COMPASS Hadron Multiplicity Measurements and Fragmentation Functions

M. Stolarski
LIP

On behalf of the COMPASS Collaboration
9-IX-2015

Outline

(1) COMPASS @ CERN

(2) Motivation

(3) Multiplicity Extraction

(3) Results

COMPASS at CERN

COMPASS Spectrometer 2002-2012

- POLARIZED TARGET
- ${ }^{6}$ LiD target $\left(\mathrm{NH}_{3}\right)$
- 2-3 cells (120 cm total length)
- $\pm 50 \%$ (85%) polarization
- pol. reversal every 8h-24h
- POLARIZED BEAM
- μ^{+}at $160 \mathrm{GeV} / \mathrm{c}$
- polarization -80 \%
- FEATURES
- COLLABORATION
- about 210 physicists
- 27 institutes
- DETECTOR
- two stage spectrometer
- 60 m length
- about 350 detector planes
- angular acceptance: ± 70 mrad (± 180 mrad from 2006)
- track reconstruction:

$$
p>0.5 \mathrm{GeV} / \mathrm{c}
$$

- identification h, e, μ : calorimeters and muon filters
- identification: π, K, p (RICH) $p>2,9,18 \mathrm{GeV} / \mathrm{c}$ respectively

Motivation

- Fragmentation functions (FF, D_{q}^{h}) describe parton fragmentation into hadron
- They are needed for many types of the analyses which deals with a hadron(s) in the final state
- The cleanest way to access them is in $e^{+} e^{-}$annihilation. However,
- only sensitive to $q+\bar{q}$ FF.
- flavour separation possibilities are limited
- In the SIDIS data, FF are convoluted with PDFs, However,
- possibility to separate fragmentation from q and \bar{q}
- full flavour separation possible
- Studying $p p$ collisions with a high p_{T} hadrons one have access to gluon fragmentation functions
- SIDIS data are crucial to understand quark fragmentation process

Motivation cont., ΔS Puzzle

- ΔS from fits of g_{1} and SIDIS π is negative in the whole x region (assuming SU3 symmetry)
- However, SIDIS K data prefer zero or positive value at moderate x values
- Impact of Kaon data strongly dependent upon the choice of strange FF - D_{S}^{K}
- LSS group reported that problem disappears if HKNS FF set is used instead of DSS.

Multiplicity Measurement

- Hadron multiplicities are defined as number of observed hadrons in a number of DIS events
- Mult $=\sigma_{h} / \sigma_{D I S}=d^{3} N_{h}(x, y, z) / d^{2} N_{D I S}(x, y)$
- In LO Mult $=\frac{\sum e_{i}^{2} q_{i}\left(x, Q^{2}\right) D_{i}^{h}\left(z, Q^{2}\right)}{\sum e_{i}^{2} q_{i}\left(x, Q^{2}\right)}$
- Experimentally measured hadron multiplicities needs to be corrected for various effects e.g.
- spectrometer acceptance \&reconstruction program efficiency
- RICH efficiency \& purity (for π and K)
- radiative corrections
- diffractive vector meson production
- ...

Acceptance

- To avoid model dependencies, acceptance should be calculated multidimensionally
- In fixed target experiments there is a large correlation between x and Q^{2} It is much better to make a binning in x and y
- COMPASS acceptance is high and rather flat

RICH Efficiency/Purity

- COMPASS RICH detectors is able to detect π, K, p starting from 3, 9 , and 18 $\mathrm{GeV} / \mathrm{c}$ respectively, and up to about $50 \mathrm{GeV} / \mathrm{c}$
- A 3×3 efficiency-purity matrix is obtained from data based on decays of K^{0}, Φ and Λ
- The analysis region was limited to a momentum range where K identification is stable, namely $13-40 \mathrm{GeV} / \mathrm{c}$
- In the selected range, efficiency of K id if very high at the same time, miss-identification of π as K is very low.
- In order to minimize possible systematic effects π and h multiplicities were extracted in the same momentum range as K

Diffractive Mesons Production and Decays

- FF are expected to be universal
- To keep their universality in the SIDIS case, one should correct obtained multiplicities by yield of hadrons resulted from decays of mesons produced in diffractive processes
- These contributions were estimated using dedicated MC generator HEPGEN
- The effect is sizable from $\rho^{0} \rightarrow \pi \pi$, it contribute up to 40% in the high z region

Multiplicities of π

- COMPASS extracted $\pi^{ \pm}$ multiplicities
- Publication expected soon
- Some preliminary data were used in DSS+ fit.
- COMPASS performed LO FF fit

The π Multiplicity Sum

- Interesting observations can be made when studying π multiplicity sum
- For iso-scalar target:
- $M^{\pi^{+}+\pi^{-}}=D_{\text {fav }}+D_{u n f}+\frac{2 S}{5 Q+2 S}\left(D_{u n f}-D_{\text {fav }}\right) \approx D_{\text {fav }}+D_{\text {unf }}$
- $D\left(Q^{2}, z\right) \rightarrow$ obtained multiplicity sum is effectively independent of x
- In fixed target experiment x and Q^{2} are correlated, but Q^{2} dependence of z integrated FF is weak
- $\int_{0.2}^{0.85} M^{\pi^{+}+\pi^{-}} d z$ vs. x should be almost flat

The π^{+} / π^{-}Multiplicity Ratio

- The ratio of π^{+} / π^{-}or $\left(h^{+} / h^{-}\right)$is interesting to study due to significant cancellation of experimental systematic errors
- Here, a good agreement between HERMES and COMPASS is seen
- However, there is a tension between JLAB and HERMES at high x
- As previously there is a good agreement between COMPASS and EMC data for unidentified hadrons

Kaon Multiplicities

- Kaon multiplicities were extracted from COMPASS data
- Thanks to less model dependent way of extracting acceptance, more (x, y, z) points are available than in the presented π data
- The π data will be re-evaluated for the publication

Kaon Fragmentation Functions © LO

- COMPASS performed LO fit to kaon Multiplicities
- $D_{\text {fav }}$ and $D_{u n f}$ are presented below
- $D_{\text {str }}$ are not shown, while results of $D_{\text {fav }}$ and $D_{\text {unf }}$ are very stable, it is not the case with $D_{s t r}$
- Extracted $D_{f a v}$ and $D_{u n f}$ are significantly larger than in the DSS parametrisation
- Even keeping old $D_{\text {str }}$ value, the ratio $D_{\text {str }} / D_{f a v}$ in COMPASS is smaller than expected from DSS fit

Kaon Multiplicity Sum

- Kaon multiplicity sum gives an "easy" access to $S \int D_{S}^{K}(z) d z$
- For the iso-scalar target:
- $5 M^{K^{+}+K^{-}} \approx \int D_{Q}^{K}+S / Q \int D_{S}^{K}$
- here, $D_{Q}^{K}=4 D_{\text {fav }}^{K}+6 D_{\text {unf }}^{K} ; \quad Q=u+\bar{u}+d+\bar{d} ; S=s+\bar{s}$
- High $x \rightarrow S \approx 0 \rightarrow$ access to $D_{Q}^{K} ; \quad$ Low $x \rightarrow S \int D_{S}^{K}$ may be significant
- With DSS $D_{\text {str }} / D_{\text {fav }}$, a grow by 50% towards low x of $M^{K^{+}+K^{-}}$is expected
- Strong increase of $M^{K^{+}+K^{-}}$ towards low x is not seen
- The results suggest lower $D_{\text {str }} / D_{\text {fav }}$ than DSS
- MC with LUND fragmentation model describe data well

Kaon Multiplicity Sum cont.

- $5 M^{K^{+}+K^{-}} \approx \int D_{Q}^{K}+S / Q \int D_{S}^{K}$
- In the LO FF fit it was shown that both $D_{\text {fav }}$ and $D_{u n f}$ are larger than DSS FF
- using results at high x one can easily estimate that:
- $\int D_{Q} \approx 5 M^{K^{+}+K^{-}}=0.70 ; \quad D_{Q}=4 D_{\text {fav }}+6 D_{\text {unf }}$
- $\int D_{Q} \approx 0.43$ in DSS analysis
- COMPASS still investigate semi-inclusive radiative corrections using RADGEN
- Outcome of these studies cannot change qualitative conclusions presented here

Kaon Multiplicity Sum cont.

- Kaon Multiplicity Sum from COMPASS and HERMES are compared
- There are large discrepancies observed:
- Shape of the distribution a low x
- The value of $M^{K^{+}+K^{-}}$at high $x \rightarrow \int D_{Q}$!

K^{+} / K^{-}Multiplicity Ratio

- For the π case there is a good agreement between COMPASS and HERMES for the π^{+} / π^{-}multiplicity ratio
- There is an agreement, despite the fact that the shape of π multiplicity sum was quite different
- For the Kaon case, clear discrepancy between COMPASS and HERMES is observed even for the K^{+} / K^{-}Multiplicity Ratio

K^{0} Multiplicities

- COMPASS collected considerable amount of K^{0}
- K^{0} multiplicity is more sensitive to $D_{u n f}$ rather than $D_{f a v}$
- The work on K^{0} Multiplicities have started
- Since, there is no need for Kaon ID, K^{0} Multiplicities can be extracted in much larger phase-space region than $K^{ \pm}$
- Thus, there will be a region at low y where COMPASS kinematic will be much closer to the HERMES one
- In the case some energy dependence of multiplicities is a reason for discrepancy between COMPASS and HERMES multiplicity sum at high x, with K^{0} multiplicities COMPASS has an access to a transition region
- Disclaimer: acceptance for K^{0} at low y is not that flat, careful studies will be needed

Summary

- COMPASS measured $h^{ \pm}, \pi^{ \pm}, K^{ \pm}$multiplicities in the wide kinematic range
- Publication of $h^{ \pm}, \pi^{ \pm}$is expected soon
- There are tensions visible between COMPASS and HERMES results
- With $K^{0}{ }_{s}$ COMPASS have access to more extended kinematic region, including the one closer to the HERMES kinematic
- EIC would be an ideal place to further study these subjects

Backups

Diffractive Mesons Production and Decays cont.

- For kaons decay of $\Phi \rightarrow K^{+} K^{-}$contributes
- The maximum contribution is seen for $z \approx 0.5$, due to $K^{ \pm}$from Φ decay have low transverse momentum.

Transverse Momentum Dependent Multiplicities

Transverse Momentum Dependent Multiplicities

- Both intrinsic k_{T} of quarks in the nucleon as well as p_{\perp} of the fragmentation needs to be better understood
- Hadron multiplicities were extracted in 4D $\left(x, Q^{2}, z, p_{T}^{2}\right)$ binning
- Main features:
- the 2-exp fits give reasonable fits to the data,
- 2nd exp become dominant even as low as $p_{\mathrm{T}}^{2} \approx 0.6 \mathrm{GeV}^{2}$

Transverse Momentum Dependent Multiplicities cont.

- New results without the arbitrary normalization:

