## Collinearly improved BK equations vs HERA data

POETIC VI Conference 7-11 September, Palaiseau, France

Javier L Albacete
Universidad de Granada & CAFPE





Continuation of AAMQS fits with N. Armesto, JG Milhano, P. Quiroga and CA Salgado

## **OUTLINE**

## **Problem:** Perturbative expansions in high-energy QCD are unstable

## **Evolution equations**

- NLO BK T. Lappi, Maantysaari; Phys.Rev. D91 (2015) 7, 074016
- NLL BFKL + saturation boundary Avsar, Stasto, Triantafyllopoulos, Zaslavsky JHEP 10 (2011) 138

$$\mathcal{N}, \, \sigma < 0$$

#### **Production Processes**

- Forward hadron production in p-A collisions at NLO

BRAHMS  $\eta = 2.2, 3.2$ 



Stasto, Xiao, Zaslavsky Phys.Rev.Lett. 112 (2014) 1, 012302

STAR  $\eta = 4$ 



## Why? Large, negative contributions from transverse logarithms at NLL

$$\alpha_s\,Y\,\sim\alpha_s\,Y\,\rho\sim\alpha_s\,\rho^2\quad\text{with}\quad\rho\equiv\ln\left(\frac{Q^2}{Q_0^2}\right)$$
 LL NLO

## Solution: Resum large (double and single) collinear logs to all orders

Already done for BFKL
 G P Salam; JHEP 07 019
 Ciafaloni, Colferai, Salam; Phys Rev D 60 114036 (1998)
 G Altarelli R D Ball, S. Forte Nucl Phys B575 (313) 2000

BK: two recent approaches

Double Logarithmic Accuracy BK equation, *DLA-BK*lancu et al
Phys.Lett. B744 (2015) 293-302

Kinematically corrected BK equation, KC-BK, G. Beuf

G. Beuf

Phys.Rev. D89 (2014) 7, 074039

# This talk: tests of the DLA improved BK equations against HERA data on the e-p reduced cross section

Fits to H1 and ZEUS combined analysis of HERA I data.

JLA arXiv:1507.0712

lancu et al arXiv:1507.03651

Goof fits for

$$Q^2 < Q_{\text{max}}^2 = 50,500 \,\text{GeV}^2$$



 H1 and ZEUS combined analysis of HERA II data. Released june 2015

arXiv:1506.06042

The strong reduction of experimental errors at high-Q<sup>2</sup> introduces tension in the fits

$$\chi^2 \sim \frac{(theo - exp)^2}{err^2}$$

Preliminary results!

## running coupling BK EVOLUTION, rcBK

$$\frac{\partial \mathcal{S}_{01;Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{012} \left[ \mathcal{S}_{02;Y} \, \mathcal{S}_{12;Y} - \mathcal{S}_{01;Y} \right]$$

Balitsky's

Phys.Rev. D75 (2007) 014001

$$\mathcal{M}_{\mathbf{012}}^{\text{Bal}} = \frac{\alpha_s(r_0^2) N_c}{\pi} \left[ \frac{r_0^2}{r_1^2 r_2^2} + \frac{1}{r_1^2} \left( \frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left( \frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

Parent dipole

$$\mathcal{M}_{\mathbf{012}}^{\mathrm{pd}} = rac{lpha_s(r_0^2) N_c}{\pi} rac{r_0^2}{r_1^2 r_2^2}$$

Proxy to Kovchegov-Weigert's

Nucl.Phys. A784 (2007) 188-226

Smallest dipole

$$\mathcal{M}_{\mathbf{012}}^{\mathrm{pd}} = \frac{\alpha_s(r_{\min}^2) N_c}{\pi} \frac{r_0^2}{r_1^2 r_2^2} \quad \text{with} \quad r_{\min} \equiv \min\{r_0, r_1, r_2\}$$

$$\mathcal{S}(\mathbf{x_0}, \mathbf{x_1}; Y) = \frac{1}{N_c} \langle \operatorname{tr} \left\{ U(\mathbf{x_0}) U^{\dagger}(\mathbf{x_1}) \right\} \rangle_Y \equiv \mathcal{S}_{\mathbf{01}; Y}$$

$$\frac{\partial \tilde{\mathcal{S}}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \, \mathcal{K}_{\mathbf{012}}^{\mathrm{DLA}} \left[ \tilde{\mathcal{S}}_{\mathbf{01};Y} \, \tilde{\mathcal{S}}_{\mathbf{12};Y} - \tilde{\mathcal{S}}_{\mathbf{01};Y} \right]$$

**DLA kernel** 

$$\mathcal{K}_{\mathbf{012}}^{\mathrm{DLA}} = \frac{\mathrm{J}_{1}(2\sqrt{\bar{\alpha}_{s}\rho'^{2}})}{\sqrt{\bar{\alpha}_{s}}\rho'^{2}} \quad \text{with} \quad \rho' = \sqrt{\ln(r_{1}^{2}/r_{0}^{2})\ln(r_{2}^{2}/r_{0}^{2})}$$

#### **Analytic continuation**

$$\tilde{\mathcal{A}}(Y,\rho) \equiv \int_0^\rho d\rho_1 \, \tilde{f}(Y,\rho-\rho_1) \, \mathcal{A}(0,\rho_1) \quad \text{ with } \quad \tilde{f}(Y=0,\rho) = \delta(\rho) - \sqrt{\bar{\alpha}_s} \, \mathrm{J}_1(2\sqrt{\bar{\alpha}_s\rho^2})$$

and 
$$(1 - \mathcal{S}_{\mathbf{x}\mathbf{y};Y}) \equiv r^2 Q_0^2 \mathcal{A}_{\mathbf{x}\mathbf{y};Y}$$

Initial conditions also affected by the resummation

$$\frac{\partial \mathcal{S}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \, \Theta(Y - \Delta_{\mathbf{012}}) \left[ \mathcal{S}_{\mathbf{02};Y - \Delta_{\mathbf{012}}} \, \mathcal{S}_{\mathbf{12};Y - \Delta_{\mathbf{012}}} - \mathcal{S}_{\mathbf{01};Y} \right]$$

$$\Delta_{012} = \max \left\{ 0, \ln \left( \frac{l_{012}^2}{r_0^2} \right) \right\} \quad \text{with} \quad l_{012} = \min \left\{ r_1, r_2 \right\}$$

$$\sigma_{r}(y, x, Q^{2}) = F_{2}(x, Q^{2}) - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}(x, Q^{2})$$

$$F_{2}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} (\sigma_{T} + \sigma_{L}) \qquad F_{L}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} \sigma_{L}$$

$$F_{2}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} (\sigma_{T} + \sigma_{L}) \qquad F_{L}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} \sigma_{L}$$

$$\sigma_{r}(y, x, Q^{2}) = F_{2}(x, Q^{2}) - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}(x, Q^{2})$$

$$F_{2}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} (\sigma_{T} + \sigma_{L}) \qquad F_{L}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} \sigma_{L}$$

 The formalism: dipole model of DIS at LO:

$$\sigma_{T,L}(x,Q^2) = \sum_{f} \int_0^1 dz \int d^2 \mathbf{r} |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \sigma^{q\bar{q}}(\mathbf{r}, x)$$
$$\sigma^{q\bar{q}}(r, x) = 2 \int d^2 b \, \mathcal{N}(x, r, b) = \sigma_0 \, \mathcal{N}(x, r)$$

**Evolved with BK-evolution** 

$$\sigma_{r}(y, x, Q^{2}) = F_{2}(x, Q^{2}) - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}(x, Q^{2})$$

$$F_{2}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} (\sigma_{T} + \sigma_{L}) \qquad F_{L}(x, Q^{2}) = \frac{Q^{2}}{4 \pi^{2} \alpha_{em}} \sigma_{L}$$

 The formalism: dipole model of DIS at LO:

$$\sigma_{T,L}(x,Q^2) = \sum_f \int_0^1 dz \int d^2 \mathbf{r} |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \sigma^{q\bar{q}}(\mathbf{r}, x)$$
$$\sigma^{q\bar{q}}(r, x) = 2 \int d^2 b \, \mathcal{N}(x, r, b) = \sigma_0 \, \mathcal{N}(x, r)$$

\* Photon impact factors at NLO are known. Should be included for a consistent description

Balitsky, Chirilli; Phys.Rev. D83 (2011) 031502

Beuf; Phys.Rev. D85 (2012) 034039

NLO corrections to the dipole model

$$+\bar{\alpha} \int_{k_{\min}^{+}/q^{+}}^{1-z_{1}} \frac{\mathrm{d}z_{2}}{z_{2}} \int \frac{\mathrm{d}^{2}\mathbf{x}_{2}}{2\pi} \mathcal{I}_{T,L}^{NLO}(\mathbf{x}_{0},\mathbf{x}_{1},\mathbf{x}_{2},z_{1},z_{2},Q^{2}) \frac{2C_{F}}{N_{c}} \left[1-\langle \mathbf{S}_{012} \rangle_{0}\right]$$

$$\sigma_r(y, x, Q^2) = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

$$F_2(x, Q^2) = \frac{Q^2}{4 \pi^2 \alpha_{em}} (\sigma_T + \sigma_L) \qquad F_L(x, Q^2) = \frac{Q^2}{4 \pi^2 \alpha_{em}} \sigma_L$$



 The formalism: dipole model of DIS at LO:

$$\sigma_{T,L}(x,Q^2) = \sum_{f} \int_0^1 dz \int d^2 \mathbf{r} |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \sigma^{q\bar{q}}(\mathbf{r}, x)$$
$$\sigma^{q\bar{q}}(r, x) = 2 \int d^2 b \, \mathcal{N}(x, r, b) = \sigma_0 \, \mathcal{N}(x, r)$$

Some details

- 3 or 5 active flavours:
- One-loop running coupling

$$\alpha_s(r^2) = \frac{4\pi}{\beta_{N_f} \ln\left(\frac{4C^2}{r^2 \Lambda_{N_f}^2}\right)}$$

Frozen in the infrared

$$\alpha_{s,frozen} = 0.7 \text{ or } 1$$

$$m_{\rm u,d,s,c,b} = 0.05, 0.05, 0.140, 1.27, 4.5 \,\text{GeV}$$

Matched at the threshold

$$\alpha_{s,N_f-1}(r_*) = \alpha_{s,N_f}(r_*)$$
 with  $r_*^2 = 4C^2/m_f^2$ 

Calibrated at M<sub>Z</sub>

$$\alpha_s(M_{Z_0}^2) = 0.1176$$

#### **Initial Conditions**

**MV-y:** 
$$\mathcal{N}(r, Y = 0) = 1 - \exp\left[-\frac{(r^2 Q_0^2)^{\gamma}}{4} \ln\left(\frac{1}{\Lambda_{QCD} r} + e\right)\right]$$

solve MV-γ

rapidity shift  $\Delta Y_0$ 

**Pre-scaling:**  $\mathcal{N}(r, x_0 = 0.01) = \mathcal{N}(r, \Delta Y_0) \implies \mathcal{N}(r, x \leq x_0) = \mathcal{N}(r, \Delta Y_0 + \ln(x_0/x))$ 

## Fit parameters: 4 or 5

Initial condition:  $Q_0, \gamma, \Delta Y_0$ 

Normalisation  $\sigma_0$ 

Fudge factor C

#### **Initial Conditions**

**MV-y:** 
$$\mathcal{N}(r, Y = 0) = 1 - \exp\left[-\frac{(r^2 Q_0^2)^{\gamma}}{4} \ln\left(\frac{1}{\Lambda_{QCD} r} + e\right)\right]$$

solve MV-γ

rapidity shift ΔY<sub>0</sub>

**Pre-scaling:** 
$$\mathcal{N}(r, x_0 = 0.01) = \mathcal{N}(r, \Delta Y_0)$$
  $\Rightarrow$   $\mathcal{N}(r, x \leq x_0) = \mathcal{N}(r, \Delta Y_0 + \ln(x_0/x))$ 

**Running-MV** 
$$\mathcal{N}(r, Y = 0) = \left\{ 1 - \exp\left[ -\left(\frac{r^2 Q_0^2}{4} \, \bar{\alpha}_s(C_{\text{MV}} r) \left[ 1 + \ln\left(\frac{\bar{\alpha}_{\text{sat}}}{\bar{\alpha}_s(C_{\text{MV}} r)}\right) \right] \right)^p \right] \right\}^{1/p}$$

#### **Parameter constraints**

• We require the FT of the dipole amplitude to be a positive definite, non-oscillatory function:

$$\phi(k,Y) \sim \int \frac{d^2r}{(2\pi)^2} \exp{(ik\cdot r)} \, (1-\mathcal{N}(r,Y)) \qquad \begin{array}{l} \text{MV-}\gamma \implies \gamma \lesssim 1.125 \\ \text{Pre-scaling: Case by case} \end{array}$$

Running-MV: Strongly oscillating FT (tbc)

• Right collinear limit: 
$$\gamma(r \to 0) = 1$$
 
$$\qquad \qquad \text{MV-} \gamma \quad \gamma(r) = \gamma + \frac{1-\gamma}{1+(Q_s r)^a} \,, \quad \text{with} \quad a \approx 0.25$$

Running-MV Ok, by construction.



$$\frac{\partial \mathcal{S}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \left[ \mathcal{S}_{\mathbf{02};Y} \, \mathcal{S}_{\mathbf{12};Y} - \mathcal{S}_{\mathbf{01};Y} \right]$$

## Evolve it with rcBK, Balitsky's kernel



This parametrisation yields a good fit to HERA-I data

$$\frac{\partial \mathcal{S}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \left[ \mathcal{S}_{\mathbf{02};Y} \, \mathcal{S}_{\mathbf{12};Y} - \mathcal{S}_{\mathbf{01};Y} \right]$$

#### Compare to rcBK evolution with SD and PD kernels



Balitsky's prescription for the kernel yields the slowest evolution

$$\frac{\partial \tilde{\mathcal{S}}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \, \mathcal{K}_{\mathbf{012}}^{\mathrm{DLA}} \left[ \tilde{\mathcal{S}}_{\mathbf{01};Y} \, \tilde{\mathcal{S}}_{\mathbf{12};Y} - \tilde{\mathcal{S}}_{\mathbf{01};Y} \right]$$

#### Add DLA corrections to PD and SD evolution



rcBK + DLA evolution is stable

Reduction of evolution speed and suppression of small dipole sizes

$$\frac{\partial \mathcal{S}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \, \Theta(Y - \Delta_{\mathbf{012}}) \left[ \mathcal{S}_{\mathbf{02};Y - \Delta_{\mathbf{012}}} \, \mathcal{S}_{\mathbf{12};Y - \Delta_{\mathbf{012}}} - \mathcal{S}_{\mathbf{01};Y} \right]$$

#### Add KC corrections to PD and SD evolution



rcBK + KC evolution is stable

Reduction of evolution speed and even larger suppression of small dipole sizes

$$\frac{\partial \mathcal{S}_{\mathbf{01};Y}}{\partial Y} = \int \frac{d^2 \mathbf{x_2}}{2\pi} \, \mathcal{M}_{\mathbf{012}} \, \Theta(Y - \Delta_{\mathbf{012}}) \left[ \mathcal{S}_{\mathbf{02};Y - \Delta_{\mathbf{012}}} \, \mathcal{S}_{\mathbf{12};Y - \Delta_{\mathbf{012}}} - \mathcal{S}_{\mathbf{01};Y} \right]$$

and also to rcBK + Balitsky's evolution...



rcBK + KC evolution is stable

Reduction of evolution speed and even larger suppression of small dipole sizes

*Nf* = 3

 $N_f = 3, \, \alpha_{fr} = 0.7$ 

rcBK "only"

| $Q_{max}^2 (\text{GeV}^2)$ | Evolution scheme | $Q_0^2(\mathrm{GeV}^2)$ | $\Delta Y_0$ | $\sigma_0 \text{ (mb)}$ | $\gamma$ | C     | $\chi^2/\text{d.o.f.}$ |
|----------------------------|------------------|-------------------------|--------------|-------------------------|----------|-------|------------------------|
| 50                         | rcBK-Bal         | 0.192                   | 0            | 26.11                   | 1.129    | 1.709 | 1.010                  |
| 650                        | rcBK-Bal         | 0.226                   | 0            | 22.99                   | 1.160    | 1.305 | 0.948                  |
| 000                        | rcBK-Bal         | 0.189                   | 0            | 25.987                  | 1.240    | 2.013 | 1.04                   |

- Good, stable fits with rcBK evolution only
- Preferred, unphysical γ values at high Q<sup>2</sup> can be avoided in 2 ways:

**Physical i.c.:** 
$$\gamma \lesssim 1.125$$
  $\gamma = \gamma + \frac{1-\gamma}{1+(Q_s r)^a}$ , with  $a \approx 0.25$ 

Reminder: Preliminary results

Nf = 3

 $N_f = 3, \, \alpha_{fr} = 0.7$ 

rcBK "only"

| $Q_{max}^2 (\text{GeV}^2)$ | Evolution scheme | $Q_0^2(\mathrm{GeV}^2)$ | $\Delta Y_0$ | $\sigma_0 \text{ (mb)}$ | $\gamma$ | C     | $\chi^2/\text{d.o.f.}$ |
|----------------------------|------------------|-------------------------|--------------|-------------------------|----------|-------|------------------------|
| 50                         | rcBK-Bal         | 0.192                   | 0            | 26.11                   | 1.129    | 1.709 | 1.010                  |
| 650                        | rcBK-Bal         | 0.226                   | 0            | 22.99                   | 1.160    | 1.305 | 0.948                  |
| 000                        | rcBK-Bal         | 0.189                   | 0            | 25.987                  | 1.240    | 2.013 | 1.04                   |

rcBK + DLA

|     | DLA+PD | 0.1974                | 0    | 23.43   | 1.078 | 3.692 | 1.177  |
|-----|--------|-----------------------|------|---------|-------|-------|--------|
| 50  | DLA+PD | $3.511 \cdot 10^{-2}$ | 5.12 | 23.39   | 1.117 | 3.67  | 1.21   |
| 30  | DLA+SD | 0.1973                | 0    | 23.45   | 1.080 | 2.927 | 1. 202 |
|     | DLA+SD | $3.93 \cdot 10^{-2}$  | 4.95 | 23.57   | 1.124 | 3.066 | 1.25   |
| 650 | DLA+SD | 0.224                 | 0    | 21.98   | 1.119 | 2.499 | 1.62   |
| 000 | DLA+PD | $2.189 \cdot 10^{-2}$ | 6.37 | 221.972 | 1.127 | 3.131 | 1.52   |

rcBK + KC

| 50  | KC+SD | $5.72 \cdot 10^{-2}$  | 4.21 |        | 1.021 |       | 1.27 |
|-----|-------|-----------------------|------|--------|-------|-------|------|
| 30  | KC+PD | $5.025 \cdot 10^{-2}$ | 5.27 | 22.997 | 1.067 | 3.876 | 1.23 |
| 650 | KC+SD | $5.82 \cdot 10^{-2}$  | 3.99 | 24.01  | 1.024 | 3.781 | 1.67 |
| 000 | KC+PD | $4.715 \cdot 10^{-2}$ | 5.44 | 22.127 | 1.077 | 3.726 | 1.73 |

- Good fits with rcBK+DLA and rcBK + KC evolution up to Q<sup>2</sup> =50 GeV<sup>2</sup>
- Pre-scaling initial conditions preferred for rcBK+ KC evolution
- Tension in the fits at high Q<sup>2</sup>

Nf = 5

$$N_f = 5, \quad \alpha_{fr} = 0.7$$

 $Q_{max}^2 (\text{GeV}^2)$ 

Evolution scheme

 $Q_0^2(\text{GeV}^2)$ 

 $\Delta Y_0 \mid \sigma_0 \text{ (mb)}$ 

 $\gamma$ 

 $C \mid \chi^2/\text{d.o.f.}$ 

rcBK "only"

- No good fits to data using rcBK evolution only.
- Additional charm contribution cannot be compensated by changes in the i.c.
- Confirmation of previous results from AAMQS fits Eur.Phys.J. C71 (2011) 1705
- Separate treatment of heavy and light quarks?

$$\sigma_{T,L}(x,Q^2) = \sigma_0 \sum_{f=u,d,s} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \, \mathcal{N}^{light}(\mathbf{r}, x)$$
$$+ \sigma_0^{heavy} \sum_{f=c,b} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f, m_f, z, Q^2, \mathbf{r})|^2 \, \mathcal{N}^{heavy}(\mathbf{r}, x) \, .$$

Reminder: Preliminary results

*Nf* =5

$$N_f = 5, \quad \alpha_{fr} = 0.7$$

rcBK "only"

- No good fits to data using rcBK evolution only.
- Additional charm contribution cannot be compensated by changes in the i.c.
- Confirmation of previous results from AAMQS fits Eur.Phys.J. C71 (2011) 1705
- Separate treatment of heavy and light quarks?

rcBK + DLA

|     | DLA+PD | 0.192                | 0    | 23.623 | 1.065 | 3.88 | 1.20 |
|-----|--------|----------------------|------|--------|-------|------|------|
| 50  | DLA+PD | $3.78 \cdot 10^{-2}$ | 5.12 | 23.66  | 1.155 | 3.89 | 1.31 |
|     | DLA+SD | 0.188                | 0    | 24.12  | 1.066 | 3.14 | 1.19 |
| 650 | DLA+SD | 0.17                 | 0    | 27.98  | 1.25  | 7.13 | 1.82 |
| 000 | DLA+PD | 0.168                | 0    | 29.37  | 1.27  | 7.76 | 2.1  |

rcBK + KC

• Work in progress. So far fits yield  $\chi^2/\mathrm{d.o.f.} \sim 2$ 

Nf = 5

$$N_f = 5, \quad \alpha_{fr} = 0.7$$

| $Q_{max}^2$ (GeV <sup>2</sup> ) Evolution Scheme |  | $\Delta Y_0$ | $\sigma_0 \text{ (mb)}$ | $\gamma$ | C | $\chi^2/\text{d.o.f.}$ |
|--------------------------------------------------|--|--------------|-------------------------|----------|---|------------------------|
|--------------------------------------------------|--|--------------|-------------------------|----------|---|------------------------|

rcBK "only"

- No good fits to data using rcBK evolution only.
- Additional charm contribution cannot be compensated by changes in the i.c.
- Confirmation of previous results from AAMQS fits Eur.Phys.J. C71 (2011) 1705
- Separate treatment of heavy and light quarks?

rcBK + DLA

 Very good fits using rcBK +DLA evolution up to high Q<sup>2</sup> reported by lancu et al. Only concern: physicality of the initial conditions

arXiv:1507.03651

| init | RC                    | sing. | $\chi^2/\text{npts for }Q^2_{\text{max}}$ |       |       |       |  |  |
|------|-----------------------|-------|-------------------------------------------|-------|-------|-------|--|--|
| cdt. | $\operatorname{schm}$ | logs  | 50                                        | 100   | 200   | 400   |  |  |
| GBW  | small                 | yes   | 1.135                                     | 1.172 | 1.355 | 1.537 |  |  |
| GBW  | fac                   | yes   | 1.262                                     | 1.360 | 1.654 | 1.899 |  |  |
| rcMV | small                 | yes   | 1.126                                     | 1.172 | 1.167 | 1.158 |  |  |
| rcMV | fac                   | yes   | 1.222                                     | 1.299 | 1.321 | 1.317 |  |  |
| GBW  | small                 | no    | 1.121                                     | 1.131 | 1.317 | 1.487 |  |  |
| GBW  | fac                   | no    | 1.164                                     | 1.203 | 1.421 | 1.622 |  |  |
| rcMV | small                 | no    | 1.097                                     | 1.128 | 1.095 | 1.078 |  |  |
| rcMV | fac                   | no    | 1.128                                     | 1.177 | 1.150 | 1.131 |  |  |



Good fits conspire to yield a very similar dipole amplitude in all kinematic space tested by the fits





## A glimpse to DGLAP fits to HERA II data

arXiv:1506.06042

New data also cause tension in DGLAP fits

Bad extrapolation of the fits results to the unfitted kinematic region (low-Q<sup>2</sup>)







## **Final comments**

- ★ Main conclusion: collinearly improved rcBK equations are compatible with HERA II data, but do not improve previous descriptions based on rcBK evolution only.
- ★ Reduced errors from combined HERA II analysis induce tension in the fits when extended to Q² > 50 -100 GeV²
- ★ To be checked
  - NLO photon impact factors
  - Sensitivity to charm mass and variable flavour scheme.
  - Details: resummation of the initial condition, precise definition of the rapidity variable etc
  - Effect of DLA corrections in e-A scattering and expectations for the EIC
  - Impact on neutrino astrophysics: talk by Alba Soto on wednesday

## Merci!