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Saturation/Color Glass Condensate
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Low x: large gluon density

Low Q2: large effective size of gluons
Strong fields, large occupation numbers

• Fundamentally new regime of QCD

• Theoretically calculable:

Classical color fields; JIMWLK, etc

Large theoretical interest:

Experimental/phenomenological question: 

Where/when is CGC dynamics relevant/dominant?

Non-linear evolution Reduced gluon density Suppression of yield

1 + many instead of 2 → 2  Suppression of recoil jet (mono-jets?)



Forward physics at RHIC

• Nuclear modification factor

• Shadowing (nPDF) gives smaller 

suppression

• Qualitatively consistent with saturation

– Still low pT; other soft mechanisms?
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Forward di-hadrons at RHIC
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De-correlation of recoil yield

–Consistent with CGC: coherent gluon field

–What about multiple parton interactions?

IMO: Much more compelling than inclusive suppression; 

could be ‘smoking gun’

associated



trigger

Central d+Au collisionsMinimum Bias d+Au collisions



Di-hadron correlations at RHIC II
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60-88%
(Peripheral)

0-20%
(Central)

Forward-Forward Mid-Forward

Large suppression at ‘x’ < 10-3 in central events

Scan ‘x’ with pT1 and forward, mid rapidity

𝜋0-𝜋0 mid - forward

|η| < 0.35 and 3.0 < η < 3.8

More systematic study shows similar effects, trends as a function of x



LHC vs RHIC
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LHC: x~10-4 – 10-5 accessible, 

with pT~Q~3-4 GeV

R
H

IC
 f

w
d
 𝜋

0

A
L
IC

E
 F

o
C

a
l 
u
p
g
ra

d
e

RHIC forward: 

kinematic limit at pT ~ 5 GeV



Recent results at forward rapidity
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ALICE J/Ψ measurement

Compatible with nPDFs + E-loss, 

but not CGC?

New CGC calculation

More recent CGC calculation 

compatible with observed J/Ψ

Not yet conclusive; J/Ψ has sizable hadronisation/CNM uncertainties

Ma, Venugopalan et al, arXiv:1503.07772
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Other recent forward results
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Muons from HF

RpPb ~ 1, compatible with nPDF

𝜑 meson

RFB != 1

No clear physics interpretation?



How to probe the gluon density
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Deep-Inelastic Scattering (DIS)

Classical PDF method

Not sensitive to gluons at LO

Gluons from NLO/evolution

and/or FL

Photon production

in hadronic collisions:

Sensitive to gluons at LO

Directly related to DIS: 

real instead of virtual photon



NLO studies of x sensitivity
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𝛾 reach factor ~10 lower x

(can be improved with isolation cuts)

RpPb ~ 0.85 expected 

from gluon shadowing

nPDFs

Helenius et al, arXiv:1406.1689

Still: sizeable tail to x-distribution: mean x not most probably x

how does this affect PDF constraining power?

Could use theory guidance/help on this: 

How well does photon production constrain the gluon density at low x



The FOCAL proposal
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3.2 <  < 5.3

Observables:

• 0

• Direct (isolated) photons

• J/

• Jets

FoCal-E: high-granularity Si-W 

calorimeter for photons and 0

FoCal-H: hadronic calorimeter for photon 

isolation and jets

FoCal-H

FoCal-E

Advantage in ALICE:

forward region not instrumented;

‘unobstructed’ view of interaction point

Under discussion within ALICE



FoCal R&D: Si-W pixel and pad readout

• Several groups involved:

• Full prototype with pixel detectors

CMOS (MIMOSA) 39Mpixels, 30m pitch

• Full prototype with pad readout

• Performed systematic tests:

• Test beam data from 2 to 250 GeV 

(DESY, PS, SPS)

• Cosmic muons
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20 layer pixel detector

Pad layer integration



Testbed results: Lateral shower profiles
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50 GeV electrons

Extremely good spatial resolution

RM ~ 1 cm

Good agreement with simulations

GEANT4 + charge diffusion

Two-photon separation at mm scale possible

Comparison to Geant4 simulations



Photons nPDF and CGC
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Measure direct RpA to 

confirm or refute CGC effects

Direct  is the flagship case

FoCal can measure 

 0 spectra

 0-0 correlations

 -0
correlations

which provide additional constraints

nPDF

shadowing

CGC expectation

C
G

C
: J

a
lilia

n
-M

a
ria

n
,  R

e
z
a
e
ia

n
, P

R
D

8
6
, 0

3
4
0
1
6

3.5 < η < 4.5

Main physics motivation

Should there be a return 

to RpPb = 1 for pT >> Qsat ?



Performance study: 𝜋0 detection efficiency
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Very good efficiency > 90%

NB: η = 5, pT = 12 GeV ⇒ E = 900 GeV 

pT ~ 2-18 GeV at η = 4.0-4.5

Covers the intended range for CGC measurements: low-intermediate Q2

Use 𝜋0 reconstruction 

to reject decay photons

Single 𝜋0 with GEANT



𝛾 isolation: HCAL contribution
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HCAL helps with isolation:

HCAL+ECAL energy peaks

at 6 GeV instead of 0 GeV

Full Pythia + GEANT

MC: particle level (dashed curves)

Isolation energy distribution

𝛾 isolation is an important handle 

for 𝛾 identification



Direct/decay separation
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Two main handles for direct gamma 

identification:

- Reject decays by invariant mass 

reconstruction

- Isolation cuts (EMCal + HCal)

Improve signal fraction by factor ~10, from 0.01-0.06 to 0.1-0.6

Direct 𝛾/all cluster ratio



Projected direct photon uncertainties

• Large signal fraction at

pT > 10 GeV 
• Uncertainties 5-7%

• Low pT: decay photons 

important
• Uncertainties depend on physical 

direct/decay fraction
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Similar uncertainties expected for RpPb: sensitive to CGC RpPb ~ 0.4 

Direct 𝛾



FoCal physics program

• p+Pb physics program: gluon density (+ridge)
• RpPb of direct 𝛾

• RpPb of 𝜋0

• Di-hadron measurements

• Forward-forward: better constraints for low x

• Mid-forward: ridge/flow-like effects

• PbPb medium effects
• RPbPb of 𝜋0 at forward rapidity

• Complementary to forward HF coverage; measure density, 

light flavour E-loss to calibrate models

• Mid-forward correlations — ridge effects, flow
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Plus a number of more challenging ideas: J/Ψ, jets, direct 𝛾 in PbPb



Summary/conclusion

• LHC forward physics provides unique opportunities for low-x

physics in the short to medium term
• First results on J/Ψ, φ, HF decay muons available from ALICE — no strong 

suppression seen in minimum bias events

• RpPb for hadrons could be explored now by LHCb, (CMS, ATLAS)

• Direct photons promise to be a very clean probe
• No fragmentation: access to lower x

• No final state effects

• ALICE is considering a forward calorimeter upgrade focused on
• 𝜋0 at forward rapidity (including correlations)

• 𝛾 at forward rapidity
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Input/discussion welcome:

- Theory: explore sensitivity of direct photon production to low-x gluons

- Experiment: new collaborators welcome! 



Extra slides
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More ‘known physics’: nuclear PDFs
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Gluon shadowing potentially large at x < 10-3

Effect largest at low Q2

Q2 = 1.69 GeV2 Q2 = 100 GeV2

C. Salgado et al. arXiv:1105.3919

Nuclear modifications of PDF measured in DIS

Related to saturation/CGC or an independent phenomenon?



Reminder: how to get x and Q2 in hadronic collisions
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LO 2→2 kinematics:

LHC probes lower x than RHIC

Mid-rapidity at LHC ≈ forward rap at RHIC

(Need both final state partons to reduce spread in x)

Q ~ pT
Forward rapidity is small x



x sensitivity pion vs gamma
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PYTHIA simulations

Forward much more 

selective than 0

-0 correlations provide 

additional constraints

Pythia = LO + radiation

NLO effects under study – expect small effect for isolated photons 



x-ranges
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HF muons vs 𝛾

Direct/isolation 𝛾 give clean access to lowest x ~ 10-5 - 10-4

Direct 𝛾, NLO contributions

Isolation reduces higher-x contributions

HF sensitive to larger x 10-4 - 10-3



Virtual photon production: Drell-Yan
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Drell-Yan only sensitive

to gluons at NLO

DY: small cross section,

not practical at LHC p+Pb



x, Q2 coverage at LHC
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FoCal detector plan
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ECAL: Si-W

Simulation uses current design

• 20 layers, 1 X0 each

• Mostly pad layers 1x1 cm

• 2 pixel layers after 5 and 10 X0

Pixel layers for 2-shower separation

Pixel size in simulations: 50 um

HCAL: Cu+Scintillator

~ 70 cm deep



Two-photon separation
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Simulated 0 decay

Granularity: ~500 m
Projection on separation axis

Position resolution of ~ 1 mm achievable (2-separation few mm)

Energy resolution under study

Unexplored regime for calorimeters: verify in testbeam



𝜋0 mass peaks, resolution
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𝜋0 peak width

Peak width ~ 10 MeV over

large range in pT

High-granularity layers give excellent 

two-photon separation over 

large momentum range


