
nuclear suppression in pA collisions 
from induced gluon radiation

Stéphane Peigné
SUBATECH, Nantes

peigne@subatech.in2p3.fr

POETIC VI       Palaiseau, Sept. 7-11 2015

from studies with   F.  Arleo, R. Kolevatov, T. Sami

mailto:peigne@subatech.in2p3.fr
mailto:peigne@subatech.in2p3.fr
file://localhost/Users/peigne/Desktop/eq1
file://localhost/Users/peigne/Desktop/eq1


Introduction

• understand pA suppression before hot effects in AA

• several effects have been proposed:

• shadowing/nPDF effects
• CGC/saturation effects
• in-medium ‘nuclear absorption’

• parton radiative energy loss

no real consensus on relative importance of those effects 

(might be the main effect at large enough energy) 

this talk:  parton energy loss



Gavin-Milana model for J/psi pA suppression (1992)

• at that time: spread belief that any induced �E
should be bounded when E ! 1

• Gavin-Milan ‘explanation’ was put aside

�E / E advocated by some groups:still,(
Frankfurt & Strikman 2007; Kopeliovich et al 2005 )
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(1) parton suddenly produced in medium
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(2) forward scattering of  fast ‘asymptotic parton’
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(1) energetic parton suddenly produced in medium
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features of induced radiative energy loss 



when ! exceeds q̂RL
2 , tf saturates at tf ⇠ L

due to suppression of tf � L

average energy loss
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higher orders in modify the L-dependence↵s

| {z }
pt-broadening induced by radiation (in DLA)
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• Arleo, S.P., Sami  PRD 83 (2011) 114036

• Armesto et al PLB 717 (2012) 280, JHEP 1312 (2013) 052

• derivation at first order in opacity extrapolated to all orders
• Feynman diagrams + opacity expansion 

• hard process: g ! QQ̄ mediated by octet t-channel exchange

• semi-classical method + opacity expansion 

• hard process: q ! q mediated by singlet t-channel exchange
• harmonic oscillator approximation

• parton mass dependence
•  rigorous calculation for Coulomb rescattering

• Feynman diagrams + opacity expansion 
1 ! 1• hard process: all

• general rule for color factor

(2)  hard forward scattering 1 ! 1

• S.P.,  Arleo, Kolevatov 1402.1671 (2014) (PAK14)



setup: high-energy p-A collision in nucleus rest frame

• tag energetic hadron with p0?|hard �
p
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from fully coherent domain: tf ⇠ !
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• color factor given by interference term:

CR + CR0 � Ct

remark: forward scattering with1 ! 1 CR 6= CR0
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(PAK14)explicit calculation )
general (approximate) pocket formula

for induced coherent spectrum:
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• generalizes results found previously in particular cases

• captures correct limiting behaviour at small
x

• at large 
x

: proper normalization requires working
beyond harmonic oscillator approximation
(see PAK14 for exact expression)



generalization to 1 ! 2 hard forward processes 
K1?, xh

K2?, 1� xh
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Liou & Mueller PRD 89 (2014) 074026
•  dipole formalism -- forward symmetric dijet (xh = 1/2)

g ! qq̄ q ! qg,

S.P., Kolevatov JHEP 01 (2015) 141
• Feynman diagrams + opacity expansion

q ! qg , g ! gg
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1 ! 1effectively the same as for processes
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(compact)
color octet

xF > x

crit
F

p?small

coherent radiation g ! QQ̄associated to 

model for quarkonium pA suppression
Arleo, S.P., 1204.4609 and 1212.0434             (AP12)
Arleo, Kolevatov, S.P., Rustamova 1304.0901             



2 ! 1 kinematics ) focus on low p? . M

d� pp/dxF• taken from experimental data
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Q

2
sp(x = 10�2) = 0.11� 0.14 GeV2q̂0 corresponds to

consistent with fits to DIS data Albacete et al (AAMQS) 2011



J/ NA3 Pt/p 



RHIC d-Au (PHENIX) 
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LHC p-Pb (ALICE) 
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nPDF/saturation effects might be sizeable at collider energies, but

(nPDF/saturation alone cannot achieve such global description)

coherent radiation alone ‘‘explains’’ J/psi pA suppression
from fixed target to collider energies

�E / E leading effectcoherent energy loss 



model for light hadron suppression at the LHC 
Arleo, Kolevatov, S.P. (work in progress)         
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energy loss vs broadening at LHC

• opposite trends between energy loss and broadening effects
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light hadron suppression vs LHC data

• model consistent with CMS (and ALICE) data

• model is still preliminary:
large uncertainties on the variables z and xh



Summary

• seems quantitatively crucial for J/psi pA suppression

induced coherent radiation

• should play a role for all 1 ! n partonic processes 

calls for models of nuclear suppression with
nPDF/saturation effects + coherent energy loss| {z } | {z }

intrinsic to hadron wavefunction process-dependent

• is a QCD prediction

• process-dependent (not included in nucleus wavefunction)
• found in different formalisms and setups


