notices that
fine tuning must be done to several significant figures at
higher masses.
For polar and axial couplings, we also only consider the

case where their masses are equal. Their contribution to
the muon’s magnetic moment is
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Rearranging Eq. (13) allows for the evaluation of
(Cµ

A)
2. The result is plotted as the dashed line in Fig. 2.

More general combinations of S, P , V , and A are
also possible. Of note is the model of Ref. [8], which
involves a vector particle with extra parity violating cou-
pling to the muon with (in our notation) fixed Cµ

V and
Cµ

A, that achieves fine tuning using a scalar, also with
definite muonic coupling, but with a tunable mass.

• Must fix 40,000 ppm discrepancy in proton radius 
without exaggerating 2 ppm discrepancy in a!.

• Useful note: corrections to (g-2)! from polar vector or 
axial vector have opposite sign.

p 1 p 2

q

k

p 1− k p 2− k

• Similarly for scalar and 
pseudoscalar exchange

Would contribute to the muon a.m.m.

muon magnetic moment
• Muon a! = (g-2)!/2 has 2 ppm discrepancy
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Rearranging Eq. (13) allows for the evaluation of
(Cµ

A)
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More general combinations of S, P , V , and A are
also possible. Of note is the model of Ref. [8], which
involves a vector particle with extra parity violating cou-
pling to the muon with (in our notation) fixed Cµ

V and
Cµ

A, that achieves fine tuning using a scalar, also with
definite muonic coupling, but with a tunable mass.

• Must fix 40,000 ppm discrepancy in proton radius 
without exaggerating 2 ppm discrepancy in a!.

• Useful note: corrections to (g-2)! from polar vector or 
axial vector have opposite sign.

p 1 p 2

q

k

p 1− k p 2− k

• Similarly for scalar and 
pseudoscalar exchange

Requires fine-tuned S + PS or V + A exchanges

Tucker-Smith, Yavin ’11; Batell et al, ’11;  
Brax, Burrage ’11; Rislow, Carlson ’12, ’14; …



Proton Radius Puzzle: New Physics?

Carlson, Rislow, ‘12K-decay constraints
• Solid line is sum of scalar and 

pseudoscalar couplings.
• Lower mass or higher mass 

o.k., but 90-200 MeV 
excluded.

29

• Same for polar and axial vectors.
• Solid is one particle with both V 

and A couplings.
• Dashed line is two particles, one 

polar and one axial vector.
• Lower masses excluded, 160 MeV 

for PV case, 210 for other case.
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Conclusion: BSM explanation possible, requires lepton non-universality, !
but fine tuned to evade the g-2 constraints



Further hadronic effects?

Hadronic correction at (Z�)5 - included partially!

Soft Coulomb:!
included in!

Schrödinger WF

Hard box:!
only part of it!

included !
(3rd Zemach m.)
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Hadronic correction at (Z�)5 - included partially!

Soft Coulomb:!
included in!

Schrödinger WF

Hard box:!
only part of it!

included !
(3rd Zemach m.)

2

q q

kk

p p

FIG. 1: The box diagram for the O(α5) corrections.

The Feynman diagram for the two-photon proton-
structure correction to the Lamb shift is shown in Fig. 1.
To the level of accuracy needed here, all external lines
have zero three-momentum. The blob corresponds to
off-shell forward Compton scattering, given in terms of
the Compton tensor
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i

8πM

∫
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q2
qν

)
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where q2 = −Q2, ν = p · q/M, and M is the nucleon
mass. A spin average is implied and the state normal-
ization is ⟨p|p′⟩ = (2π)3 2E δ3( p⃗ − p⃗′). The functions
T1,2(ν, q2) are each even in ν and their imaginary parts
are related to the structure functions measured in elec-
tron or muon scattering by
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1

4M
F1(ν, Q2),

Im T2(ν, Q2) =
1

4ν
F2(ν, Q2), (7)

with ν > 0 and where F1,2 are standard [15].

After doing a Wick rotation, where q0 = iQ0 and Q⃗ =
q⃗, one obtains the O(α5) energy shift as

∆E =
8α2m

π
φ2

n(0)
∫

d4Q

×
(Q2 + 2Q2

0)T1(iQ0, Q2)− (Q2 − Q2
0)T2(iQ0, Q2)

Q4(Q4 + 4m2Q2
0)

,

(8)

where m is the lepton mass, and φ2
n(0) = m3

r α3/(πn3)
with mr = mM/(M + m).

The Ti are obtained using dispersion relations. Regge
arguments [16] suggest that T2 satisfies an unsubtracted
dispersion relation in ν at fixed Q2, but that T1 will re-
quire one subtraction. Before proceeding, we will note
that the Born terms, obtained from the elastic box and
crossed box of Fig. 2 and the vertex function Γµ =

γµF1(Q2) + (i/2M)σµνqνF2(Q2) for an incoming pho-
ton, are

TB
1 (q0, Q2) =

1

4πM

{
Q4G2

M(Q2)

(Q2 − iε)2 − 4M2q2
0

− F2
1 (Q2)

}

,

TB
2 (q0, Q2) =

MQ2

π(1 + τp)

G2
E(Q2) + τpG2

M(Q2)

(Q2 − iε)2 − 4M2q2
0

, (9)

where τp = Q2/(4M2), and the electric and magnetic
form factors are

GE(Q2) = F1(Q2)− τpF2(Q2),

GM(Q2) = F1(Q2) + F2(Q2). (10)

The Born terms are reliable for obtaining the imaginary
parts of the nucleon pole terms, but not reliable in gen-
eral, since the given vertex assumes the incoming and
outgoing nucleons are both on shell.

Calling the first term in TB
1 the pole term, one can split

the whole of T1 into pole term and non-pole terms,

T1(q0, Q2) = T
pole
1 + T1 . (11)

The pole term alone evidently allows an unsubtracted
dispersion relation, and this term calculated from the
dispersion relation simply reproduces itself. With a once
subtracted dispersion relation for T1, one has

T1(q0, Q2) = T
pole
1 (q0, Q2) + T1(0, Q2)

+
q2

0

2πM

∫ ∞

νth

dν
F1(ν, Q2)

ν(ν2 − q2
0)

. (12)

The nucleon pole is isolated in T
pole
1 and the integral

begins at the inelastic threshold νth = (2Mmπ + m2
π +

Q2)/(2M). Similarly, as TB
2 contains only a pole term,

T2(q0, Q2) = TB
2 (q0, Q2) +

1

2π

∫ ∞

νth

dν
F2(ν, Q2)

ν2 − q2
0

. (13)

With

∆E = ∆Esubt + ∆Einel + ∆Eel , (14)

we obtain

∆Esubt =
4πα2

m
φ2

n(0)
∫ ∞

0

dQ2

Q2

γ1(τℓ)√
τℓ

T1(0, Q2) , (15)
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FIG. 2: Elastic contributions to the box diagram.

Blob: forward virtual Compton tensor

T

µ⌫

=
i

8⇡M

Z
d

4
xe

iqxhp|T j

µ

(x)j
⌫

(0)|pi

M2� = e4

Z
d4q

(2⇡)4
1
q4
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Polarizability Correction from DR

Form factors
Unpolarized !

structure functions F1,2

Dispersion relations (subtracted for T1)

Optical theorem: absorptive part of T1,2 related to data
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Polarizability Correction
Dispersion Relation + Data

Lamb shift is obtained as

Good quality data (e.g., JLab) on F1,2 0< Q2< 3 GeV2, W< 4 GeV



Polarizability Correction

Lamb shift is obtained as

Subtraction function related to !
proton’s magnetic polarizability �M !

Low-Energy Theorem: T1(0, Q2) = Q2 �M



Subtraction Constant
Proton (dipole) polarizabilities
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Separation of proton polarizabilities with the beam asymmetry of Compton scattering

Nadiia Krupina and Vladimir Pascalutsa

PRISMA Cluster of Excellence Institut für Kernphysik,

Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany
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We propose to determine the magnetic dipole polarizability of the proton from the beam asymme-
try of low-energy Compton scattering based on the fact that the leading non-Born contribution to
the asymmetry is given by the magnetic polarizability alone; the electric polarizability cancels out.
The beam asymmetry thus provides a simple and clean separation of the magnetic polarizability
from the electric one. Introducing polarizabilities in a Lorentz-invariant fashion, we compute the
higher-order (recoil) e↵ects of polarizabilities on beam asymmetry and show that these e↵ects are
suppressed in forward kinematics. With the prospects of precision Compton experiments at the
MAMI and HIGS facilities in mind, we argue why the beam asymmetry could be the best way to
measure the elusive magnetic polarizability of the proton.

PACS numbers: 13.60.Fz - Elastic and Compton scattering, 14.20.Dh - Protons and neutrons, 25.20.Dc -

Photon absorption and scattering

The current Particle Data Group (PDG) [1] values of
the electric- and magnetic-dipole polarizabilities of the
proton [2, 3], i.e.,

↵E1 = (12.0± 0.6)⇥ 10�4 fm3, (1a)

�M1 = (1.9± 0.5)⇥ 10�4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral e↵ective field theory (ChEFT) [4, 5],
as can be seen in Fig 1. The state-of-the-art ChEFT
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with
octet and decuplet fields [11], are in excellent agreement
with the experimental Compton-scattering cross sections,
but not necessarily in agreement with the polarizabilities
extracted from these data by the experimental groups,
c.f. [12] for review. The situation is becoming more acute
as the demand for precise knowledge of nucleon polariz-
abilities is growing; they are for instance the main source
of uncertainty in the extraction of the proton charge ra-
dius from the muonic hydrogen Lamb shift (see [13] for a
recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polariz-
abilities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For
example, the non-Born (NB) part of the unpolarized dif-
ferential cross section for Compton scattering o↵ a target
with mass M and charge Ze is given by [2]

d�(NB)

d⌦L
= �Z2↵em

M

✓
⌫0

⌫

◆2

⌫⌫0
⇥
↵E1

�
1 + cos2 ✓L

�

+ 2�M1 cos ✓L
⇤
+O(⌫4), (2)

where ⌫ = (s �M2)/2M and ⌫0 = (�u +M2)/2M are,

respectively, the energies of the incident and scattered
photon in the lab frame, ✓L (d⌦L = 2⇡ sin ✓Ld✓L) is the
scattering (solid) angle; s, u, and t = 2M(⌫0 � ⌫) are
the Mandelstam variables; and ↵em = e2/4⇡ is the fine-
structure constant. Hence, given the exactly known Born
contribution [14] and the experimental angular distribu-
tion at very low energy, one could in principle extract
the polarizabilities with a negligible model dependence.
In reality, however, in order to resolve the small polar-
izability e↵ect in the tiny Compton cross sections, most
of the measurements are done at energies exceeding 100
MeV, i.e., not small compared to the pion mass m⇡. It
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Dipole (like FF): Pachucki, 1996 
Pion loops: Vanderhaeghen & Carlson, 2011  
HBChPT + dipole: Birse & McGovern, 2012  
BChPT: Alarcón, Pascalutsa,Lenski 2014 
Finite Energy Sum Rule: MG, Llanes-Estrada, Szczepaniak, 2013

Total polarizability correction
Different approaches to estimate Fβ(Q2)



Dipole (like FF): Pachucki, 1996 
Pion loops: Vanderhaeghen & Carlson, 2011  
HBChPT + dipole: Birse & McGovern, 2012  
BChPT: Alarcón, Pascalutsa,Lenski 2014 
Finite Energy Sum Rule: MG, Llanes-Estrada, Szczepaniak, 2013

Total polarizability correction

�E2P�2S = �40± 5 µeV

�EMissing ⇡ �300 µeV

Hadronic structure corrections !
to proton radius puzzle are!

constrained

All known constraints built in!

Different approaches to estimate Fβ(Q2)
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FIG. 4: (Color online) Subtraction function [T1(0, Q2) �
T1(0, 0)]/Q2 in units of 10�4 fm3 as obtained from FESR (red,
solid), from the model of Ref. [14] (blue, dashed), from Ref.
[1] (magenta,dash-dotted), and from Ref. [35] (black, dotted).

only possible to unambiguously identify T1(0, Q2) with
a combination of known or measurable quantities (form
factors and polarizabilities) modulo a dispersion inte-
gral in the annihilation channel that is largely unknown.
Rewriting the findings of Ref. [24] for T1(0, Q2) we find

T1(0, Q2) = � ↵

M
[F 2

D

(Q2)� ⌧F 2
P

(Q2)] + Q2�(Q2) + . . . ,

(43)

where we omitted terms coming from that dispersion in-
tegral in the annihilation channel.

The reason for such detailed discussion is to remind the
reader that to relate the unphysical subtraction constant
T1(0, Q2) to measurable quantities like the polarizability
and elastic form factors, a good deal of caution should
be exercised.

Following the analysis presented in this paper, the sys-
tematic uncertainty in the Lamb shift from this term
has been significantly reduced. We have employed the
method of the Finite Energy Sum Rules to analyze this
term, explicitly displaying the contributions it receives
from the known t-channel Regge and s-channel reso-
nances. There is no double counting of these resonances
with respect to Einel. The alternative analysis presented
here provides information on the subtraction term from
Regge theory and the resonance region, reducing the un-
knowns to the fixed pole of Compton scattering. Our
Finite Energy Sum Rule in Eq. (31) has for the first
time made it possible to predict the Q2-dependence of
the subtraction function directly from existing experi-
mental data. In Fig. 4 we compare the function T̄1(Q2)
as obtained from FESR to phenomenological Ansätze of
previous analyses. We observe that all approaches e↵ec-
tively have similar values of T̄1(0) but in view of the com-
plicated situation with the low-energy theorem discussed

This work Ref. [1] Ref. [14] Ref. [35]

�Esubt 3.3± 4.6 6.6 5.3± 1.9 9.0± 1.0

�Eel �30.1± 1.2 �27.8 �29.5± 1.3 �29.5± 1.3

�Einel �13.0± 0.6 �13.9 �12.7± 0.5 �12.7± 0.5

�E �39.8± 4.8 �35.1 �36.9± 2.4 �33± 2

TABLE I: Numerical results for the O(↵5) proton structure
corrections to the 2P � 2S Lamb shift in muonic hydrogen in
µeV. The entry �Esubt from Ref. [35] obtains by summing
the Born non-pole and polarizability contributions; that work
uses the values obtained for �Eel, �Einel in Ref. [14].

above we stress that this is a coincidence. Neglecting
the t-channel contributions in Eq. (43) and removing
the contributions of the form factors (3.4⇥10�4 fm3 and
0.5⇥10�4 fm3) we would arrive at � = �0.9⇥ 10�4 fm3.
Note that the most recent determination of the magnetic
polarizability was given in the HBChPT framework in
Ref. [38],

� = [3.15⌥ 0.35± 0.2⌥ 0.3]⇥ 10�4fm3, (44)

with the three uncertainties identified in Ref. [38] as
”statistical”, ”Baldin” and ”theory”, respectively. It sug-
gests that to connect the result of this work for the sub-
traction constant T1(0, Q2) in terms of the FESR to the
value of the magnetic polarizability, the aforementioned
t-channel contributions should not be neglected.

We have shown that the contribution of the subtrac-
tion term �Esubt is small, ⇡ 3µeV, and its large relative
error of order 5µeV does not alter the conclusion that
the overall contribution of the nucleon photoexcitation
processes to the Lamb shift in muonic hydrogen is about
-40±5µeV, in agreement with previous evaluations. A
numerical comparison with existing calculations is shown
in Table I.

Our overall estimated uncertainty has increased
slightly with respect to that by Pachucki [1], Carlson
and Vanderhaeghen [14], as well as chiral perturbation
theory [35, 37], while it is reduced compared to Hill and
Paz [36]. The new method of the finite energy sum rule
presented in this work allows for a reliable estimate of the
subtraction constant contribution and the uncertainty
thereof, based on virtual photoabsorption data and on
the natural Q2-dependence of the J = 0 pole. Recent
model calculations by Miller et al., designed to resolve
the proton radius puzzle in terms of the two-photon ex-
change contribution, are not supported by resonance re-
gion data at low Q2 [39] and require an unnaturally large
value of the J = 0 pole for hard virtual photons [40].

The 300 µeV discrepancy between the direct muonic
Hydrogen Lamb shift measurement and estimates for it
based on usual (electronic) Hydrogen is unnaturally large
for the hadronic structure-dependent corrections at order
O(↵5) that have been proposed in the literature, basi-
cally Eq. (5), and the explanation must be looked for
elsewhere.

Alternative form factor....

Judith McGovern Proton Polarisability contribution to the Lamb Shift Manchester April 26th 2013

Form factor constrained for
p

Q2 ⇠< 300 MeV, and at large Q2.
How different could it be in between?
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G. Miller, Phys. Lett. B 718 1078 (2013)

Beyond range validity of cPT, modelling of form factor with s-channel nucleon res-
onances and t-channel Regge poles show no evidence of strange behaviour
Gorchtein et al arxiv/1302.2807

Miller et al 2011

Reasonable hadronic models
To get ~300 μeV Lamb shift:!

need something like this
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Figure 1: The Cottingham Formula intuitively relates the forward Compton Scattering (a) to the O(a f .s.)
electromagnetic self-energy (b).

The subscript R on the integral reminds us that the self-energy contains a logarithmic divergence
and must be renormalized [10]. The spin-averaged forward Compton Scattering tensor is given by
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Cottingham showed that by performing the Wick rotation q0 ! in and then a variable transforma-
tion Q2 = q

2 +n2, the nucleon self-energy can be related to the experimentally measured structure
functions;

dMg =
a f .s.
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0
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T µ
µ =�3T1(in ,Q2)+
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1� n2
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T2(in ,Q2) . (2.4)

One uses fixed-Q2 dispersion integrals to determine the scalar functions Ti(in ,Q2) in terms of their
experimentally measured absorptive (imaginary) parts. It is known that T2 satisfies an unsubtracted
dispersion integral while T1 requires one subtraction [11]. These scalar functions are crossing
symmetric Ti(�n ,Q2) = Ti(n ,Q2), thus given by

T1(n ,Q2) = T1(0,Q2)+
n2

2p

Z •
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The +ie in the argument indicates the function is evaluated just above the cut on the positive real
axis (see Fig. 2). The absorptive parts are given in terms of the well known nucleon structure
functions

2ImT1(n ,Q2) = 2p F1(n ,Q2) , 2ImT2(n ,Q2) = 2p M
n

F2(n ,Q2) , (2.7)

to which we have implicitly included the isolated elastic nucleon pole.2 Except in the low and high
Q2 limits, the subtraction function T1(0,Q2) can not be simply related to measured cross sections,
complicating the determination of dMg .

2The elastic pole is isolated because we are working to leading order in QED, so there is no Bremsstrahlung radia-
tion. The inelastic cut begins at the pion production threshold.
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2The elastic pole is isolated because we are working to leading order in QED, so there is no Bremsstrahlung radia-
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dispersion integral while T1 requires one subtraction [11]. These scalar functions are crossing
symmetric Ti(�n ,Q2) = Ti(n ,Q2), thus given by

T1(n ,Q2) = T1(0,Q2)+
n2

2p

Z •

nth

dn 0 2n 0

(n 0)2((n 0)2 �n2)
2ImT1(n 0+ ie,Q2) (2.5)

T2(n ,Q2) =
1

2p

Z •

nth

dn 0 2n 0

(n 0)2 �n2 2ImT2(n 0+ ie,Q2) (2.6)

The +ie in the argument indicates the function is evaluated just above the cut on the positive real
axis (see Fig. 2). The absorptive parts are given in terms of the well known nucleon structure
functions

2ImT1(n ,Q2) = 2p F1(n ,Q2) , 2ImT2(n ,Q2) = 2p M
n

F2(n ,Q2) , (2.7)

to which we have implicitly included the isolated elastic nucleon pole.2 Except in the low and high
Q2 limits, the subtraction function T1(0,Q2) can not be simply related to measured cross sections,
complicating the determination of dMg .

2The elastic pole is isolated because we are working to leading order in QED, so there is no Bremsstrahlung radia-
tion. The inelastic cut begins at the pion production threshold.

3

Cottingham formula (p-n mass difference)

Mp �Mn =
↵

2M(2⇡)3

Z
d4q

q2

⇥
T pµ

µ(⌫, q2)� Tnµ
µ(⌫, q2)

⇤

Subtraction function contribution
[Mp �Mn]Subt = ��p

M � �n
M

(8⇡)2M

Z ⇤2

0
dQ2Q2F�(Q2)

Could be purely isoscalar but...!
VERY unnatural!!

Should be seen in Deuteron (I=0)

Alternative form factor....

Judith McGovern Proton Polarisability contribution to the Lamb Shift Manchester April 26th 2013

Form factor constrained for
p

Q2 ⇠< 300 MeV, and at large Q2.
How different could it be in between?
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G. Miller, Phys. Lett. B 718 1078 (2013)

Beyond range validity of cPT, modelling of form factor with s-channel nucleon res-
onances and t-channel Regge poles show no evidence of strange behaviour
Gorchtein et al arxiv/1302.2807

Miller et al 2011
If the proton radius puzzle !

is due to subtraction contribution

�Mp
em ⇠ 600 MeV



Muonic deuterium
One further piece of information available - isotope shift:!
simultaneous 1S-2S splitting measurement in eH and eD

Rd2-Rp2 from �H, �D @ PSI - in agreement (preliminary)!
Exotic hadronic contributions excluded by this finding

Extraction from �D relies on nuclear structure-dependent !
polarizability correction.

Nuclear models vs dispersion relations:
�DR

pol

⇡ �2.1(7)meV�Nucl.

pol

⇡ �1.680(16)meV

R2
d �R2

p = 3.82007(65) fm2

Carlson et al. ‘14Leidemann, ’90; Pachucki ’13;  
Ji et al, ’14; Friar, ’14; 



Lacking Input to DR for �D 

All kinematics contribute to the dispersive integral;!
Not all of them are equally important

The bulk of the correction - quasi elastic data !
 from ) ≃ 6-10 MeV and Q2 < 0.005 GeV2!
  - just below the kinematics of available QE data 

New D(e,e’)pn data down to Q2 = 0.002 GeV2 A1@MAMI!
taken and under analysis; !
2% measurement will reduce the uncertainty by a factor 2-4



Summary
Proton radius puzzle - inconsistency between the e-scattering!
and eH on one hand, and %H data on the other hand.!

!
Each part has subtleties but no clear solution found - !

 the puzzle persists!
!

Scattering experiments: extrapolation issue!
!
Electronic hydrogen: sensitivity issue!
!
Muonic hydrogen: no experimental issues found to date !
further muonic atoms consistent with %H (preliminary)!

!
BSM explanation possible but requires both lepton non-universality !

 and fine tuning to evade known constraints from other observables



Proton Radius Puzzle: what’s next?
More precise eH experiments coming (2S-2P, 1S-3S, 2S-4S);!
!
e-p scattering: Q² down to 2 × 10-4 GeV2 @ Mainz, JLab!
!
Deuteron radius from e-D scattering: new data at Mainz under analysis!
Q2 > 0.002 GeV2, radius under 0.25%!
!
To push Q² down and get the radius under 1%: !
 improved radiative corrections (TPE) necessary. !
 Recent works: MG ’14; Tomalak, Vanderhaeghen ’14, ’15(2)!
!
Study lepton non-universality with %-p scattering: !
 MUSE @ PSI - elastic %-p scattering at Q² > 0.002 GeV2 (2017/18);!
 �p -> �+�-p/�p -> e+e-p measurement may be more sensitive !
  Pauk, Vanderhaeghen ’15 - proposal under consideration in Mainz



Proton Radius Puzzle: what’s next?

Further muonic atoms: %D, %He-3, %He-4 - data taken at PSI, !
now analyzed or finalized!
!
%D - more precise DR calculation needed:!
new QE data on deuteron analyzed at Mainz !
  - to reduce the uncertainty of dispersion integrals by factor 2-4!
sum rule for the nuclear magnetic polarizability derived (MG, ’15)!
  - to reduce model dependence of the subtraction contribution!
DR treatment of hyperfine splitting in %D underway!
  - with Carlson and Vanderhaeghen!

!
%He-3,4 - DR analysis underway (with Carlson and Vanderhaeghen)!

  potential model calculation by Bacca and Co underway



EXTRA SLIDES



Sum rule for nuclear magnetic polarizability

Levinger-Bethe sum rule - nucleus with Z protons and N neutrons

Nuclear Thomson termThomson terms!
for Z free protons

Total CS integrated !
over nuclear range

Generalize to finite Q2: charge form factor + magnetic pol.

T1(0, Q2) = � Z2↵

(Z + N)M
F 2(Q2) + Q2�Nucl.

M (Q2)

The Q2-slope of the Levinger-Bethe sum rule:

�Z
↵

M
= � Z2↵

(Z + N)M
� 1

2⇡2

Z 30 MeV

⌫thr

d!�T (!)

MG, [arXiv:1508.02509]
Consistent with data for D; !
Can predict �M for any nucleus from data

�Nucl
M (0) = � Z2↵

3(Z + N)M
R2

Ch +
1

2⇡2

Z 30 MeV

⌫thr

d!
d

dQ2
�T (!, Q2)

����
Q2!0



Sum rule for nuclear magnetic polarizability

Calculate the subtraction function T1(0,Q2) from data

Can be used e.g. for calculating the subtraction contribution to 
Lamb shift in muonic atoms

T1(0, Q2
)� T1(0, 0) =

1

2⇡2

Z 30 MeV

⌫thr

[�T (!, Q2
)� �T (!, 0)] + hadr. corr.

Hadronic corrections can be neglected for low enough Q2


