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A note on GPD representations

@ GPD modelling can be done in various representations: (DD representation,
conformal PW expansions, expansions over orthogonal polynomials,...)

List of non-trivial requirements:

@ polynomiality @ T-invariance

@ hermiticity @ positivity

Other sources of inspiration:

@ evolution properties @ analyticity
@ relation to PDFs and FFs @ Regge theory

@ Should be possible to map one representation to another (as long as basic
properties are satisfied).

@ “Which representation is better is not a meaningful question!” (see
K. Kumeri¢ki & D. Miiller'09).

@ The hope: get more insight from considering various GPD properties within
different representations.



Conformal PW expansion for quark GPDs

@ Idea: expand GPDs over the conformal basis ¢y, (z,m) = Ny X n"02 (E)

@ Main advantage: trivial solution of the LO evolution equations.

@ Conformal moments of quark GPDs
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@ cn(z,n) form a complete basis on [—n, 1] with the weight (1 - —)
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@ py(z,n) include the weight and #-function to ensure the support.
@ Orthogonality of the basis: fil dz pn(z,n)en(z,n) = (—1)"6mn

H(z,n,t Z (@, m) Hn (1) .

@ Conformal moments are reproduced by this series.
@ Restricted support property # GPD vanishes in the outer region.
@ The expansion is to be understand as an ill-defined sum of generalized functions.



Ways to assign meaning to conformal PW expansion |

@ Sommerfeld-Watson transform + Mellin-Barnes integral techniques D. Miiller
and A. Schafer’'05; A. Manashov, M. Kirch and A. Schafer'05;

Idea: Inverse Mellin transform
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@ Mellin-Barnes integral representation for GPDs:
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Ways to assign meaning to conformal PW expansion |l

(-] o Shuvaev transform A. Shuvaev'99, J. Noritzsch'00;
@ Dual parametrization of GPDs M. Polyakov and A. Shuvaev'02;

@ How to restore f(z) from its @ Formal solution:
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@ Introduce f,(y) whose Mellin moments generate Gegenbauer moments of GPD:
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@ Explicitly construct the kernel K(z,n; y) as discontinuity of a certain function.
Then

1
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Dual Parametrization: basic facts
Dual Parametrization (M. Polyakov, A. Shuvaev'02):

@ Mellin moments expanded in partial waves of the ¢-channel (t-channel refers to
hh — ~v*~):
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Conformal PW expansion reads:
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@ Same idea as the Shuvaev transform: Mellin moments of Q2. (y,t) generate the
generalized F.Fs. B,;.
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Then H(z > —n,n,t / dyKay, (z,7,9)y*" Qv (y, 1) -

@ Kernels Ko, (x,n,y) are expressed through hypergeometric functions.



SO(3) PW expansion within MB integral approach
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Hyp(n,t) = Z nzVHn,nJrlfzy()d(']’Jrl 2Y(n), for odd n,
v=0

] 360(17) rgjg(r‘(r;;) 'p, ( ) are the reduced Wigner functions.

@ Hp nt1-2.(t) are called double partial wave amplitudes

Double PW expansion employed within MB approach
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Establishing equivalence and forming glossary

@ Relation between dPWAs (MB approach) and generalized FFs (dual
parametrization)
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@ Forward-like functions from the dPWAs: inversion of the Mellin transform
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@ Main result of Miiller, Polyakov and KS'14: MB representation for the kernel
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@ Straightforward calculation recovers the dual parametrization result.



Abel transform tomography

@ LO DVCS amplitude H(F)(¢,t) = [l dvH (=, £, 1) [Hﬁ - W%ZO]
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@ GPD quintessence: N(z,t) = Qo(x,t) +x2 Q2(z,t) +xtQa(z,t) + ...
N—— N——

PDFs FFs of EMT tensor

@ M. Polyakov'07: using Joukowski conformal map the relation between Im7{(¢)
and GPD quintessence N(z) can be presented in the form of the Abel integral
equation.

@ Projection property of GPD quintessence:

1
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Froissart- Gribov projection |

Gribov'61, Froissart'61
DR for the elementary amplitude (analytically continued to the ¢-channel):
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@ Consider SO(3) PWAs
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Neumann's integral representation for the Legendre functions Q
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Froissart- Gribov projection |l

@ For even positive J

1
ajso(t) = 2/0 dzMH(H(m,x,t).

xT

@ For J =0 we get

aj_o(t) = 2/01dx [% - 1} H ) (@, 2,t) +4D(t) .
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@ N.B. % ~ z7=1 for small z.

Mellin moments of GPD quintessence <> Froissart- Gribov projection
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where the auxiliary functions
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Compton Scattering and Fixed Poles in Parton Field-Theoretic Models*

Stanley J. Brodsky, Francis E. Close,{ and J. F. Gunion
Stanford Linear Accelevator Center, Stanford University, Stanford, California 94305
(Received 12 October 1971)

We extend a class of parton models to a fully gauge-invariant theory for the full Compton
amplitude. The of local ic interactions is shown to always give rise
to a constant real part in the high-energy behavior of the amplitude (v, ¢%). In the language
of Reggeization this is interpreted as a fixed pole at J =0 in Ty and T, with residue poly-
nomial in the photon mass squared.
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The Tocal coupling of two photons to the fundamental quark currents of a hadron gives an energy-
independent contribution to the Compton amplitude proportional to the charge squared of the struck
quark, a contribution which has no analog in hadron scattering reactions. We show that this local
contribution has a real phase and is universal, giving the same contribution for real or virtual Compton
attering for any photon virtuality and skewness at fixed momentum transfer squared 7. The 7 dependence
of this J = 0 fixed Regge pole is p rized by a yet even charge-conjugation form factor
of the target nucleon. The 7 = 0 limit gives an important constraint on the dependence of the nucleon mass
on the quark mass through the Weisberger relation. We dis ow this 1/x form factor can be extracted
from high-energy deeply virtual Compton scattering and examine predictions given by models of the H
seneralized parton distribution.




J = 0 fixed pole manifestation in DVCS

@ S. Brodsky, F. Estrada, A. Szczepaniak: local

coupling of two photons to a quark in the high
energy limit.
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Universal J = 0 fixed pole contribution into Compton amplitude

1 )2 .
aSP (11Q2, Q3) = —;/ dv > TmH(v,11Q3 = Q3)  (Conjecture).
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Dispersive approach in the scaling regime |

Y (q1) + N(p1) = v (g2) + N(p2)

Scaling variables
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Useful variable: ¥ =n/¢ = Zé;g% +0(t/Q?)
1 2

@ For t = 0, the case ¥ = 0 corresponds to the usual DIS kinematics.

@ The case ¥ = 1 corresponds to the DVCS kinematics.

LO Compton FF

1
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Dispersive approach in the scaling regime Il

DRs within scaling variables
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GPD sum rule O. Teryaev'05
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Dispersive approach in the scaling regime Ill

@ Caution! ‘High energy’ limit £ — 0 requires attention.
@ Taken naively will miss DfP-(n], t)

H ) (,n,t) = H (2,n,) + 0(In| — |«|)d"P (/In],t) .
@ Split z € [0,9¢], and z € [9€,1]. Then
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@ No proof for J = 0 fixed pole universality conjecture! Back to the discussion of
the D-term as inherent part of GPD (GPD holographic property) and
presence/absence of j = —1 fixed poles.

@ Counterexamples with auxiliary D-term exist. Such situation occurs in certain
dynamical models. E.g. pion GPD in nonlocal chiral quark model. See K.S.'08



Conclusions

0600 © ©

The dual parametrization approach is equivalent to the Mellin-Barnes type
integral based techniques for GPDs.

Froissar-Gribov projection provides explanation for the properties of GPD
quintessence function and Abel transform tomography.

There exists no proof for J = 0 pole universality for Compton scattering.
J = 0 pole universality is equivalent to GPD holographic property.

However, this is an additional “external principle”. Hard to prove (or disprove).
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