Wide Angle Compton Scattering within the SCET framework

Nikolay Kivel

HELMHOLTZ

|Institut Mainz

Physics Opportunities at an Electron Ion Collider Ecole Polytechnique, Palaiseau, 7-11 September, 2015

QCD predictions for WACS

kinematics $s \sim-t \sim-u \sim Q^{2} \gg \Lambda^{2} \quad$ real photons

factorized amplitude

$$
T(s, \theta) \simeq \phi_{N}\left(y_{j}\right) * H\left(x_{i}, y_{j} ; s, \theta\right) * \phi_{N}\left(x_{i}\right) \quad i, j=\{1,2,3\}
$$

QCD scaling $\quad T(s) \sim \alpha_{s}^{2} / s^{2} \sim 1 / Q^{4} \quad$ Brodsky, Farrar 1973
cross section $\quad \frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t}=\frac{f_{N}^{4} \alpha_{s}^{4}}{s^{6}} A(\theta)$
experimental check: power and angular behavior

WACS: theory vs. experiments

Theoretical calculations
Maina, Farrar, 1988, Farrar, Zhang, 1990, Kronfeld, Nižič 1991, Vanderhaeghen, Guichon, Van de Wiele 2000, Brooks, Dixon, 2000, Thomson, Pang, Ji, 2006

Cornell experiment Shupe et al, 1979
JLab, Hall A $\left.\begin{array}{l}\text { Hamilton et al, } 2005 \\ \\ \text { Fanelli et al, } 2015\end{array}\right\}$ KLL, Ls
Danagoulian et al, 2007

Wide Angle Compton Scattering \& Form Factor in QCD factorization

Brooks, Dixon, 2000

Data Shupe et al θ
The shape of the curves matches the data quite well

The hard-spectator contribution predictions are at least an order of magnitude below the data
strong sensitivity to
scale setting for $\alpha_{s}=0.3$
normalization $f_{N}=5.2 \times 10^{-3} \mathrm{GeV}^{2}$
current lattice calculations give the values
which is about 30\% smaller! Braun et al, 2014

$$
\frac{d \sigma^{\gamma p \rightarrow \gamma p}}{d t}=\frac{f_{N}^{4} \alpha_{s}^{4}}{s^{6}} A(\theta)
$$

Wide Angle Compton Scattering \& Form Factor in QCD factorization

$$
\frac{s^{6} d \sigma^{\gamma p \rightarrow \gamma p} / d t}{\left[Q^{4} F_{1}\right]^{2}}=A(\theta) / I_{N}
$$

$$
Q^{4} F_{1}\left(Q^{2}\right) \approx 1 \mathrm{GeV}^{4} \quad Q^{2}=7-15 \mathrm{GeV}^{2}
$$

data: Cornell exp.

the results are about an order of magnitude below
data: JLab, Hall A, 2007

the ratio is a factor of $2-4$ smaller
it seems unlikely that proton FF and Compton amplitude are both described by asymptotic approximations

Large contribution of the soft-overlap mechanism?

The experimental data indicate that photons scatter on a one quark and can be easily explained by soft-spectator scattering


```
Radyushkin }199
Kroll et al, 1999
    Miller, }200
```

- The large soft-overlap contribution also arises in phenomenological models and sum rule calculations for hadronic ffs

Nesterenko, Radyushkin 1983 Braun et al, `02, '06, '13, `14, '15
Isgur, Smith 1984

blue lines are collinear (Breit frame)
$\sim \ln \left[Q^{2} / \Lambda^{2}\right] / Q^{4}$
same power as for hardspectator!
black lines soft spectators $\sim 1 / \Lambda^{2}$

$$
\text { red lines } \sim 1 / Q \Lambda \text { hard-collinear }
$$

The soft-spectator configuration can be naturally obtained within the Soft Collinear Effective Theory (SCET) framework

$$
\text { NK, Vanderhaeghen `10 NK, } 2012
$$

soft-spectator contribution can also be obtained and for WACS diagrams

Soft Collinear Effective Theory (SCET)

description of the soft-overlap contribution involves 3 different scales
WACS amplitude $\quad T\left(\mu_{h}^{2} \sim Q^{2}, \mu_{h c}^{2} \sim Q \Lambda, \mu_{s}^{2} \sim \Lambda^{2}\right)$
QCD $\quad p=\left(p_{+}, p_{\perp}, p_{-}\right)$

$$
p_{h} \sim(Q, Q, Q) \quad \text { hard } \quad p_{h}^{2} \sim Q^{2} \sim \mu_{h}^{2}
$$

SCET

$$
p_{h c} \sim(Q, \sqrt{\Lambda Q}, \Lambda) \text { hard-collinear } \quad p_{h c}^{2} \sim Q \Lambda \sim \mu_{h c}^{2}
$$

$p_{c} \sim\left(Q, \Lambda, \Lambda^{2} / Q\right) \quad$ collinear

$$
p_{c}^{2} \sim p_{s}^{2} \sim \Lambda^{2} \sim \mu_{s}^{2}
$$

$$
p_{s} \sim(\Lambda, \Lambda, \Lambda) \quad \text { soft }
$$

Soft Collinear Effective Theory (SCET)

hard-collinear modes arise at classical level due to interactions of collinear and soft modes

$$
\begin{aligned}
p & =\left(p_{+}, p_{\perp}, p_{-}\right) \\
p_{c} & \sim\left(Q, \Lambda, \Lambda^{2} / Q\right) \\
p_{s} & \sim(\Lambda, \Lambda, \Lambda)
\end{aligned}
$$

$$
p_{h c}^{2} \simeq-2\left(p_{c} \cdot p_{s}\right) \simeq-p_{c}^{+} \cdot p_{s}^{-} \sim Q \Lambda
$$

homogeneous hard-collinear modes $p_{h c} \sim(Q, \sqrt{\Lambda Q}, \Lambda)$ appears as quantum corrections (loops)

SCET-I effective Lagrangian QCD \rightarrow SCET-I

$$
\mathcal{L}_{\text {SCET-I }}=\mathcal{L}^{(n)}\left[\psi_{n}, A_{n}, q, A_{s}\right]+\mathcal{L}^{(\bar{n})}\left[\psi_{\bar{n}}, A_{\bar{n}}, q, A_{s}\right]+\mathcal{L}_{\mathrm{soft}}\left[q, A_{s}\right]
$$

Expansion with respect to small $\lambda \sim \sqrt{\Lambda / Q}$ in each hard-collinear sector

$$
\mathcal{L}^{(n)}\left[\psi_{n}, A_{n}, q, A_{s}\right]=\mathcal{L}^{(n, 0)}\left[\psi_{n}, A_{n}\right]+\mathcal{L}^{(n, 1)}\left[\psi_{n}, A_{n}, A_{s}, q\right]+\mathcal{O}\left(\lambda^{2}\right)
$$

Soft spectator scattering in the SCET framework

1. Factorize of the hard modes: $p_{h}^{2} \sim Q^{2} \gg \Lambda^{2} \quad$ (hard subprocess)

QCD \rightarrow SCET-I

$$
\begin{array}{lrl}
\text { T-I } & \mu_{h c}^{2} & \sim Q \Lambda \\
T^{(s)}\left(Q, \mu_{h c}, \mu_{s}\right) \simeq H\left(Q, \mu_{F}\right) * f\left(\mu_{F}, \mu_{h c}, \mu_{s}\right) & \mu_{s}^{2} \sim \Lambda^{2}
\end{array}
$$

$$
f\left(\mu_{F}, \mu_{h c}, \mu_{s}\right)=\langle o u t| \mathcal{O}\left(\mu_{F}\right)|i n\rangle_{\mathrm{SCET}}
$$

- moderate values of Q^{2} :

$$
Q \Lambda \lesssim m_{N}^{2} \quad \text { hard-collinear scale is not large }
$$

$$
\begin{aligned}
Q^{2} & =4-25 \mathrm{GeV}^{2} \\
\Lambda & \simeq 0.3 \mathrm{GeV}
\end{aligned} \quad \leadsto Q \Lambda \simeq 0.6-1.5 \mathrm{GeV}^{2}
$$

This point is actual for existing WACS data

Soft spectator scattering in the SCET framework

2. Factorization of hard-collinear modes $\quad p_{h c}^{2} \sim Q \Lambda \gg m_{N}^{2}$

$$
\begin{aligned}
& \text { SCET-I } \rightarrow \text { SCET-II }=\text { collinear }+ \text { soft } \\
& \qquad \begin{array}{ll}
\\
f\left(\mu_{h c}, \mu_{s}\right) \simeq & J_{h c}(Q \Lambda) * S\left[p_{s}\right] * \phi_{N}\left[p_{c}\right] \begin{array}{c}
\mu_{h c}^{2} \sim Q \Lambda \\
\\
\begin{array}{c}
\text { hard-collinear } \\
\text { subprocess }
\end{array}
\end{array}
\end{array} \begin{array}{l}
\mu_{s}^{2} \sim \Lambda^{2}
\end{array}
\end{aligned}
$$

- gives a final power of $1 / Q$
- helps to understand the overlap of soft and hard-spectator contributions

Wide Angle Compton Scattering

NK, Vanderhaeghen 2012

$$
s \sim-t \sim-u \sim Q^{2} \gg \Lambda^{2}
$$

$$
T_{i}(s, t)=C_{i}(s, t) \mathcal{F}_{1}(t)+\varphi_{N} * H_{i}(s, t) * \varphi_{N}
$$

soft SCET matrix element

$$
p^{\prime} \simeq Q n / 2 \quad p \simeq Q \bar{n} / 2
$$

$$
\left\langle p^{\prime}\right| \bar{\chi}_{n} \gamma_{\perp} \chi_{\bar{n}}-\bar{\chi}_{\bar{n}} \gamma_{\perp} \chi_{n}|p\rangle_{S C E T}=\bar{N}\left(p^{\prime}\right) \frac{1}{4} \not \hbar n h \gamma_{\perp} N(p) \mathcal{F}_{1}(t)
$$

quark "jets" $\quad \chi_{\bar{n}}=\mathrm{P} \exp \left\{i g \int_{-\infty}^{0} d s n \cdot A_{h c}^{(\bar{n})}(s n)\right\} \frac{1}{4}$ 㠶 $\psi_{h c}(0)$

The hard factorization in SCET

RG-equation

WACS phenomenology

- one SCET amplitude \mathcal{F}_{1} enters in all three amplitudes T_{i}
- \mathcal{F}_{1} does not depend on energy s

$$
T_{2}(s, t)=C_{2}(s, t)\left\{\mathcal{F}_{1}(t)+\varphi_{N} * H_{2}(s, t) * \varphi_{N} / C_{2}(s, t)\right\} \equiv C_{2}(s, t) \mathcal{R}(s, t)
$$

$$
\Downarrow
$$

regular ratio	$\mathcal{R}(s, t)=\frac{T_{2}(s, t)}{C_{2}(s, t)} \quad \mu_{F}^{2}=-t$

$$
\begin{aligned}
& T_{2}(s, t)=C_{2}(s, t) \mathcal{R}(s, t) \\
& T_{i}\left(s^{\prime}, t\right)=C_{i}\left(s^{\prime}, t\right) \mathcal{R}(s, t)+\varphi_{N} *\left\{H_{i}\left(s^{\prime}, t\right)-H_{2}(s, t) \frac{C_{i}\left(s^{\prime}, t\right)}{C_{2}(s, t)}\right\} * \varphi_{N} \quad \begin{array}{l}
i=4,6 \\
s^{\prime} \neq s!
\end{array}
\end{aligned}
$$

WACS phenomenology

Physical subtraction scheme
$T_{2}(s, t)=C_{2}(s, t) \mathcal{R}(s, t)$
$T_{i}\left(s^{\prime}, t\right)=C_{i}\left(s^{\prime}, t\right) \mathcal{R}(s, t)+\varphi_{N} *\left\{H_{i}\left(s^{\prime}, t\right)-H_{2}(s, t) \frac{C_{i}\left(s^{\prime}, t\right)}{C_{2}(s, t)}\right\} * \varphi_{N}$ $i=4,6 \quad s^{\prime} \neq s!$
hard-spectator part: $\quad \varphi_{N} *\left\{H_{i}\left(s^{\prime}, t\right)-H_{2}(s, t) \frac{C_{i}\left(s^{\prime}, t\right)}{C_{2}(s, t)}\right\} * \varphi_{N} \sim \mathcal{O}\left(\alpha_{s}^{2}\right)$ $\sim 10-20 \%$
if the hard-sp. contribution is small and negligible then

$$
\mathcal{R}(s, t)=\frac{T_{i}(s, t)}{C_{i}(s, t)} \approx \mathcal{R}(t)
$$

WACS phenomenology

$$
\mathcal{R}(s, t)=\frac{T_{i}(s, t)}{C_{i}(s, t)} \approx \mathcal{R}(t)
$$

dominates by the soft-spectator contribution
this can be verified by experiment

$$
\frac{d \sigma}{d t}=\frac{\pi \alpha^{2}}{\left(s-m^{2}\right)^{2}}(-s u)\left(\frac{1}{2}\left|C_{2}(s, t)\right|^{2}+\frac{1}{2}\left|C_{4}(s, t)\right|^{2}+\left|C_{6}(s, t)\right|^{2}\right)|R(s, t)|^{2}
$$

$$
C_{i}=C_{i}^{\mathrm{LO}}+\frac{\alpha_{s}}{4 \pi} C_{F} C_{i}^{\mathrm{NLO}}+\ldots
$$

To the leading-order accuracy

$$
\left.\frac{d \sigma}{d t} \simeq \frac{2 \pi \alpha^{2}}{s^{2}}|\mathcal{R}(s, t)|^{2}\left(\frac{s}{-u}+\frac{-u}{s}\right)\right|_{m=0}=\frac{d \sigma_{0}^{\mathrm{KN}}}{d t}|\mathcal{R}(s, t)|^{2}
$$

WACS phenomenology: cross section

NK, Vanderhaeghen 2015
used data: JLab/Hall-A, 2007

The extracted value of \mathcal{R} is needed for the estimates of the two photon corrections for the nucleon FF
all power corrections m / Q are neglected
$|\mathcal{R}(s, t)|_{m=0} \approx \sqrt{\frac{d \sigma^{\exp } / d t}{d \sigma_{0}^{\mathrm{KN}} / d t}}$
empirical fit:

$$
\begin{gathered}
|\mathcal{R}(s, t)|=\left(\frac{\Lambda^{2}}{-t}\right)^{\alpha} \\
\Lambda=1.17 \pm 0.01 \\
\alpha=2.09 \pm 0.06
\end{gathered}
$$

WACS phenomenology: cross section

NK, Vanderhaeghen 2015
used data: JLab/Hall-A, $2007-\dagger>2.5 \mathrm{GeV}^{2}$

WACS phenomenology

WACS @ JLAB 12 PR-12-13-009 (approved)

$$
-t,-u>2.5 \mathrm{GeV}^{2}
$$

WACS phenomenology: longitudinal polarization KLL

$$
K_{\mathrm{LL}}=\frac{\sigma_{\|}^{R}-\sigma_{\|}^{L}}{\sigma_{\|}^{R}+\sigma_{\|}^{L}}
$$

JLab, Hall A
Hamilton et al, 2005 E99-114
$\mathrm{s}=6.9, \mathrm{t}=-4.0, \mathrm{u}=-1.1 \mathrm{GeV}^{2}$
JLab, Hall C
E07-002
$\mathrm{s}=7.8, \mathrm{t}=-2.1, \mathrm{u}=-4.0 \mathrm{GeV}^{2}$
arXiv:1506.04045

WACS phenomenology: longitudinal polarization KLL

$$
K_{\mathrm{LL}}=\frac{\sigma_{\|}^{R}-\sigma_{\|}^{L}}{\sigma_{\|}^{R}+\sigma_{\|}^{L}}=\frac{s^{2}-u^{2}}{s^{2}+u^{2}}+\frac{\alpha_{s}}{\pi} C_{F} K_{\mathrm{LL}}^{\mathrm{NLO}}
$$

$\mathrm{m}=0$ small helicity flip amplitudes
NK, Vanderhaeghen, 2014
\Rightarrow Does not depend on s \& \mathcal{R}

$$
\text { Data } s=7.8 \mathrm{GeV}^{2} \quad-t=2.1 \mathrm{GeV}^{2} \quad u=-4.0 \mathrm{GeV}^{2}
$$

data: JLab/Hall-A, 2004

with kinematical power corr's

Summary

- It seems unlikely that proton FF and Compton amplitude are both described by asymptotic approximations.
- The simple factorization formula must be improved. SCET framework requires to include the soft spectator term.
- WACS cross section data are in agreement with the large softspectator contribution in the region $-t,-u>2.5 \mathrm{GeV}^{2}$. This description can be verified with future data at larger energies
- Existing data for asymmetry KLL are outside of the region $-t,-u>2.5 \mathrm{GeV}^{2}$ and cannot be addressed within described formalism. More data are required.

Thankyou!

