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FIG. 1: Comparisons of BRAHMS [10] (h�) and STAR [11] (⇡0) yields in dAu collisions to results of the numerical calculation
with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed using µ

2 = 10GeV2 to 50GeV2.

tion becomes negative increases with rapidity, as can be
seen from Fig. 1. Once the hadron transverse momentum
p? is larger than Q

s

(x
g

), the NLO correction starts to
become very large and negative. This indicates that we
need to either go beyond NLO or perform some sort of
resummation when p? > Q

s

(x
g

), due to this theoreti-
cal limitation of the dilute-dense factorization formalism
at NLO. This is an important problem but it lies out-
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FIG. 2: Comparisons of BRAHMS data [10] at ⌘ = 3.2 with
the theoretical results for four choices of gluon distribution:
GBW, MV with ⇤ = 0.24GeV, BK solution with fixed cou-
pling at ↵

s

= 0.1, and rcBK with ⇤QCD = 0.1GeV. The edges
of the solid bands show results for µ2 = 10GeV2 to 50GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

side the scope of the current work and we will leave this
to future study. Given these limitations, we expect the
dilute-dense factorization formalism to work much better
for more forward rapidity regions. This trend is indeed
observed in Fig. 1 and Fig. 3. Nevertheless, as shown in
all the plots, the results computed from SOLO are stable
and reliable as long as p? < Q

s

(x
g

).
Furthermore, we have also run SOLO with three

other choices of dipole gluon distribution: the Golec-
Biernat and Wustho↵ (GBW) model [34], the McLerran-
Venugopalan (MV) model [4], and the solution to the
fixed coupling BK equation. As shown in Fig. 2, all four
parametrizations give similar results and agree with the
BRAHMS data in the p? < Q

s

region. For other plots,
we only use the rcBK solution, which is the most sophis-
ticated parametrization.

Fig. 3 shows predictions made by SOLO for pPb col-
lisions at high pseudorapidities which are accessible at
LHC detectors, in particular 5.3  ⌘  6.5 for TOTEM’s
T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,
our prediction in the left plot should only be valid when
p? < 3GeV, which is about the size of the saturation
momentum at the corresponding rapidity.

One of the advantages of the NLO results is the signif-
icantly reduced scale dependence as shown in Fig. 4. In
principle, cross sections for any physical observable, if it
could be calculated up to all order, should be completely
independent of the factorization scale µ. However, as
shown in Fig. 4, the LO cross section is a monotonically
decreasing function of the factorization scale µ. This is
well-known and is simply due to the fact that an increase
of µ causes both the parton distribution function (in the
region x > 0.1) and the fragmentation function (in the

N , � < 0



Why? Large, negative contributions from transverse logarithms at NLL
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Resummation of double collinear logs in BK
evolution versus HERA data
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1 Introduction
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Solution: Resum large (double and single) collinear logs to all orders

• Already done for BFKL

• BK: two recent approaches 
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This talk: tests of the  DLA improved BK equations against HERA data  
on the e-p reduced cross section

• Fits to H1 and ZEUS combined analysis of HERA I data.
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Figure 6: The combined HERA data for the inclusive NC e−p reduced cross sections as a
function of Q2 for four selected values of xBj compared to the individual H1 and ZEUS data. The
individual measurements are displaced horizontally for better visibility. Error bars represent the
total uncertainties.

79

x < 0.01

Q2 < Q2

max

= 50, 500 GeV2

 Goof fits for

• H1 and ZEUS combined analysis of  
HERA II data. Released june 2015

JLA  arXiv:1507.0712 

Iancu et al arXiv:1507.03651 

The strong reduction of experimental errors at  
high-Q2  introduces tension in the fits
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running coupling BK EVOLUTION, rcBK

line of Eq. (2.1) to introduce the reduced notation for the average of the dipole scattering matrix
that we shall employ hereafter. The BK equation provides the rapidity evolution of the dipole
scattering matrix. It reads
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is the evolution kernel. The BK equation at leading logarithmic accuracy resums large
logarithmic corrections of the form ⇠ (↵
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Y )n to all orders. It accounts for the multiple emission of
soft gluons and also for the possibility of gluon recombination via the non-linear term in the right
hand-side of Eq. (2.3). The BK equation assumes that the average of the product of two dipole
scattering matrices over the field configurations of the target factorizes: hS
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i.e. it is derived in the mean field limit. We shall rely on the translational invariant approximation,
equivalent to the assumption that de dipole amplitude only depends on its relative transverse size.
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The calculation of running coupling corrections to the original LL kernel was performed in [8,9].

There, two di↵erent prescriptions were proposed for the kernel of the BK equation at running
coupling accuracy. It was shown in [33] that Balitsky’s prescription [9] minimizes the role of
higher-order, conformal corrections, suggesting that it may be better suited for phenomenologi-
cal applications. In particular, Balitsky’s prescription Eq. (2.4) yields a slower evolution speed
than other possible schemes explored in the literature, like the Kovchegov-Weigert [8] one or the
smallest dipole size prescription, where the scale for the running coupling is set by the smallest
of the transverse dipole sizes involved in one evolution step: r0, parent dipole and r1,2, daughter
dipoles. This feature was crucial for the very good description of previous AAMQS fits to HERA
data. However, it remains to be clarified which running coupling scheme is theoretically better
motivated once other dynamical e↵ects, like the double logarithmic corrections discussed here, are
also incorporated to the BK equation. Under Balitsky’s prescription the running coupling kernel
reads
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Here we will consider two other possibilities for the running coupling kernel, namely the parent
dipole prescription:
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and the smallest dipole prescription:
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Although the ansatzs Eq. (2.5) and Eq. (2.6) do not follow from any strict diagrammatical calcu-
lation, it was shown in [33] that the parent dipole description leads to solutions very similar to
those obtained under the prescription derived by Kovchegov and Weigert [8]. In particular, the
parent dipole prescription leads to significantly faster evolution speed that Balitsky’s prescription.
We shall use it here, rather than the full Kovchegov-Weigert kernel, due to its relative simplicity in
the numerical evaluation. In turn, the smallest dipole prescription is motivated by the expectation
that the scale for the running coupling should be given by the hardest momentum scale in the
process.
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Phys.Rev. D75 (2007) 014001 

Nucl.Phys. A784 (2007) 188-226 

Proxy to Kovchegov-Weigert’s

at HERA by the H1 and ZEUS collaborations [24]. The role on non-linear corrections in small-x
QCD evolution in the interpretation of HERA dada has been thoroughly investigated in previous
works [25–29]. The main conclusion extracted from these works is that the BK equation including
only running coupling corrections to the evolution kernel provides a very good description of
all available experimental data at small Bjorken-x. Further, the precise quantitative information
extracted from these fits in the form of parametrizations of the dipole-proton scattering amplitude
has become an essential tool to calibrate the physics expectations and to analyse data from
other experimental programs, most notably from the proton-proton, proton-nucleus and nucleus
collisions performed at RHIC and the LHC (see e.g. [18, 30]).

During the completion of this work a similar analysis of HERA data based on the DLA-rcBK
equation Eq. (2.9) has been presented in [31]. The fits to HERA data presented in that work rely
on a very similar set up to the one followed here, the main methodological di↵erences being the
choice of initial conditions and the prescription employed for the running of the strong coupling.
Further, the work presented in [31] also explores the role of single transverse logarithms ⇠ ↵

s

⇢ in
the description of data. Nonetheless, the results of this work in the form of parametrisations of
the dipole-proton scattering amplitude have already been employed in a previous publication [32]
for the calculation of the neutrino-nucleon cross section at ultra-high energies.

This work is structured as follows: In section 2 we discuss the basic elements of the collinearly
improved BK equations proposed in [1] and [2]. We shall refer to these two equations as kinemati-
cally corrected running coupling BK equation (KC-rcBK) and DLA running coupling BK equation
(DLA-rcBK) respectively. In section 3 we review briefly the dipole model of deep-inelastic scatter-
ing and describe the numerical set up for the fits, including the description of the free parameters
to be fitted to experimental data. The only novelty with respect to the procedure employed in
previous works [25–27] is the use of a new family of initial conditions for the BK evolution that
we shall refer to as pre-scaling initial conditions. Finally in sections 4 and 5 we present the results
of the fits and the conclusions.

2 Collinearly improved BK equations

In this section we briefly review the basic elements of the BK equation including both running
coupling and double logarithmic corrections. Before delving into details, it is important to recall
that running coupling corrections and double logarithmic corrections arise from the resummation
of two di↵erent subsets of next-to-leading terms. Therefore, they can be treated as independent
from each other and straightforwardly combined in a single equation by, for instance, replacing
the LL kernel in the improved collinear equations by the running coupling kernel. This is exactly
the procedure to be followed in this work.

The scattering matrix of a colourless quark-antiquark dipole propagating through the gluon
field of a target hadron reads:
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where x
0,(1) are the transverse coordinates of the quark and antiquark respectively. Under the

eikonal approximation the propagation of each individiual right-moving parton through the hadron
target is accounted for time ordered Wilson lines:
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
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Z
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�
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�
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where A

+ denotes the gluon field of the target hadron. The average in Eq. (2.1) is performed
over the target gluon field configurations at a given rapidity Y ⌘ ln(x0/x). We have used the last

3



DLA-rcBK evolution 

DLA kernel 

Analytic continuation

Iancu et al 
Phys.Lett. B744 (2015) 293-302

2.1 Kinematically corrected BK equation (KC-rcBK)

A kinematically improved version of the BK equation consistent at high, but finite, energies has
been proposed in [1]. It reads:
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The reduction of phase space for the evolution is made explicit by the presence of the theta
function in Eq. (2.3), which constrains gluon emission to some bounded domain in the x

2

-plane.
This is in clear contrast with the LL BK equation or the BK equation with only running coupling
corrections, where emission of gluons in all the transverse plane are allowed. The parameter that
controls the extent of kinematic corrections is given by:
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There is actually some freedom in the definition of l
012
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⇡ r1 ⇡ r2 in the regime r0 ⌧ r1 ⇡ r2. This freedom in the choice of �
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should be considered
as a resummation scheme ambiguity associated with the kinematic constraint. In what follows
we shall adopt the definition presented in the r.h.s of Eq. (2.8); we have checked that changes in
this prescription do not alter significantly the results of the fits. Other important feature of the
kinematically corrected BK equation Eq. (2.8) is that the scattering amplitude of the two newly
created dipoles after one evolution step are evaluated at a delayed rapidity Y ��

012

. This rapidity
veto has previously discussed in the literature as a main part of the NLO or energy-momentum
corrections to the BK equation [28,34]. As we shall see in Section 4 both e↵ects tend to decrease
the evolution speed, i.e. to slow down the growth of the saturation scale with decreasing Bjorken-
x, but they also modify more exclusive features of the unintegrated gluon distribution. Another
subtle point that arises in the definition of the high-energy factorisation scheme once the kinematic
corrections are taken into account is related to the very definition of the evolution variable, i.e.
the rapidity variable. We will not delve into the details here (see the extended discussion in [1]).
It is however important to recall that the usual choice Y = ln(k+
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by finite corrections, leading to di↵erent evolution equations at NLO accuracy and beyond. This
freedom to choose the evolution variable is related to freedom to choose a reference energy scale
in the BFKL formalism. In practice we will deal with this ambiguity through the use of pre-
asymptotic initial conditions, see 3. The introduction of an arbitatry rapidity shift �Y0 as another
free fit parameter copes e↵ectively with a possible redefinition of the rapidity variable.

2.2 BK equation at Double Logarithmic Accuracy (DLA-rcBK)

A BK equation that resums double collinear logs to all orders has been recently proposed in [2].
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It should be noted that the object evolved in Eq. (2.9), is not the physical dipole scattering matrix
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01;Y , but rather a related function S̃

01;Y . Both functions are expected to coincide in the physical
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is given in section 3). The introduction of the auxiliary function S̃

01;Y obeys the purpose of
obtaining a collinearly improved equation that, contrary to Eq. (2.7), is local in rapidity. This
implies performing an analytic continuation of the dipole scattering matrix outside the physical
range Y > ⇢. Eq. (2.9) exhibits two important features. First, it is local in rapidity. Second,
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It is important to note that the resummation a↵ects both the evolution kernel and the initial con-
ditions for the evolution. The latter, Ã, are obtained applying Eq. (2.10) to the initial conditions
defined in Eqs. (3.5) - (3.6) in Section 3. Finally, the derivation of [2] treats the strong coupling as
a fixed parameter. In order to be consistent with the degree of accuracy of the evolution kernel(s)
Eq. (2.4) and Eq. (2.5) we shall let the coupling run in Eqns. (2.10)-(2.12) at the scale µ = 2/r
or µ = 2/min(r, r1, r2). As we shall discuss in section 4, it turns out that the results of the fits
are very little sensitive to this choice.

3 Set up

3.1 Dipole model of DIS

In this section we briefly review the main ingredients needed for the calculation of the inclusive
and longitudinal DIS structure functions, which was extensively discussed previous papers. see
e.g. [25,26]. Neglecting the contribution from Z boson exchange, the reduced cross section can be
expressed in terms of the inclusive, F2, and longitudinal, F
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, structure functions:
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Here �
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stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
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is the light-cone wave function for a virtual photon to fluctuate into a quark-antiquark

dipole of quark flavor f . Note that  f

T,L

only depends on the quark flavor f through the quark
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2.1 Kinematically corrected BK equation (KC-rcBK)

A kinematically improved version of the BK equation consistent at high, but finite, energies has
been proposed in [1]. It reads:
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The reduction of phase space for the evolution is made explicit by the presence of the theta
function in Eq. (2.3), which constrains gluon emission to some bounded domain in the x
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This is in clear contrast with the LL BK equation or the BK equation with only running coupling
corrections, where emission of gluons in all the transverse plane are allowed. The parameter that
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as a resummation scheme ambiguity associated with the kinematic constraint. In what follows
we shall adopt the definition presented in the r.h.s of Eq. (2.8); we have checked that changes in
this prescription do not alter significantly the results of the fits. Other important feature of the
kinematically corrected BK equation Eq. (2.8) is that the scattering amplitude of the two newly
created dipoles after one evolution step are evaluated at a delayed rapidity Y ��

012

. This rapidity
veto has previously discussed in the literature as a main part of the NLO or energy-momentum
corrections to the BK equation [28,34]. As we shall see in Section 4 both e↵ects tend to decrease
the evolution speed, i.e. to slow down the growth of the saturation scale with decreasing Bjorken-
x, but they also modify more exclusive features of the unintegrated gluon distribution. Another
subtle point that arises in the definition of the high-energy factorisation scheme once the kinematic
corrections are taken into account is related to the very definition of the evolution variable, i.e.
the rapidity variable. We will not delve into the details here (see the extended discussion in [1]).
It is however important to recall that the usual choice Y = ln(k+
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+
0 ) = ln(x0/x) can be modified

by finite corrections, leading to di↵erent evolution equations at NLO accuracy and beyond. This
freedom to choose the evolution variable is related to freedom to choose a reference energy scale
in the BFKL formalism. In practice we will deal with this ambiguity through the use of pre-
asymptotic initial conditions, see 3. The introduction of an arbitatry rapidity shift �Y0 as another
free fit parameter copes e↵ectively with a possible redefinition of the rapidity variable.

2.2 BK equation at Double Logarithmic Accuracy (DLA-rcBK)

A BK equation that resums double collinear logs to all orders has been recently proposed in [2].
It reads:

@S̃
01;Y

@Y

=

Z
d

2x
2

2⇡
M

012

KDLA
012

h
S̃
01;Y S̃

12;Y � S̃
01;Y

i
. (2.9)
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It is important to note that the resummation a↵ects both the evolution kernel and the initial con-
ditions for the evolution. The latter, Ã, are obtained applying Eq. (2.10) to the initial conditions
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mass m

f

, and electric charge e

f

(see e.g. [37] for explicit expressions to lowest order in ↵

em

).
According to the optical theorem, the dipole cross section �

qq̄(r, x) is given by the integral over
impact parameter of the (imaginary part of) dipole-hadron scattering amplitude. Further, under
the approximation that the dipole scattering amplitude is independent on the impact parameter
of the collision one gets

�

qq̄(r, x) = 2

Z
d

2
bN (x, r, b) = �0 N (x, r) (3.4)

where �0 has the meaning of (half) the average transverse area of the quark distribution in the
transverse plane and will be one of the free parameters in the fit. Following [26] we have consider
a variable number of active flavours up to N

f

=5, with a current quark mass m
u,d,s,c,b

= 0.05, 0.05,
0.14, 1.3 and 4.5 GeV respectively. It turns out that the fits results are very little sensitive to
modifications of the particular choice made for the current mass of light flavours.

3.2 Pre-asymptotic initial conditions

In order to solve the BK equations under the di↵erent evolution schemes discussed in section 2
one has first to specify the initial conditions for the evolution at the highest value of Bjorken-
x included in the data fitting set, x0 = 0.01. The free parameters in the AAMQS fits mainly
correspond to the free parameters in the initial conditions for the evolution, as follows:

N (r, Y = 0) = 1� exp


�(r2 Q2

0)
�

4
ln

✓
1

⇤
QCD

r

+ e

◆�
, (3.5)

Q0 and � are two free parameters to be fitted to experimental data. � is a dimensionless parameter
that controls the steepness of the unintegrated gluon distribution at moderate and high transverse
momenta. In the original AAMSQ fits, Q0 plays the role of the initial saturation scale at the
highest value of Bjorken-x included in the fitting data set, x0 = 10�2 or, equivalently at Y = 0
with Y = ln(x0/x). However, it turns out that it is not possible to obtain good fits for the
collinearly improved equations discussed here using the two-parameter family of initial conditions
provided by Eq. (3.5). In order to allow a larger freedom for the functional forms of the initial
conditions we shall introduce a new family of pre-asymptotic initial conditions as follows: We first
solve the BK equation using Eq. (3.5) as the initial conditions for the evolution and take the dipole
scattering amplitude at x = x0 as the solution of the BK equation at rapidity �Y0:

N (r, x0 = 0.01) = N (r,�Y0) . (3.6)

That is, we allow the evolution to run for some rapidity interval �Y0 before comparing to ex-
perimental data. In other words, we use the evolution itself to generate the initial conditions for
further evolution at Y > �Y0 or, equivalently for x < x0. Thus, the dipole scattering amplitude
in the physical region x < x0 is given by

N (r, x  x0) = N (r,�Y0 + ln(x0/x)) , (3.7)

where �Y0 quantifies the amount of pre-evolution allowed before comparing to experimental data
and is another fitting parameter. Several comments are in order:

First, this set up should just be regarded as a mathematical procedure to generate a family
of initial conditions which are a solution of the BK equation itself. Therefore, for values �Y0> 0
neither the fitting parameters Q0 and � nor the solutions of the BK equation for Y <�Y0 a↵ord a
clear, straightforward physical interpretation. Thus the scale Q0 in Eq. (3.5) is just an auxiliary
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Here �

T,L

stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
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It is important to note that the resummation a↵ects both the evolution kernel and the initial con-
ditions for the evolution. The latter, Ã, are obtained applying Eq. (2.10) to the initial conditions
defined in Eqs. (3.5) - (3.6) in Section 3. Finally, the derivation of [2] treats the strong coupling as
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Eq. (2.4) and Eq. (2.5) we shall let the coupling run in Eqns. (2.10)-(2.12) at the scale µ = 2/r
or µ = 2/min(r, r1, r2). As we shall discuss in section 4, it turns out that the results of the fits
are very little sensitive to this choice.
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mass m

f

, and electric charge e

f

(see e.g. [37] for explicit expressions to lowest order in ↵

em

).
According to the optical theorem, the dipole cross section �

qq̄(r, x) is given by the integral over
impact parameter of the (imaginary part of) dipole-hadron scattering amplitude. Further, under
the approximation that the dipole scattering amplitude is independent on the impact parameter
of the collision one gets

�

qq̄(r, x) = 2

Z
d

2
bN (x, r, b) = �0 N (x, r) (3.4)

where �0 has the meaning of (half) the average transverse area of the quark distribution in the
transverse plane and will be one of the free parameters in the fit. Following [26] we have consider
a variable number of active flavours up to N

f

=5, with a current quark mass m
u,d,s,c,b

= 0.05, 0.05,
0.14, 1.3 and 4.5 GeV respectively. It turns out that the fits results are very little sensitive to
modifications of the particular choice made for the current mass of light flavours.

3.2 Pre-asymptotic initial conditions

In order to solve the BK equations under the di↵erent evolution schemes discussed in section 2
one has first to specify the initial conditions for the evolution at the highest value of Bjorken-
x included in the data fitting set, x0 = 0.01. The free parameters in the AAMQS fits mainly
correspond to the free parameters in the initial conditions for the evolution, as follows:

N (r, Y = 0) = 1� exp


�(r2 Q2

0)
�

4
ln

✓
1

⇤
QCD

r

+ e

◆�
, (3.5)

Q0 and � are two free parameters to be fitted to experimental data. � is a dimensionless parameter
that controls the steepness of the unintegrated gluon distribution at moderate and high transverse
momenta. In the original AAMSQ fits, Q0 plays the role of the initial saturation scale at the
highest value of Bjorken-x included in the fitting data set, x0 = 10�2 or, equivalently at Y = 0
with Y = ln(x0/x). However, it turns out that it is not possible to obtain good fits for the
collinearly improved equations discussed here using the two-parameter family of initial conditions
provided by Eq. (3.5). In order to allow a larger freedom for the functional forms of the initial
conditions we shall introduce a new family of pre-asymptotic initial conditions as follows: We first
solve the BK equation using Eq. (3.5) as the initial conditions for the evolution and take the dipole
scattering amplitude at x = x0 as the solution of the BK equation at rapidity �Y0:

N (r, x0 = 0.01) = N (r,�Y0) . (3.6)

That is, we allow the evolution to run for some rapidity interval �Y0 before comparing to ex-
perimental data. In other words, we use the evolution itself to generate the initial conditions for
further evolution at Y > �Y0 or, equivalently for x < x0. Thus, the dipole scattering amplitude
in the physical region x < x0 is given by

N (r, x  x0) = N (r,�Y0 + ln(x0/x)) , (3.7)

where �Y0 quantifies the amount of pre-evolution allowed before comparing to experimental data
and is another fitting parameter. Several comments are in order:

First, this set up should just be regarded as a mathematical procedure to generate a family
of initial conditions which are a solution of the BK equation itself. Therefore, for values �Y0> 0
neither the fitting parameters Q0 and � nor the solutions of the BK equation for Y <�Y0 a↵ord a
clear, straightforward physical interpretation. Thus the scale Q0 in Eq. (3.5) is just an auxiliary
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V. ANALYSIS OF THE NLO DIS IMPACT FACTORS

At low xBj , it is convenient to parameterize the DIS cross section by the transverse and longitudinal virtual photon
cross sections σγ

T,L(Q
2, xBj), related to the usual structure functions FL(Q2, xBj) and F2(Q2, xBj) = FT (Q2, xBj) +

FL(Q2, xBj) by

FT,L(Q
2, xBj) =

Q2

(2π)2 αem
σγ
T,L(Q

2, xBj) . (70)

At low xBj , those photon cross sections σγ
T,L obey at LO the dipole factorization [58, 67]. The real NLO corrections

to the dipole factorization have been calculated in Ref.[46]. The expression for σγ
T,L at NLO writes10

σγ
T,L(Q

2, xBj) =
4Nc αem

(2π)2

∑
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e2f

∫

d2x0

∫

d2x1

∫ 1

0
dz1

{

[

ILO
T,L(x01, z1, Q

2) +O(ᾱ)

]

[

1− ⟨S01⟩0
]

+ᾱ

∫ 1−z1

k+
min/q

+

dz2
z2

∫

d2x2

2π
INLO
T,L (x0,x1,x2, z1, z2, Q

2)
2CF

Nc

[

1− ⟨S012⟩0
]

}

, (71)

where S012 is the operator describing the eikonal interaction of a qq̄g tripole with the target, i.e.

S012 ≡ 1

Nc CF
Tr
(

Ux0 t
a U †

x1
tb
)

Ũ ba
x2

=
Nc

2CF

[

S02 S21 −
1

N2
c
S01

]

, (72)

Ũ ba
x2

being in the adjoint representation. The notation ⟨ · · · ⟩0 indicates that the expectation values of the operators
should be evaluated, at this stage, in a quasi-classical approximation, such as the MV model [15–17] in the case of
a large nuclear target. The expression (71) is indeed valid at strict NLO accuracy, and does not yet contain the
resummation of high-energy LL. The light-cone momentum k+2 = z2q+ of the additional gluon in the photon wave-
function has been bounded by the longitudinal resolution k+min (13) of the target, in order to regulate the integral over
z2. Using the model for the target proposed in the section II B, the lower cut-off in z2 becomes

zmin =
k+min

q+
=

xBj Q2
0

Q2 x0
. (73)

In the dipole factorization formula (71), the LO impact factors are

ILO
L (x01, z1, Q

2) = 4Q2z21(1−z1)
2 K2

0(QX2) (74)

ILO
T (x01, z1, Q

2) =
[

z21 + (1−z1)
2
]

z1(1−z1)Q
2K2

1(QX2) , (75)

whereas the longitudinal NLO impact factor is

INLO
L (x0,x1,x2, z1, z2, Q

2) = 4Q2K2
0(QX3)

{

z21(1−z1)2

x2
20

P
(

z2
1−z1

)

+
(z1+z2)2(1−z1−z2)2

2 x2
21

[

1 +

(

1− z2
z1+z2

)2
]

P
(

z2
z1+z2

)

−2z1(1−z1)(z1+z2)(1−z1−z2)

[

1− z2
2(1−z1)

− z2
2(z1+z2)

](

x20 · x21

x2
20 x2

21

)

}

(76)

10 In Ref.[46], only the real NLO corrections have been calculated explicitly, whereas virtual NLO corrections have been inferred by using
a unitarity argument. However, there was a flaw in the particular implementation of the unitarity requirement, so that the expression
given in Ref.[46] is not correct and the virtual NLO corrections need to be calculated explicitly. Here, those yet unknown virtual
corrections are indicated by the O(ᾱ) term. This issue is being further studied [68], but does not affect the physics discussed in the
present paper, which is driven by the NLO real corrections. The virtual O(ᾱ) term should be UV divergent, in order to cancel the
divergences of the NLO real contribution for x2 → x0 and x2 → x1. The O(ᾱ) term should also have a soft log divergence regulated by
the cut-off k+

min
.
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obtaining a collinearly improved equation that, contrary to Eq. (2.7), is local in rapidity. This
implies performing an analytic continuation of the dipole scattering matrix outside the physical
range Y > ⇢. Eq. (2.9) exhibits two important features. First, it is local in rapidity. Second,
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It is important to note that the resummation a↵ects both the evolution kernel and the initial con-
ditions for the evolution. The latter, Ã, are obtained applying Eq. (2.10) to the initial conditions
defined in Eqs. (3.5) - (3.6) in Section 3. Finally, the derivation of [2] treats the strong coupling as
a fixed parameter. In order to be consistent with the degree of accuracy of the evolution kernel(s)
Eq. (2.4) and Eq. (2.5) we shall let the coupling run in Eqns. (2.10)-(2.12) at the scale µ = 2/r
or µ = 2/min(r, r1, r2). As we shall discuss in section 4, it turns out that the results of the fits
are very little sensitive to this choice.

3 Set up

3.1 Dipole model of DIS

In this section we briefly review the main ingredients needed for the calculation of the inclusive
and longitudinal DIS structure functions, which was extensively discussed previous papers. see
e.g. [25,26]. Neglecting the contribution from Z boson exchange, the reduced cross section can be
expressed in terms of the inclusive, F2, and longitudinal, F
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Here �

T,L

stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
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Here �

T,L

stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
writes [35, 36]:
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where  f

T,L

is the light-cone wave function for a virtual photon to fluctuate into a quark-antiquark

dipole of quark flavor f . Note that  f

T,L

only depends on the quark flavor f through the quark
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(see e.g. [37] for explicit expressions to lowest order in ↵
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).
According to the optical theorem, the dipole cross section �

qq̄(r, x) is given by the integral over
impact parameter of the (imaginary part of) dipole-hadron scattering amplitude. Further, under
the approximation that the dipole scattering amplitude is independent on the impact parameter
of the collision one gets

�

qq̄(r, x) = 2

Z
d

2
bN (x, r, b) = �0 N (x, r) (3.4)

where �0 has the meaning of (half) the average transverse area of the quark distribution in the
transverse plane and will be one of the free parameters in the fit. Following [26] we have consider
a variable number of active flavours up to N

f

=5, with a current quark mass m
u,d,s,c,b

= 0.05, 0.05,
0.14, 1.3 and 4.5 GeV respectively. It turns out that the fits results are very little sensitive to
modifications of the particular choice made for the current mass of light flavours.

3.2 Pre-asymptotic initial conditions

In order to solve the BK equations under the di↵erent evolution schemes discussed in section 2
one has first to specify the initial conditions for the evolution at the highest value of Bjorken-
x included in the data fitting set, x0 = 0.01. The free parameters in the AAMQS fits mainly
correspond to the free parameters in the initial conditions for the evolution, as follows:
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Q0 and � are two free parameters to be fitted to experimental data. � is a dimensionless parameter
that controls the steepness of the unintegrated gluon distribution at moderate and high transverse
momenta. In the original AAMSQ fits, Q0 plays the role of the initial saturation scale at the
highest value of Bjorken-x included in the fitting data set, x0 = 10�2 or, equivalently at Y = 0
with Y = ln(x0/x). However, it turns out that it is not possible to obtain good fits for the
collinearly improved equations discussed here using the two-parameter family of initial conditions
provided by Eq. (3.5). In order to allow a larger freedom for the functional forms of the initial
conditions we shall introduce a new family of pre-asymptotic initial conditions as follows: We first
solve the BK equation using Eq. (3.5) as the initial conditions for the evolution and take the dipole
scattering amplitude at x = x0 as the solution of the BK equation at rapidity �Y0:

N (r, x0 = 0.01) = N (r,�Y0) . (3.6)

That is, we allow the evolution to run for some rapidity interval �Y0 before comparing to ex-
perimental data. In other words, we use the evolution itself to generate the initial conditions for
further evolution at Y > �Y0 or, equivalently for x < x0. Thus, the dipole scattering amplitude
in the physical region x < x0 is given by

N (r, x  x0) = N (r,�Y0 + ln(x0/x)) , (3.7)

where �Y0 quantifies the amount of pre-evolution allowed before comparing to experimental data
and is another fitting parameter. Several comments are in order:

First, this set up should just be regarded as a mathematical procedure to generate a family
of initial conditions which are a solution of the BK equation itself. Therefore, for values �Y0> 0
neither the fitting parameters Q0 and � nor the solutions of the BK equation for Y <�Y0 a↵ord a
clear, straightforward physical interpretation. Thus the scale Q0 in Eq. (3.5) is just an auxiliary
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scale to generate the physical initial conditions at x0 = 10�2. The physically meaningful object
is the dipole scattering amplitude for x  x0 or Y � �Y0 as defined in Eq. (3.6) and Eq. (3.7).
Analogously, the physically meaningful saturation scale is defined via the condition

N (r = 1/Q
s

(x), x) = 0.5 (3.8)

for x  x0.
Second, similar initial conditions have been previously used in the literature in the limiting case

of �Y0 ! 1. These are referred to as scaling initial conditions in [25, 28]. It is well known that
the non-linear character of the BK equation leads to scaling solutions, i.e independent of the initial
conditions at asymptotically large rapidities. In that limit, the solutions depend only on a single
variable, the scaling variable ⌧ ⌘ rQ

s

(x), hence e↵ectively becoming a become a one-parameter
family of possible initial conditions. This property of the BK equation has been studied in depth
in relation to the observed phenomenon of geometric scaling featured by experimental data on
e+p collisions from HERA. Here we take an intermediate approach where we allow for a finite
amount of evolution�Y0 before comparing to data. In this intermediate limit the initial conditions
generated at x = x0 according to Eq. (3.6) are still sensitive to the initial fitting parameters Q0

and �.
Finally, the pre-evolution interval �Y0 helps the convergence of the solution of the DLA equa-

tion to its regime of physical applicability, defined by the condition Y > ⇢ = ln(1/r2Q2
0) and, in a

related way, this approach copes with the uncertainty in the definition of the evolution variable,
i.e the rapidity Y , in the evolution scheme including kinematic corrections.

3.3 Regularisation of the infrared dynamics

The solution of the BK equation in either of the evolution schemes described above implies the
evaluation of the strong coupling at arbitrarily large values of the dipole size (small gluon momen-
tum), and a regularization prescription to avoid the Landau pole becomes necessary. Following
previous AAMQS works, for small dipole sizes r < r
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we shall evaluate the running coupling
according to the usual one-loop QCD expression:
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The number of active flavorsN
f

in Eq. (3.9) should is set to the number of quark flavors lighter than
the momentum scale associated with the scale r2 at which the coupling is evaluated µ

2 = 4C2
/r

2.
The setup of this variable flavor scheme is completed by matching the branches of the coupling
with adjacent N

f

at the scale corresponding to the quark masses r

2
⇤ = 4C2

/m

2
f

. For the 1-loop
accuracy at which the coupling Eq. (3.9) is evaluated, the matching condition is simply given by
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s,Nf�1(r⇤) = ↵

s,Nf
(r⇤) . (3.10)

With only three active flavours one gets ⇤
QCD

= 0.241 GeV, such that ↵

s

(M
Z

) = 0.1176, with
M

Z

the mass of the Z boson. In turn, for larger sizes, r > r

fr

, we freeze the coupling to the fixed
value ↵

s

(r
fr

) ⌘ ↵

fr

. We shall use two di↵erent values ↵
fr

= 0.7 and 1. The fudge factor C under
the logarithm in Eq. (3.9) will be one of the free parameters in the fit. It reflects the uncertainty in
the Fourier transform from momentum space, where the original calculation of ↵

s

N

f

corrections
was performed, to coordinate space. We shall extend the fits up to values of the photon virtuality
Q

2 ⇠ 650 GeV2.
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where J1 is the Bessel function of the first kind. The function A(Y, ⇢) in Eq. (2.10) is defined as
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0) and Q0 some initial scale (its precise definition
is given in section 3). The introduction of the auxiliary function S̃

01;Y obeys the purpose of
obtaining a collinearly improved equation that, contrary to Eq. (2.7), is local in rapidity. This
implies performing an analytic continuation of the dipole scattering matrix outside the physical
range Y > ⇢. Eq. (2.9) exhibits two important features. First, it is local in rapidity. Second,
the resummation of double logarithmic corrections results in just a modification of the evolution
kernel by the factor
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It is important to note that the resummation a↵ects both the evolution kernel and the initial con-
ditions for the evolution. The latter, Ã, are obtained applying Eq. (2.10) to the initial conditions
defined in Eqs. (3.5) - (3.6) in Section 3. Finally, the derivation of [2] treats the strong coupling as
a fixed parameter. In order to be consistent with the degree of accuracy of the evolution kernel(s)
Eq. (2.4) and Eq. (2.5) we shall let the coupling run in Eqns. (2.10)-(2.12) at the scale µ = 2/r
or µ = 2/min(r, r1, r2). As we shall discuss in section 4, it turns out that the results of the fits
are very little sensitive to this choice.

3 Set up

3.1 Dipole model of DIS

In this section we briefly review the main ingredients needed for the calculation of the inclusive
and longitudinal DIS structure functions, which was extensively discussed previous papers. see
e.g. [25,26]. Neglecting the contribution from Z boson exchange, the reduced cross section can be
expressed in terms of the inclusive, F2, and longitudinal, F
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, structure functions:
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Here �

T,L

stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
writes [35, 36]:
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where  f

T,L

is the light-cone wave function for a virtual photon to fluctuate into a quark-antiquark

dipole of quark flavor f . Note that  f

T,L

only depends on the quark flavor f through the quark
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Here �
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stands for the virtual photon-proton cross section for transverse (T ) and longitudinal
(L) polarization of the virtual photon. In the dipole model, valid at high energies or small x, one
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or µ = 2/min(r, r1, r2). As we shall discuss in section 4, it turns out that the results of the fits
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(see e.g. [37] for explicit expressions to lowest order in ↵
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).
According to the optical theorem, the dipole cross section �

qq̄(r, x) is given by the integral over
impact parameter of the (imaginary part of) dipole-hadron scattering amplitude. Further, under
the approximation that the dipole scattering amplitude is independent on the impact parameter
of the collision one gets

�

qq̄(r, x) = 2

Z
d

2
bN (x, r, b) = �0 N (x, r) (3.4)

where �0 has the meaning of (half) the average transverse area of the quark distribution in the
transverse plane and will be one of the free parameters in the fit. Following [26] we have consider
a variable number of active flavours up to N

f

=5, with a current quark mass m
u,d,s,c,b

= 0.05, 0.05,
0.14, 1.3 and 4.5 GeV respectively. It turns out that the fits results are very little sensitive to
modifications of the particular choice made for the current mass of light flavours.

3.2 Pre-asymptotic initial conditions

In order to solve the BK equations under the di↵erent evolution schemes discussed in section 2
one has first to specify the initial conditions for the evolution at the highest value of Bjorken-
x included in the data fitting set, x0 = 0.01. The free parameters in the AAMQS fits mainly
correspond to the free parameters in the initial conditions for the evolution, as follows:

N (r, Y = 0) = 1� exp


�(r2 Q2
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, (3.5)

Q0 and � are two free parameters to be fitted to experimental data. � is a dimensionless parameter
that controls the steepness of the unintegrated gluon distribution at moderate and high transverse
momenta. In the original AAMSQ fits, Q0 plays the role of the initial saturation scale at the
highest value of Bjorken-x included in the fitting data set, x0 = 10�2 or, equivalently at Y = 0
with Y = ln(x0/x). However, it turns out that it is not possible to obtain good fits for the
collinearly improved equations discussed here using the two-parameter family of initial conditions
provided by Eq. (3.5). In order to allow a larger freedom for the functional forms of the initial
conditions we shall introduce a new family of pre-asymptotic initial conditions as follows: We first
solve the BK equation using Eq. (3.5) as the initial conditions for the evolution and take the dipole
scattering amplitude at x = x0 as the solution of the BK equation at rapidity �Y0:

N (r, x0 = 0.01) = N (r,�Y0) . (3.6)

That is, we allow the evolution to run for some rapidity interval �Y0 before comparing to ex-
perimental data. In other words, we use the evolution itself to generate the initial conditions for
further evolution at Y > �Y0 or, equivalently for x < x0. Thus, the dipole scattering amplitude
in the physical region x < x0 is given by

N (r, x  x0) = N (r,�Y0 + ln(x0/x)) , (3.7)

where �Y0 quantifies the amount of pre-evolution allowed before comparing to experimental data
and is another fitting parameter. Several comments are in order:

First, this set up should just be regarded as a mathematical procedure to generate a family
of initial conditions which are a solution of the BK equation itself. Therefore, for values �Y0> 0
neither the fitting parameters Q0 and � nor the solutions of the BK equation for Y <�Y0 a↵ord a
clear, straightforward physical interpretation. Thus the scale Q0 in Eq. (3.5) is just an auxiliary
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That is, we allow the evolution to run for some rapidity interval �Y0 before comparing to ex-
perimental data. In other words, we use the evolution itself to generate the initial conditions for
further evolution at Y > �Y0 or, equivalently for x < x0. Thus, the dipole scattering amplitude
in the physical region x < x0 is given by
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where �Y0 quantifies the amount of pre-evolution allowed before comparing to experimental data
and is another fitting parameter. Several comments are in order:

First, this set up should just be regarded as a mathematical procedure to generate a family
of initial conditions which are a solution of the BK equation itself. Therefore, for values �Y0> 0
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but it will not be adopted here for a number of reasons. First, it is based on an extrapolation to all orders
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It is worth noticing that, as dictated by collinear physics, there is no anomalous dimension in the above
initial conditions. The extra parameter p determines the shape of the amplitude close to saturation and its
approach towards unitarity.

Running coupling. We consider the two prescriptions given by Eqs. (11) and (12). For the explicit expression
of the strong coupling in coordinate space in terms of r we introduce a fudge factor as in [22], namely
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Evolve it with rcBK, Balitsky’s kernel

Playing before fitting…line of Eq. (2.1) to introduce the reduced notation for the average of the dipole scattering matrix
that we shall employ hereafter. The BK equation provides the rapidity evolution of the dipole
scattering matrix. It reads
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whereM
012

is the evolution kernel. The BK equation at leading logarithmic accuracy resums large
logarithmic corrections of the form ⇠ (↵

s

Y )n to all orders. It accounts for the multiple emission of
soft gluons and also for the possibility of gluon recombination via the non-linear term in the right
hand-side of Eq. (2.3). The BK equation assumes that the average of the product of two dipole
scattering matrices over the field configurations of the target factorizes: hS
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i
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i.e. it is derived in the mean field limit. We shall rely on the translational invariant approximation,
equivalent to the assumption that de dipole amplitude only depends on its relative transverse size.
We tus introduces the variables r0 = |x
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|.
The calculation of running coupling corrections to the original LL kernel was performed in [8,9].

There, two di↵erent prescriptions were proposed for the kernel of the BK equation at running
coupling accuracy. It was shown in [33] that Balitsky’s prescription [9] minimizes the role of
higher-order, conformal corrections, suggesting that it may be better suited for phenomenologi-
cal applications. In particular, Balitsky’s prescription Eq. (2.4) yields a slower evolution speed
than other possible schemes explored in the literature, like the Kovchegov-Weigert [8] one or the
smallest dipole size prescription, where the scale for the running coupling is set by the smallest
of the transverse dipole sizes involved in one evolution step: r0, parent dipole and r1,2, daughter
dipoles. This feature was crucial for the very good description of previous AAMQS fits to HERA
data. However, it remains to be clarified which running coupling scheme is theoretically better
motivated once other dynamical e↵ects, like the double logarithmic corrections discussed here, are
also incorporated to the BK equation. Under Balitsky’s prescription the running coupling kernel
reads
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Here we will consider two other possibilities for the running coupling kernel, namely the parent
dipole prescription:
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and the smallest dipole prescription:
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Although the ansatzs Eq. (2.5) and Eq. (2.6) do not follow from any strict diagrammatical calcu-
lation, it was shown in [33] that the parent dipole description leads to solutions very similar to
those obtained under the prescription derived by Kovchegov and Weigert [8]. In particular, the
parent dipole prescription leads to significantly faster evolution speed that Balitsky’s prescription.
We shall use it here, rather than the full Kovchegov-Weigert kernel, due to its relative simplicity in
the numerical evaluation. In turn, the smallest dipole prescription is motivated by the expectation
that the scale for the running coupling should be given by the hardest momentum scale in the
process.
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2.1 Kinematically corrected BK equation (KC-rcBK)

A kinematically improved version of the BK equation consistent at high, but finite, energies has
been proposed in [1]. It reads:
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012

⇥(Y ��
012

) [S
02;Y��012 S12;Y��012 � S

01;Y ] . (2.7)

The reduction of phase space for the evolution is made explicit by the presence of the theta
function in Eq. (2.3), which constrains gluon emission to some bounded domain in the x

2

-plane.
This is in clear contrast with the LL BK equation or the BK equation with only running coupling
corrections, where emission of gluons in all the transverse plane are allowed. The parameter that
controls the extent of kinematic corrections is given by:

�
012

= max

⇢
0, ln

✓
l

2
012

r

2
0

◆�
with l

012

= min {r1, r2} . (2.8)

There is actually some freedom in the definition of l
012

introduced in Eq. (2.8). It should satisfy
l

012

⇡ r1 ⇡ r2 in the regime r0 ⌧ r1 ⇡ r2. This freedom in the choice of �
012

should be considered
as a resummation scheme ambiguity associated with the kinematic constraint. In what follows
we shall adopt the definition presented in the r.h.s of Eq. (2.8); we have checked that changes in
this prescription do not alter significantly the results of the fits. Other important feature of the
kinematically corrected BK equation Eq. (2.8) is that the scattering amplitude of the two newly
created dipoles after one evolution step are evaluated at a delayed rapidity Y ��

012

. This rapidity
veto has previously discussed in the literature as a main part of the NLO or energy-momentum
corrections to the BK equation [28,34]. As we shall see in Section 4 both e↵ects tend to decrease
the evolution speed, i.e. to slow down the growth of the saturation scale with decreasing Bjorken-
x, but they also modify more exclusive features of the unintegrated gluon distribution. Another
subtle point that arises in the definition of the high-energy factorisation scheme once the kinematic
corrections are taken into account is related to the very definition of the evolution variable, i.e.
the rapidity variable. We will not delve into the details here (see the extended discussion in [1]).
It is however important to recall that the usual choice Y = ln(k+

f

/k

+
0 ) = ln(x0/x) can be modified

by finite corrections, leading to di↵erent evolution equations at NLO accuracy and beyond. This
freedom to choose the evolution variable is related to freedom to choose a reference energy scale
in the BFKL formalism. In practice we will deal with this ambiguity through the use of pre-
asymptotic initial conditions, see 3. The introduction of an arbitatry rapidity shift �Y0 as another
free fit parameter copes e↵ectively with a possible redefinition of the rapidity variable.

2.2 BK equation at Double Logarithmic Accuracy (DLA-rcBK)

A BK equation that resums double collinear logs to all orders has been recently proposed in [2].
It reads:

@S̃
01;Y
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=

Z
d

2x
2

2⇡
M

012

KDLA
012

h
S̃
01;Y S̃

12;Y � S̃
01;Y

i
. (2.9)

It should be noted that the object evolved in Eq. (2.9), is not the physical dipole scattering matrix
S
01;Y , but rather a related function S̃

01;Y . Both functions are expected to coincide in the physical
range Y > ⇢. For general positive values of Y and ⇢ the relation between these two quantities is
given by

Ã(Y, ⇢) ⌘
Z

⇢

0

d⇢1 f̃(Y, ⇢� ⇢1)A(0, ⇢1) (2.10)
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in the BFKL formalism. In practice we will deal with this ambiguity through the use of pre-
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Eur.Phys.J. C71 (2011) 1705 

Nf =5

can be interpreted as the average transverse size of the proton. However, it is not clear

a priori whether such average area should be the same for quarks (valence or sea) and

gluons. Indeed it has been suggested that the glue distribution inside nucleons may be

located inside hot spots of small radius ∼ 0.2÷ 0.3 fm [54]. Also, data on the exponential

slope of the momentum transfer dependence of exclusive vector meson production (see [55]

and references therein) provide further support the picture of a smaller effective area for

gluons than for valence quarks. Here we take as a working hypothesis the possibility that

the effective transverse size of the heavy quark distribution, which we expect to follow the

gluon one, may be different to that of light quarks. Accordingly, we introduce two different

normalization constants for the total cross section, one for charm and beauty, σheavy
0 and

other for the three light quarks, σ0:

σT,L(x,Q
2) = σ0

∑

f=u,d,s

∫ 1

0
dz dr |Ψf

T,L(ef ,mf , z,Q
2, r)|2 N light(r, x)

+σheavy
0

∑

f=c,b

∫ 1

0
dz dr |Ψf

T,L(ef ,mf , z,Q
2, r)|2 N heavy(r, x) . (2.16)

As we shall discuss in section 4, such assumption is not only a physically well motivated

one, but it turns out to be necessary in order to attain a good description of data, and

also for the stability of the fits with respect to the inclusion or not of the heavy quark

contribution. Finally, the superscripts light and heavy in the dipole scattering amplitudes

in Eq. (2.16) refers to the fact that we may consider different initial values of the parameters

in the initial condition for light and heavy quarks.

2.5 Summary of the theoretical setup and free parameters

In summary, we will calculate the reduced cross section and the charm and beauty con-

tribution to the inclusive structure functions according to the dipole model under the

translational invariant approximation Eq. (2.16). The small-x dependence is completely

described by means of the BK equation including running coupling corrections, Eqs. (2.7-

2.8), for which three different initial conditions GBW, MV and scaling are considered. All

in all, the free parameters to be fitted to experimental data are:

• σ0 : The total normalization of the cross section in Eq. (2.16).

• Q2
s 0 : The saturation scale of the proton at the highest experimental value of Bjorken-

x included in the fit, x0 = 10−2, in Eqs. (2.13) and (2.14).

• C2: The parameter relating the running of the coupling in momentum space to the

one in dipole size in Eq. (2.9).

• γ : The anomalous dimension of the initial condition for the evolution in Eqs. (2.13)

and (2.14).

The fits with heavy quarks introduce additional free parameters, σheavy
0 , Qheavy

0 and γheavy,

with physical meaning analogous to that of the corresponding parameters listed above.
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�2
5.12 23.39 1.117 3.67 1.21
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�2
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4.21 23.83 1.021 3.627 1.27

KC+PD 5.025·10

�2
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�2
5.44 22.127 1.077 3.726 1.73

2

rcBK “only”

Nf = 5, ↵fr = 0.7

• No good fits to data using rcBK evolution only.  
• Additional charm contribution cannot be compensated by  

changes in the i.c. 
• Confirmation of previous results from AAMQS fits 
• Separate treatment of heavy and light quarks?
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Nf=5
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2

rcBK + DLA

rcBK + KC • Work in progress. So far fits yield �2/d.o.f. ⇠ 2



Fit Results

N
f

= 3, ↵
fr

= 0.7

Q2
max

(GeV

2
) Evolution

scheme

Q2
0(GeV

2
) �Y0 �0 (mb) � C �2/d.o.f.

50

rcBK-Bal 0.192 0 26.11 1.129 1.709 1.010

650

rcBK-Bal 0.226 0 22.99 1.160 1.305 0.948

rcBK-Bal 0.189 0 25.987 1.240 2.013 1.04

50

DLA+PD 0.1974 0 23.43 1.078 3.692 1.177

DLA+PD 3.511·10

�2
5.12 23.39 1.117 3.67 1.21

DLA+SD 0.1973 0 23.45 1.080 2.927 1. 202

DLA+SD 3.93·10

�2
4.95 23.57 1.124 3.066 1.25

650

DLA+SD 0.224 0 21.98 1.119 2.499 1.62

DLA+PD 2.189·10

�2
6.37 221.972 1.127 3.131 1.52

50

KC+SD 5.72·10

�2
4.21 23.83 1.021 3.627 1.27

KC+PD 5.025·10

�2
5.27 22.997 1.067 3.876 1.23

650

KC+SD 5.82·10

�2
3.99 24.01 1.024 3.781 1.67

KC+PD 4.715·10

�2
5.44 22.127 1.077 3.726 1.73

2

rcBK “only”

Nf = 5, ↵fr = 0.7

• No good fits to data using rcBK evolution only.  
• Additional charm contribution cannot be compensated by  

changes in the i.c. 
• Confirmation of previous results from AAMQS fits 
• Separate treatment of heavy and light quarks?
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Nf =5

rcBK + DLA •  Very good fits using rcBK +DLA evolution up to high Q2 reported by  
 Iancu et al. Only concern: physicality of the initial conditions 
  arXiv:1507.03651 

init RC sing. �

2

/npts for Q2

max

cdt. schm logs 50 100 200 400
GBW small yes 1.135 1.172 1.355 1.537
GBW fac yes 1.262 1.360 1.654 1.899
rcMV small yes 1.126 1.172 1.167 1.158
rcMV fac yes 1.222 1.299 1.321 1.317
GBW small no 1.121 1.131 1.317 1.487
GBW fac no 1.164 1.203 1.421 1.622
rcMV small no 1.097 1.128 1.095 1.078
rcMV fac no 1.128 1.177 1.150 1.131

Table 2: Evolution of the fit quality when including data at larger Q2 (in GeV2).

we can deduce the reduced cross-section and the longitudinal structure function as

�

red

=
Q

2

4⇡2

↵

em


�

�⇤p
T

+
2(1� y)

1 + (1� y)2
�

�⇤p
L

�
, (20)

F

L

=
Q

2

4⇡2

↵

em

�

�⇤p
L

. (21)

When the quark masses, the value of the strong coupling at the Z mass and its frozen value in the infrared
have been fixed, we are left with 4 or 5 free parameters according to our choice of initial condition: Rp the
“proton radius”, Q

0

the scale separating the dilute and dense regimes, C↵ the fudge factor in the running
coupling in coordinate space, and p which controls the approach to saturation in the initial condition. For
the rcMV initial condition, we have the extra parameter CMV.

We have fitted these parameters to the combined HERA measurements of the reduced photon-proton
cross-section [38]. Since the BK equation is applicable only at small-x, we have limited ourselves to the
region x  0.01. We note that since Eq. (17) probes dipoles at the rapidity ln 1/x̃f , the exact cut we impose
is x̃c  0.01 since the most constraining cut comes from the charm, the most massive quark we include in
our model. Accordingly, our initial condition for the BK evolution corresponds to x̃ = 0.01. Furthermore,
since we do not expect the BK equation to capture the full collinear physics, we impose the upper bound
Q

2

< Q

2

max

. By default we will use Q

2

max

= 50 GeV2 but we will also give results for extensions to larger
Q

2. In the default case we have a total of 252 points included in the fit. We have added the statistical and
systematic uncertainties in quadrature.3

The results of our fits for the 23 = 8 cases, depending on the initial condition, the running coupling
prescription and the inclusion or not of single logarithms in the kernel, are presented in Table. 1. The table
includes the parameter values obtained from fitting the �

red

data and, besides the fit �

2, it also indicates
the �

2 obtained a posteriori for the latest �cc̄
red

[64] and FL [65] measurements. These results deserve a few
important comments.

(i) In general, the overall quality of the fit is very good, reaching �

2 per point around 1.1-1.2.
(ii) Apart from a few small exceptions (see below), all the parameters take acceptable values of order one.

Note that we have manually bounded p between 0.25 and 4. Whenever it reached the upper limit,
larger values only led to minor improvements in the quality of the fit.

(iii) The two initial conditions give similar results, with a slight advantage for the rcMV option, which is
likely due to the extra parameter. Note that for a standard MV-type of initial condition T (Y

0

, r) =
{1� exp[�(r2Q2

0

/4 [c+ ln(1+ 1/r⇤)])p]}1/p, we have not been able to obtain a �

2 per point below 1.3
and the parameters, typically c or p, tend to take unnatural values.

3A more involved treatment of the correlated systematic uncertainties leads to similar results with slightly worse �

2 per
points (about 0.04).
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Fit Results

Good fits conspire to yield a very similar dipole amplitude in all kinematic space  
tested by the fits
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A glimpse to DGLAP fits to HERA II data

New data also cause tension in DGLAP fits

         H1 and ZEUS

0.9

1

1.1

1.2

1.3

5 10 15 20 25
Q2   /GeV2

χ2 /d
.o

.f.

min

RTOPT LO

RTOPT NNLO
RTOPT NLO

RTOPT NLO HERA I

Figure 19: The dependence of χ2/d.o.f. on Q2min of the LO, NLO and NNLO fits to the HERA
combined inclusive data. Also shown are values for an NLO fit to the combined HERA I
data [2]. All fits were performed using the RTOPT heavy-flavour scheme.
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Figure 35: The combined low-Q2 HERA inclusive NC e+p reduced cross sections at
√
s =

318GeV with overlaid predictions from HERAPDF2.0 NLO. The bands represent the total
uncertainties on the predictions. Dotted lines indicate extrapolation into kinematic regions not
included in the fit.
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Bad extrapolation of  the fits results  
to the unfitted kinematic region (low-Q2) 

0

1

0

1

0

1

0

1

0

1

H1 and ZEUS
Q2 = 2 GeV2

σ
r,

 N
C

+
Q2 = 2.7 GeV2 Q2 = 3.5 GeV2 Q2 = 4.5 GeV2

Q2 = 6.5 GeV2 Q2 = 8.5 GeV2 Q2 = 10 GeV2 Q2 = 12 GeV2

Q2 = 15 GeV2 Q2 = 18 GeV2 Q2 = 22 GeV2 Q2 = 27 GeV2

Q2 = 35 GeV2 Q2 = 45 GeV2

10-3 10-1

Q2 = 60 GeV2

10-3 10-1

Q2 = 70 GeV2

xBj
Q2 = 90 GeV2

10-3 10-1

Q2 = 120 GeV2

10-3 10-1

xBj

HERA NC e+p 0.5 fb–1

√s = 318 GeV
HERAPDF2.0AG LO

Figure 36: The combined low-Q2 HERA inclusive NC e+p reduced cross sections at
√
s =

318GeV with overlaid predictions from HERAPDF2.0AG LO. The bands represent the ex-
perimental uncertainties on the predictions. Dotted lines indicate extrapolation into kinematic
regions not included in the fit.
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Final comments

�  Main conclusion: collinearly improved rcBK equations are compatible with HERA II 
 data, but do not improve previous descriptions based on rcBK evolution only.  

�  Reduced errors from combined HERA II analysis induce tension in the fits when  
 extended to Q2 > 50 -100 GeV2 

�   To be checked 

          • NLO photon impact factors 
          • Sensitivity to charm mass and variable flavour scheme.  
          • Details: resummation of the initial condition, precise definition of the rapidity  
            variable etc    
          • Effect of DLA corrections in e-A scattering and expectations for the EIC 
          • Impact on neutrino astrophysics: talk by Alba Soto on wednesday

Merci!


