Collinearly improved BK equations vs HERA data

POETIC VI Conference
7-11 September, Palaiseau, France

Javier L Albacete

Universidad de Granada \& CAFPE

Universidad
de Granada

Continuation of AAMQS fits with N. Armesto, JG Milhano, P. Quiroga and CA Salgado

OUTLINE

Problem: Perturbative expansions in high-energy QCD are unstable

Evolution equations

- NLO BK T. Lappi, Maantysaari; Phys.Rev. D91 (2015) 7, 074016
- NLL BFKL + saturation boundary $\begin{aligned} & \text { Avsar, Stasto, Triantafyllopoulos, Zaslavsky } \\ & \text { JHEP } 10(2011) 138\end{aligned}$

$$
\mathcal{N}, \sigma<0
$$

Production Processes

- Forward hadron production in p-A collisions at NLO

Why? Large, negative contributions from transverse logarithms at NLL

$$
\begin{aligned}
& \alpha_{s} Y \sim \alpha_{s} Y \rho \sim \alpha_{s} \rho^{2} \quad \text { with } \quad \rho \equiv \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right) \\
& \mathrm{LL} \quad \mathrm{NLO}
\end{aligned}
$$

Solution: Resum large (double and single) collinear logs to all orders

- Already done for BFKL

G P Salam; JHEP 07019
Ciafaloni, Colferai, Salam; Phys Rev D 60114036 (1998)
G Altarelli R D Ball, S. Forte Nucl Phys B575 (313) 2000

- BK: two recent approaches

Double Logarithmic Accuracy BK equation, DLA-BK
lancu et al
Phys.Lett. B744 (2015) 293-302

Kinematically corrected BK equation, KC-BK, G. Beuf
G. Beuf

This talk: tests of the DLA improved BK equations against HERA data on the e-p reduced cross section

- Fits to H1 and ZEUS combined analysis of HERA I data.

JLA arXiv:1507.0712 lancu et al arXiv:1507.03651

Goof fits for

$$
x<0.01
$$

$$
Q^{2}<Q_{\max }^{2}=50,500 \mathrm{GeV}^{2}
$$

- H1 and ZEUS combined analysis of HERA II data. Released june 2015
arXiv:1506.06042

The strong reduction of experimental errors at high- Q^{2} introduces tension in the fits

$$
\chi^{2} \sim \frac{(\text { theo }-e x p)^{2}}{e r r^{2}}
$$

Preliminary results!

running coupling BK EVOLUTION, rcBK

$$
\frac{\partial \mathcal{S}_{\mathbf{0 1} ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}}\left[\mathcal{S}_{\mathbf{0 2} ; Y} \mathcal{S}_{\mathbf{1 2} ; Y}-\mathcal{S}_{\mathbf{0 1} ; Y}\right]
$$

Balitsky's
Phys.Rev. D75 (2007) 014001

$$
\mathcal{M}_{012}^{\mathrm{Bal}}=\frac{\alpha_{s}\left(r_{0}^{2}\right) N_{c}}{\pi}\left[\frac{r_{0}^{2}}{r_{1}^{2} r_{2}^{2}}+\frac{1}{r_{1}^{2}}\left(\frac{\alpha_{s}\left(r_{1}^{2}\right)}{\alpha_{s}\left(r_{2}^{2}\right)}-1\right)+\frac{1}{r_{2}^{2}}\left(\frac{\alpha_{s}\left(r_{2}^{2}\right)}{\alpha_{s}\left(r_{1}^{2}\right)}-1\right)\right]
$$

Parent dipole

$$
\mathcal{M}_{\mathbf{0 1 2}}^{\mathrm{pd}}=\frac{\alpha_{s}\left(r_{0}^{2}\right) N_{c}}{\pi} \frac{r_{0}^{2}}{r_{1}^{2} r_{2}^{2}}
$$

Proxy to Kovchegov-Weigert's Nucl.Phys. A784 (2007) 188-226

Smallest dipole $\quad \mathcal{M}_{\mathbf{0 1 2}}^{\mathrm{pd}}=\frac{\alpha_{s}\left(r_{\text {min }}^{2}\right) N_{c}}{\pi} \frac{r_{0}^{2}}{r_{1}^{2} r_{2}^{2}} \quad$ with $\quad r_{\text {min }} \equiv \min \left\{r_{0}, r_{1}, r_{2}\right\}$

$$
\mathcal{S}\left(\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}} ; Y\right)=\frac{1}{N_{c}}\left\langle\operatorname{tr}\left\{U\left(\mathbf{x}_{\mathbf{0}}\right) U^{\dagger}\left(\mathbf{x}_{\mathbf{1}}\right)\right\}\right\rangle_{Y} \equiv \mathcal{S}_{\mathbf{0 1 ; Y}}
$$

$$
\frac{\partial \tilde{\mathcal{S}}_{01 ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{2}}{2 \pi} \mathcal{M}_{012} \mathcal{K}_{012}^{\text {DLA }}\left[\tilde{\mathcal{S}}_{\mathbf{0 1 ; ~}} \tilde{\mathcal{S}}_{12 ; Y}-\tilde{\mathcal{S}}_{01 ; Y}\right]
$$

DLA kernel $\quad \mathcal{K}_{012}^{\text {DLA }}=\frac{\mathrm{J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{\prime}}\right)}{\sqrt{\bar{\alpha}_{s} \rho^{\prime 2}}}$ with $\rho^{\prime}=\sqrt{\ln \left(r_{1}^{2} / r_{0}^{2}\right) \ln \left(r_{2}^{2} / r_{0}^{2}\right)}$
Analytic continuation

$$
\begin{aligned}
& \tilde{\mathcal{A}}(Y, \rho) \equiv \int_{0}^{\rho} d \rho_{1} \tilde{f}\left(Y, \rho-\rho_{1}\right) \mathcal{A}\left(0, \rho_{1}\right) \quad \text { with } \quad \tilde{f}(Y=0, \rho)=\delta(\rho)-\sqrt{\bar{\alpha}_{s}} \mathrm{~J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right) \\
& \text { and } \quad\left(1-\mathcal{S}_{\mathbf{x y} ; Y}\right) \equiv r^{2} Q_{0}^{2} \mathcal{A}_{\mathbf{x y} ; Y}
\end{aligned}
$$

Initial conditions also affected by the resummation

$$
\begin{gathered}
\frac{\partial \mathcal{S}_{\mathbf{0 1 ; ~}}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}} \Theta\left(Y-\Delta_{\mathbf{0 1 2}}\right)\left[\mathcal{S}_{\mathbf{0 2} ; Y-\Delta_{\mathbf{0 1 2}}} \mathcal{S}_{\mathbf{1 2} ; Y-\Delta_{\mathbf{0 1 2}}}-\mathcal{S}_{\mathbf{0 1 ;} ;}\right] \\
\Delta_{\mathbf{0 1 2}}=\max \left\{0, \ln \left(\frac{l_{\mathbf{0 1 2}}^{2}}{r_{0}^{2}}\right)\right\} \quad \text { with } \quad l_{\mathbf{0 1 2}}=\min \left\{r_{1}, r_{2}\right\}
\end{gathered}
$$

- The observable: reduced x-section:

$$
\begin{aligned}
& \sigma_{r}\left(y, x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{T}+\sigma_{L}\right) \quad F_{L}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \sigma_{L}
\end{aligned}
$$

- The observable: reduced x-section:

$$
\begin{aligned}
& \sigma_{r}\left(y, x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{T}+\sigma_{L}\right) \quad F_{L}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \sigma_{L}
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{T, L}\left(x, Q^{2}\right)=\sum_{f} \int_{0}^{1} d z \int d^{2} \mathbf{r}\left|\Psi_{T, L}^{f}\left(e_{f}, m_{f}, z, Q^{2}, \mathbf{r}\right)\right|^{2} \sigma^{q \bar{q}}(\mathbf{r}, x) \\
\sigma^{q \bar{q}}(r, x)=2 \int d^{2} b \mathcal{N}(x, r, b)=\sigma_{0} \mathcal{N}(x, r)
\end{gathered}
$$

- The observable: reduced x-section:

$$
\begin{aligned}
& \sigma_{r}\left(y, x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{T}+\sigma_{L}\right) \quad F_{L}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \sigma_{L}
\end{aligned}
$$

- The formalism: dipole model of DIS at LO:

$$
\begin{gathered}
\sigma_{T, L}\left(x, Q^{2}\right)=\sum_{f} \int_{0}^{1} d z \int d^{2} \mathbf{r}\left|\Psi_{T, L}^{f}\left(e_{f}, m_{f}, z, Q^{2}, \mathbf{r}\right)\right|^{2} \sigma^{q \bar{q}}(\mathbf{r}, x) \\
\sigma^{q \bar{q}}(r, x)=2 \int d^{2} b \mathcal{N}(x, r, b)=\sigma_{0} \mathcal{N}(x, r)
\end{gathered}
$$

* Photon impact factors at NLO are known. Should be included for a consistent description

Balitsky, Chirilli; Phys.Rev. D83 (2011) 031502
Beuf; Phys.Rev. D85 (2012) 034039

NLO corrections to the dipole model

$$
+\bar{\alpha} \int_{k_{\min }^{+} / q^{+}}^{1-z_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}} \int \frac{\mathrm{~d}^{2} \mathbf{x}_{2}}{2 \pi} \mathcal{I}_{T, L}^{N L O}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}, Q^{2}\right) \frac{2 C_{F}}{N_{c}}\left[1-\left\langle\mathbf{S}_{012}\right\rangle_{0}\right]
$$

- The observable: reduced x-section:

$$
\begin{aligned}
& \sigma_{r}\left(y, x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left(\sigma_{T}+\sigma_{L}\right) \quad F_{L}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}} \sigma_{L}
\end{aligned}
$$

- The formalism: dipole model of DIS at LO:

$$
\begin{gathered}
\sigma_{T, L}\left(x, Q^{2}\right)=\sum_{f} \int_{0}^{1} d z \int d^{2} \mathbf{r}\left|\Psi_{T, L}^{f}\left(e_{f}, m_{f}, z, Q^{2}, \mathbf{r}\right)\right|^{2} \sigma^{q \bar{q}}(\mathbf{r}, x) \\
\sigma^{q \bar{q}}(r, x)=2 \int d^{2} b \mathcal{N}(x, r, b)=\sigma_{0} \mathcal{N}(x, r)
\end{gathered}
$$

- Some details

- 3 or 5 active flavours:

$$
m_{\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \mathrm{c}, \mathrm{~b}}=0.05,0.05,0.140,1.27,4.5 \mathrm{GeV}
$$

- One-loop running coupling

$$
\alpha_{s}\left(r^{2}\right)=\frac{4 \pi}{\beta_{N_{f}} \ln \left(\frac{4 C^{2}}{r^{2} \Lambda_{N_{f}}^{2}}\right)}
$$

$$
\alpha_{s, N_{f}-1}\left(r_{*}\right)=\alpha_{s, N_{f}}\left(r_{*}\right) \text { with } \quad r_{*}^{2}=4 C^{2} / m_{f}^{2}
$$

- Frozen in the infrared

$$
\alpha_{s, \text { frozen }}=0.7 \text { or } 1
$$

- Calibrated at Mz

$$
\alpha_{s}\left(M_{Z_{0}}^{2}\right)=0.1176
$$

MV- $\boldsymbol{\gamma}: \quad \mathcal{N}(r, Y=0)=1-\exp \left[-\frac{\left(r^{2} Q_{0}^{2}\right)^{\gamma}}{4} \ln \left(\frac{1}{\Lambda_{Q C D} r}+e\right)\right]$

solve MV-ү

$$
\mathcal{N}\left(r, x_{0}=0.01\right)=\mathcal{N}\left(r, \Delta Y_{0}\right) \Rightarrow \mathcal{N}\left(r, x \leq x_{0}\right)=\mathcal{N}\left(r, \Delta Y_{0}+\ln \left(x_{0} / x\right)\right)
$$

Fit parameters: 4 or 5

Initial condition:	$Q_{0}, \gamma, \Delta Y_{0}$
Normalisation	σ_{0}
Fudge factor	C

Initial Conditions

MV- $\boldsymbol{\gamma}: \quad \mathcal{N}(r, Y=0)=1-\exp \left[-\frac{\left(r^{2} Q_{0}^{2}\right)^{\gamma}}{4} \ln \left(\frac{1}{\Lambda_{Q C D} r}+e\right)\right]$
solve MV- γ
rapidity shift ΔY_{0}
Pre-scaling: $\quad \mathcal{N}\left(r, x_{0}=0.01\right)=\mathcal{N}\left(r, \Delta Y_{0}\right) \quad \Rightarrow \quad \mathcal{N}\left(r, x \leq x_{0}\right)=\mathcal{N}\left(r, \Delta Y_{0}+\ln \left(x_{0} / x\right)\right)$
Running-MV $\quad \mathcal{N}(r, Y=0)=\left\{1-\exp \left[-\left(\frac{r^{2} Q_{0}^{2}}{4} \bar{\alpha}_{s}\left(C_{\mathrm{MV}} r\right)\left[1+\ln \left(\frac{\bar{\alpha}_{\text {sat }}}{\bar{\alpha}_{s}\left(C_{\mathrm{Mv}} r\right)}\right)\right]\right)^{p}\right]\right\}^{1 / p}$

Parameter constraints

- We require the FT of the dipole amplitude to be a positive definite, non-oscillatory function:

$$
\begin{array}{ll}
\phi(k, Y) \sim \int \frac{d^{2} r}{(2 \pi)^{2}} \exp (i k \cdot r)(1-\mathcal{N}(r, Y)) & \text { Pre-scaling: Case by case } \\
& \text { Running-MV: Strongly oscillating FT (tbc) }
\end{array}
$$

- Right collinear limit: $\gamma(r \rightarrow 0)=1$

MV- $\mathrm{Y} \quad \gamma(r)=\gamma+\frac{1-\gamma}{1+\left(Q_{s} r\right)^{a}}, \quad$ with $\quad a \approx 0.25$
Running-MV Ok, by construction.

Playing before fitting...

Trial function: MV-g from AAMQS fits

Playing before fitting...

$$
\frac{\partial \mathcal{S}_{\mathbf{0 1 ;},}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}}\left[\mathcal{S}_{\mathbf{0 2 ; Y}} \mathcal{S}_{\mathbf{1 2 ; Y}}-\mathcal{S}_{\mathbf{0 1 ; Y}}\right]
$$

Evolve it with rcBK, Balitsky's kernel

This parametrisation yields a good fit to HERA-I data

Playing before fitting...

$$
\frac{\partial \mathcal{S}_{\mathbf{0 1} ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}}\left[\mathcal{S}_{\mathbf{0 2} ; Y} \mathcal{S}_{\mathbf{1 2} ; Y}-\mathcal{S}_{\mathbf{0 1 ; ~}}\right]
$$

Compare to rcBK evolution with SD and PD kernels

Balitsky's prescription for the kernel yields the slowest evolution

Playing before fitting...

$$
\frac{\partial \tilde{\mathcal{S}}_{01 ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{2}}{2 \pi} \mathcal{M}_{012} \mathcal{K}_{012}^{\mathrm{DLA}}\left[\tilde{\mathcal{S}}_{\mathbf{0 1 ; ~}} \tilde{\mathcal{S}}_{12 ; Y}-\tilde{\mathcal{S}}_{01 ; Y}\right]
$$

Add DLA corrections to PD and SD evolution

rcBK + DLA evolution is stable
Reduction of evolution speed and suppression of small dipole sizes

Playing before fitting...

$$
\frac{\partial \mathcal{S}_{\mathbf{0 1} ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}} \Theta\left(Y-\Delta_{\mathbf{0 1 2}}\right)\left[\mathcal{S}_{\mathbf{0 2} ; Y-\Delta_{\mathbf{0 1 2}}} \mathcal{S}_{\mathbf{1 2} ; Y-\Delta_{\mathbf{0 1 2}}}-\mathcal{S}_{\mathbf{0 1 ; ~}}\right]
$$

Add KC corrections to PD and SD evolution

Reduction of evolution speed and even larger suppression of small dipole sizes

Playing before fitting...

$$
\frac{\partial \mathcal{S}_{01 ; Y}}{\partial Y}=\int \frac{d^{2} \mathbf{x}_{\mathbf{2}}}{2 \pi} \mathcal{M}_{\mathbf{0 1 2}} \Theta\left(Y-\Delta_{\mathbf{0 1 2}}\right)\left[\mathcal{S}_{02 ; Y-\Delta_{012}} \mathcal{S}_{\mathbf{1 2} ; Y-\Delta_{\mathbf{0 1 2}}}-\mathcal{S}_{01 ; Y}\right]
$$

and also to rcBK + Balitsky's evolution...

Reduction of evolution speed and even larger suppression of small dipole sizes

Fit Results

$$
N f=3
$$

$$
N_{f}=3, \alpha_{f r}=0.7
$$

rcBK"only"

$Q_{\text {max }}^{2}\left(\mathrm{GeV}^{2}\right)$	Evolution scheme	$Q_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	ΔY_{0}	$\sigma_{0}(\mathrm{mb})$	γ	C	$\chi^{2} /$ d.o.f.
50	rcBK-Bal	0.192	0	26.11	1.129	1.709	1.010
650	rcBK-Bal	0.226	0	22.99	1.160	1.305	0.948
	rcBK-Bal	0.189	0	25.987	1.240	2.013	1.04

- Good, stable fits with rcBK evolution only
- Preferred, unphysical γ values at high Q^{2} can be avoided in 2 ways:

Physical i.c.: $\quad \gamma \lesssim 1.125$

$$
\gamma(r)=\gamma+\frac{1-\gamma}{1+\left(Q_{s} r\right)^{a}}, \quad \text { with } \quad a \approx 0.25
$$

Fit Results

$N f=3$	$N_{f}=3, \alpha_{f r}=0.7$							
rcBK "only"	$Q_{\text {max }}^{2}\left(\mathrm{GeV}^{2}\right)$	Evolution scheme	$Q_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	ΔY_{0}	$\sigma_{0}(\mathrm{mb})$	γ	C	$\chi \chi^{2}$ /d.o.f.
	50	rcBK-Bal	0.192	0	26.11	1.129	1.709	1.010
	650	rcBK-Bal	0.226	0	22.99	1.160	1.305	0.948
		rcBK-Bal	0.189	0	25.987	1.240	2.013	1.04
$r c B K+D L A$	50	DLA+PD	0.1974	0	23.43	1.078	3.692	1.177
		DLA+PD	$3.511 \cdot 10^{-2}$	5.12	23.39	1.117	3.67	1.21
		DLA+SD	0.1973	0	23.45	1.080	2.927	1. 202
		DLA+SD	$3.93 \cdot 10^{-2}$	4.95	23.57	1.124	3.066	1.25
	650	DLA+SD	0.224	0	21.98	1.119	2.499	1.62
		DLA+PD	$2.189 \cdot 10^{-2}$	6.37	221.972	1.127	3.131	1.52
$r c B K+K C$								
	50	KC+SD	$5.72 \cdot 10^{-2}$	4.21	23.83	1.021	3.627	1.27
		$\mathrm{KC}+\mathrm{PD}$	$5.025 \cdot 10^{-2}$	5.27	22.997	1.067	3.876	1.23
	650	$\mathrm{KC}+\mathrm{SD}$	$5.82 \cdot 10^{-2}$	3.99	24.01	1.024	3.781	1.67
		KC+PD	$4.715 \cdot 10^{-2}$	5.44	22.127	1.077	3.726	1.73

- Good fits with rcBK+DLA and rcBK + KC evolution up to $\mathrm{Q}^{2}=50 \mathrm{GeV}^{2}$
- Pre-scaling initial conditions preferred for $\mathrm{rcBK}+\mathrm{KC}$ evolution
- Tension in the fits at high Q^{2}

Fit Results
$N f=5$

$$
N_{f}=5, \quad \alpha_{f r}=0.7
$$

$Q_{\text {max }}^{2}\left(\mathrm{GeV}^{2}\right)$	Evolution scheme	$Q_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	ΔY_{0}	$\sigma_{0}(\mathrm{mb})$	γ	C	$\chi^{2} /$ d.o.f.

rcBK "only"

- No good fits to data using rcBK evolution only.
- Additional charm contribution cannot be compensated by changes in the i.c.
- Confirmation of previous results from AAMQS fits Eur.Phys.J. C71 (2011) 1705
- Separate treatment of heavy and light quarks?

$$
\begin{array}{r}
\sigma_{T, L}\left(x, Q^{2}\right)=\sigma_{0} \sum_{f=u, d, s} \int_{0}^{1} d z d \mathbf{r}\left|\Psi_{T, L}^{f}\left(e_{f}, m_{f}, z, Q^{2}, \mathbf{r}\right)\right|^{2} \mathcal{N}^{\text {light }}(\mathbf{r}, x) \\
+\sigma_{0}^{\text {heavy }} \sum_{f=c, b} \int_{0}^{1} d z d \mathbf{r}\left|\Psi_{T, L}^{f}\left(e_{f}, m_{f}, z, Q^{2}, \mathbf{r}\right)\right|^{2} \mathcal{N}^{\text {heavy }}(\mathbf{r}, x)
\end{array}
$$

Fit Results

$N f=5$	$N_{f}=5, \quad \alpha_{f r}=0.7$							
	$Q_{\text {max }}^{2}\left(\mathrm{GeV}^{2}\right)$	Evolution scheme	$Q_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	ΔY_{0}	$\sigma_{0}(\mathrm{mb})$	γ	C	$\chi^{2} /$ d.o.f.
rcBK "only"	- No good fits to data using rcBK evolution only. - Additional charm contribution cannot be compensated by changes in the i.c. - Confirmation of previous results from AAMQS fits - Separate treatment of heavy and light quarks?							
$r c B K+D L A$	50	DLA+PD	0.192	0	23.623	1.065	3.88	1.20
		DLA+PD	$3.78 \cdot 10^{-2}$	5.12	23.66	1.155	3.89	1.31
		DLA+SD	0.188	0	24.12	1.066	3.14	1.19
	650	DLA+SD	0.17	0	27.98	1.25	7.13	1.82
		DLA+PD	0.168	0	29.37	1.27	7.76	2.1
$r c B K+K C$	- Work in progress. So far fits yield $\quad \chi^{2} /$ d.o.f. ~ 2							

Fit Results
$N f=5$

$$
N_{f}=5, \quad \alpha_{f r}=0.7
$$

$Q_{\text {max }}^{2}\left(\mathrm{GeV}^{2}\right)$	Evolution scheme	$Q_{0}^{2}\left(\mathrm{GeV}^{2}\right)$	ΔY_{0}	$\sigma_{0}(\mathrm{mb})$	γ	C	$\chi^{2} /$ d.o.f.

rcBK "only" - No good fits to data using rcBK evolution only.

- Additional charm contribution cannot be compensated by changes in the i.c.
- Confirmation of previous results from AAMQS fits Eur.Phys.J. C71 (2011) 1705
- Separate treatment of heavy and light quarks?
$r c B K+D L A$
- Very good fits using rcBK +DLA evolution up to high Q^{2} reported by lancu et al. Only concern: physicality of the initial conditions

init	RC	sing.	$\chi^{2} /$ npts for $Q_{\text {max }}^{2}$			
cdt.	schm	logs	50	100	200	400
GBW	small	yes	1.135	1.172	1.355	1.537
GBW	fac	yes	1.262	1.360	1.654	1.899
rcMV	small	yes	1.126	1.172	1.167	1.158
rcMV	fac	yes	1.222	1.299	1.321	1.317
GBW	small	no	1.121	1.131	1.317	1.487
GBW	fac	no	1.164	1.203	1.421	1.622
rcMV	small	no	1.097	1.128	1.095	1.078
rcMV	fac	no	1.128	1.177	1.150	1.131

Fit Results

Fit Results

Good fits conspire to yield a very similar dipole amplitude in all kinematic space tested by the fits

A glimpse to DGLAP fits to HERA II data

arXiv:1506.06042

Final comments

* Main conclusion: collinearly improved rcBK equations are compatible with HERA II data, but do not improve previous descriptions based on rcBK evolution only.
\star Reduced errors from combined HERA II analysis induce tension in the fits when extended to $\mathrm{Q}^{2}>50-100 \mathrm{GeV}^{2}$
* To be checked
- NLO photon impact factors
- Sensitivity to charm mass and variable flavour scheme.
- Details: resummation of the initial condition, precise definition of the rapidity variable etc
- Effect of DLA corrections in e-A scattering and expectations for the EIC
- Impact on neutrino astrophysics: talk by Alba Soto on wednesday

