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Our motivation and goals

M Will propose a quantum statistical approach of the nucleon viewed as a gas of
massless partons in equilibrium at a given temperature in a finite size volume.

M Will incorporate some well known phenomenological facts and some QCD features



Our motivation and goals

B Will propose a quantum statistical approach of the nucleon viewed as a gas of
massless partons in equilibrium at a given temperature in a finite size volume.

B Will incorporate some well known phenomenological facts and some QCD features

B Will parametrize our PDF in terms of a rather small number of physical
parameters, at variance with standard polynomial type parametrizations

B Will be able to construct simultaneously unpolarized and polarized PDF:
A UNIQUE CASE ON THE MARKET!

B Will be able to describe physical observables both in DIS and hadronic collisions

B Will make some very specific challenging predictions, from the behavior of
unpolarized and polarized PDF, either in the sea quark region or in the valence
region

B Will present new tests and predictions up to LHC energies
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Basic procedure

Use a simple description of the PDF, at input scale Qg, proportional to

[exp[(z — Xop)/Z] & 1]71, plus sign for quarks and antiquarks, corresponds to a
Fermi-Dirac distribution and minus sign for gluons, corresponds to a Bose-Einstein
distribution. Xy, is a constant which plays the role of the thermodynamical potential of the
parton p and z is the universal temperature, which is the same for all partons.

NOTE: x is indeed the natural variable, since all the sum rules we will use are expressed
in terms of x



Basic procedure

Use a simple description of the PDF, at input scale Qg, proportional to

[exp[(z — Xop)/Z] & 1]71, plus sign for quarks and antiquarks, corresponds to a
Fermi-Dirac distribution and minus sign for gluons, corresponds to a Bose-Einstein
distribution. Xy, is a constant which plays the role of the thermodynamical potential of the
parton p and z is the universal temperature, which is the same for all partons.

NOTE: x is indeed the natural variable, since all the sum rules we will use are expressed
in terms of x

From the chiral structure of QCD, we have two important properties, allowing to RELATE
guark and antiquark distributions and to RESTRICT the gluon distribution:

- Potential of a quark ¢™ of helicity h is opposite to the potential of the corresponding
antiquark g~ " of helicity -h, X} = —x .

- Potential of the gluon G is zero, Xy = 0.
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The polarized PDF ¢*(z, Q) at initial scale Qg

For light quarks q = u, d of helicity h = 4, we take

AngZUb ACBE
+ ;
exp[(x — ng)/:i] +1  exp(x/Z)+1

zq™ (2, QF) =

consequently for antiquarks of helicity h =

A(xh ) tab A

_(—h) 2\

Note: ¢ = ¢T 4+ ¢~ and Aqg = ¢™ — ¢~ (idem for g).
Extra term is absent in Ag and g, alsoin v — d or @ — d.
The additional factors X{}, and (X{ )" are coming from TMD



The polarized PDF ¢*(z, Q2) at initial scale Q3

For light quarks q = u, d of helicity h = 4, we take

AX(})quCb Aa’;g

exp[(x — ng)/i'] +1 i exp(z/T) + 1

zq™ (2, QF) =

Y

consequently for antiquarks of helicity h =

A(xh ) tab A
+ :
exp[(x + ng)/iz] +1  exp(x/z)+1

xq(_h) (ZC, Q%) —

Note: ¢ = ¢T 4+ ¢~ and Aqg = ¢™ — ¢~ (idem for g).

Extra term is absent in Ag and g, alsoin v — d or @ — d.

The additional factors X{}, and (X{ )" are coming from TMD

For strange quarks and antiquarks, s and s, use the same procedure which leads to
zs(z, Q%) # z5(x, Q3) and xAs(z, Q3) # xAs(x, Q3), but involve the same number of
free parameters as for light quarks

For gluons we use a Bose-Einstein expression given by xG(x, Q%) = exﬁ(if’/“;f_l , with a
vanishing potential and the same temperature x. For the polarized gluon distribution
rAG(z, Q3) we take a similar expression at initial scale (positive for all )
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Essential features from the DIS data

From well established features of v and d extracted from DIS data, we anticipate some
simple relations between the potentials:

B (z) dominates over d(z), so we should have X, + X, > X, + X,

B Au(x) > 0, therefore X, > X,
B Ad(z) < 0, therefore X, > X, .



Essential features from the DIS data

From well established features of v and d extracted from DIS data, we anticipate some
simple relations between the potentials:
B () dominates over d(x), so we should have X, + X, > X, + X,

B Au(zx) > 0, therefore X, > X,
B Ad(z) < 0, therefore X, > X, .

So we expect X(}Lu to be the largest potential and Xgrd the smallest one. In fact, from our
fit we have obtained the following ordering

+ — — +
XOu > XOdNXOu > XOd :

This ordering has important consequences for ¢ and d, namely
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Essential features from DIS data

M d(z) > u(x), flavor symmetry breaking expected from Pauli exclusion principle.
This was already confirmed by the violation of the Gottfried sum rule (NMC).

B Az(x) > 0and Ad(xz) < 0, a PREDICTION from 2002, in agreement with
polarized DIS (see below) and has been more precisely checked at RHIC-BNL
from W= production, already in active running phase (see PLB726, 296,(2013)).



Essential features from DIS data

B d(z) > u(x), flavor symmetry breaking expected from Pauli exclusion principle.
This was already confirmed by the violation of the Gottfried sum rule (NMC).

B A#u(z) > 0and Ad(x) < 0, a PREDICTION from 2002, in agreement with
polarized DIS (see below) and has been more precisely checked at RHIC-BNL
from W= production, already in active running phase (see PLB726, 296,(2013)).

B Note that since u= () ~ d~ (), it follows that @t (z) ~ dT(x), so we have
At(x) — Ad(z) ~ d(z) — a(zx) ,

l.e. the flavor symmetry breaking is almost the same for unpolarized and polarized
distributions (A and Ad contribute to about 10% to the Bjorken sum rule).
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Very few free parameters

By performing a NLO QCD evolution of these PDF, we were able to obtain a good
description of a large set of very precise data on F¥ (z, Q?), F3'(z, Q?), x F¥ N (z, Q?)
and gl’d’"(x, Q?), in correspondance with ten free parameters for the light quark sector
with some physical significance:

* the four potentials X, Xo.., X, X

* the universal temperature z,

*and b, b, b, b, A.



Very few free parameters

By performing a NLO QCD evolution of these PDF, we were able to obtain a good
description of a large set of very precise data on F¥ (z, Q?), F3'(z, Q?), x F¥ N (z, Q?)
and gl’d’”(x, Q?), in correspondance with ten free parameters for the light quark sector
with some physical significance:

* the four potentials X, Xo.., X, X

* the universal temperature z,

*and b, b, b, b, A.

We also have three additional parameters, A, A, A, which are fixed by 3 normalization
conditions .

and the momentum sum rule.

There are several additional parameters to describe the strange quark-antiquark sector
and for the gluon polarization. We use the constraint s — s = 0.

We note that potentials become smaller for heaviest quarks and since X, > XS;, we
will have As < 0 like for d-quarks.
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Resulting quark (antiquark) unpolarized

distributions
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Resulting quark (antiquark) helicity

distributions
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Resulting gluon helicity distribution

T T ‘ T T
® COMPASS Q° = 3 GeV® ]
A  HERMES Q° = 1.35 GeV*
0.3 - -
0.15 — — — | |
=4
1 ® 02 B
Q* = 1GeV? ~
4 U L i
Q% = 10GeV* ~
17 @ r | i
o -
N’O:O.l \(jJ r 7
X < 01 b _
g = ‘ .
P | / 4
1./
. _ |
_
% 0.05 0 E=====———
| Q° = 2 GeV® |
. T Q% = 10 GeV® |
0 701 Il L1 ‘ Il L1
10 107% 107" 1
X X

New statistical PDF: predictions and tests up to LHC energies — p. 13/30



10

(x,Q°%)+c(i)

P
FZ

Some data on F¥(z,Q?)

I
HERMES E665 NMC EMC H1 ZEUS BCDMS
(@) * ® A ° [ )
c(i) = 0.6(16-1)

10

11
12

13
14
15

i <Q®> [GeVT

13.0

20.0

25.0

35.0

45.0
150.0

200.0
250.0
300.0

—_

(&)
\

—_

10

(x,.Q%)+c(i)

1Y
}PZ
(@)

H1 ZEUS

c(i) = 0.6(14-1)

i <Q® [GeVF]
1 400

) 2 500 4
3 650

4 800 B
5 1000
6 1200
7 1500

8 2000

9 3000

10

11

12

5000
8000

1.2 10°

13 2 10°

14 3 10°

[N

10 10

New statistical PDF: predictions and tests up to LHC energies — p. 14/30



Some data on ' (z, Q%) /F¥(x, Q?)
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Some data on Fy(z, Q%) and zF}” (z, Q?)
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Some data on neutrino-antineutrino cross

sections
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Polarized DIS - A compilation of data on
Af(z, Q%)
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Polarized DIS - A compilation of data on
At (z, Q%)
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Single-jet production at RHIC: cross section

and double helicity asymmetry
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Single-jet production at Tevatron and ALICE
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Single-jet production at ATLAS and CMS
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Single-jet production at LHC 13TeV (run 2)
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prediction for LHC

Charge asymmetry in W¥* production at

Tevatron versus the W rapidity and
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Charge asymmetry in W= production at LHC

versus the charge lepton rapidity
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The parity-violating helicity asymmetry for

W+ production versus the charged-lepton

rapidity
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Drell-Yan process ( In preparation with R.

Pasechnik and E. Basso)
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Drell-Yan process (In preparation with R.

Pasechnik and E. Basso)
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Drell-Yan process (Work in progress with R.

Pasechnik and E. Basso)
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Conclusions

B A new set of PDF is constructed in the framework of a statistical approach of the
nucleon.

B All unpolarized and polarized distributions depend upon a small number of free
parameters, with some physical meaning.

B New tests against experiments in particular, for unpolarized and polarized sea
distributions, are very satisfactory.

B A large positive gluon helicity distribution emerges concentrated in the medium
x-region
NEED TO BE CONFIRMED

B This statistical approach has a good predictive power up to LHC energies
(jet production, W production, Drell-Yan)

B Future tests will be very challenging
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