

Wishlist from phenomenologists Material needed for proper reinterpretations of LHC results

Fuks Benjamin

IPHC - U. Strasbourg

On behalf of the ATOM, CHECKMATE and MADANALYSIS 5 collaborations (by G. Chalons, K. De Causmaecker, B. Dumont, B. Fuks, I.W Kim, J.S. Kim, S. Kraml, K. Sakurai, D. Schmeier, D. Sengupta, J. Tattersall)

Joint LPC & MC4BSM Data Challenge @ Fermilab, USA

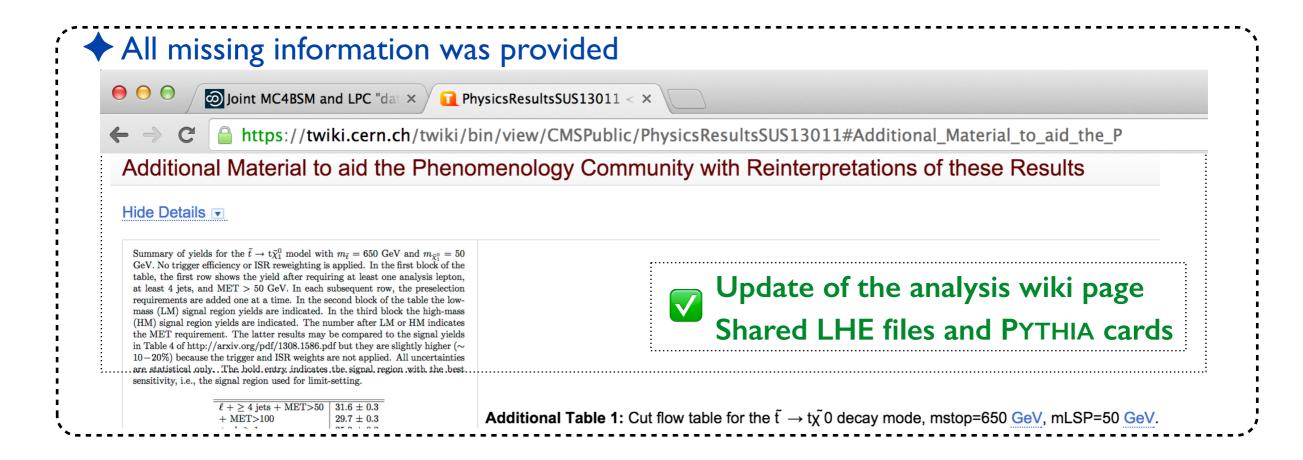
21 May 2015

Implementing a new analysis in a recasting tool

- Picking up an experimental publication
 - Reading
 - Understanding

Writing the analysis code in the tool internal language

- Getting the information missing from the publication for a proper validation
 - * Efficiencies (trigger, electrons, muons, b-tagging, JES, etc.)
 - ★ Including p_T and/or η dependence
 - **★** Accurate information
 - Detailed cutflows for some well-defined benchmark scenarios
 - ★ Exact definition of the benchmarks (SLHA spectra)
 - ★ Event generation information (cards, tunes, LHE files if possible)
 - * Expected number of events in each region and cross sections
 - ♣ Digitized histograms (e.g., on HEPDATA)



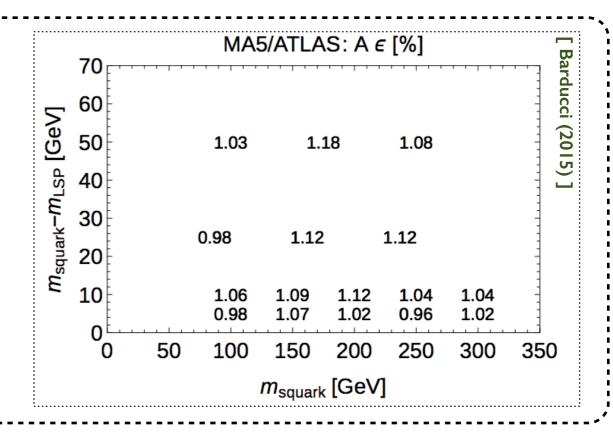
Comparing tools and real life

Example I: CMS-SUS-I3-II (stops with one lepton)

- Missing information for the validation
 - **Efficiencies**
 - Cutflows and Monte Carlo information for given benchmarks

Example 2: ATLAS-EXO-2014-04 (monophotons)

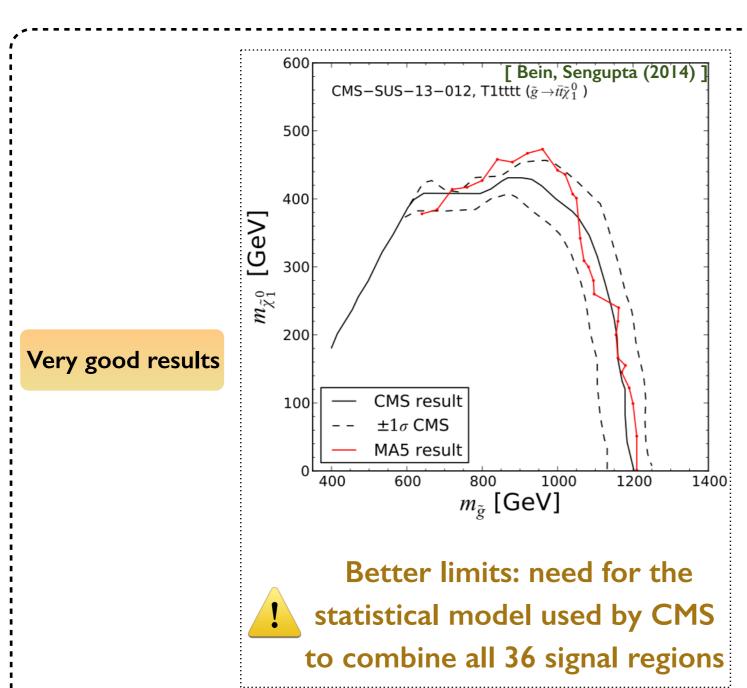
- Missing information
 - Crack in the detector: no photons in the [1.37-1.52] η -range
 - * Tight photon requirements

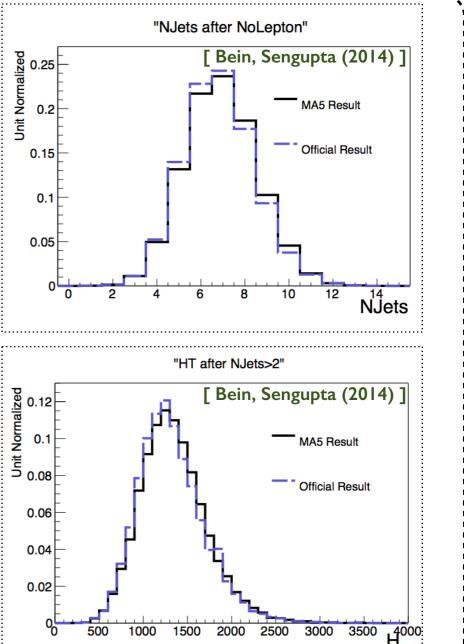


- Event generation for the test benchmarks
 - ♣ Monte Carlo information (cards, tunes, etc.)

Kindly provided by ATLAS

Very good results (ratio of efficiencies)




Example 3: CMS-SUS-13-12 (susy with jets and MET)

♦ Implementation by a CMS person who took part to the CMS analysis

Easy implementation & validation

Example 4: When things are borderline... (1/2)

- Large differences are found
 - ❖ ATLAS-CONF-2013-047 (multijet + missing energy)
 - ★ Large differences for one or two signal regions (out of 8)
 - ★ The reinterpretation cannot be totally wrong as 6 regions are fine
 - ★ Issues related to the jets (smearing, Monte Carlo details)

Monte Carlo info is desirable

#	Cut Name	$\epsilon_{ m ATLAS}$	$\epsilon_{ ext{Atom}}$	±	Stat	$\epsilon_{\text{Atom}}/\epsilon_{\text{ATLAS}}$
1	base: $pTj1 > 130$	100.	100.	±		
2	base: $pTj2 > 60$	99.37	99.94	±	1.44	1.01
4	pTj3 > 60	79.02	95.88	±	1.41	1.21
4	B base: $dphi_min_23 > 0.4$	69.1	79.96	±	1.28	1.16
5	BT: MET/meff_3 $j > 0.4$	33.19	26.14	±	0.73	0.79
6	BT: meff_inc > 1800	23.8	19.09	±	0.63	0.8

#	Cut Name	$\epsilon_{ m ATLAS}$	ϵ_{Atom}	±	Stat	$\epsilon_{\text{Atom}}/\epsilon_{\text{ATLAS}}$
1	base: pTj1 > 130	100.	100.	±		
2	base: $pTj2 > 60$	94.5	93.96	±	1.08	0.99
3	pTj3 > 60	44.12	35.26	±	0.66	0.8
4	pTj4 > 60	14.38	8.87	±	0.33	0.62
5	C base: $dphi_min_23 > 0.4$	12.62	7.82	±	0.31	0.62
6	C base: dphi_min_inc > 0.2	11.63	7.39	±	0.3	0.64
7	CM: MET/meff_4 $j > 0.25$	9.	5.86	±	0.27	0.65
8	CM: meff_inc > 1200	3.75	2.55	±	0.18	0.68

Example 5: When things are borderline... (2/2)

- ◆ ATLAS-EXOT-2014-04 (monophotons)
 - * Effects non-reproducible with DELPHES (cleaning cuts, triggers, good vertexing)
- ◆ ATLAS-SUS-2013-09 (stops in the dilepton channel)
 - Information on effects non-reproducible with DELPHES lost (student has quit physics)

Efficiencies computed by hand Maybe model-dependent

Very good results (for a SUSY benchmark)

Signal region	H160: 2 b-jets, 2 SF leptons					
Process	$\tilde{t} ightarrow b ilde{\chi}_1^\pm ightarrow b W^{(\star)} ilde{\chi}_1^0$					
Point	$m(\tilde{t}) = 300 \text{ GeV}, \ m(\tilde{\chi}_1^{\pm}) =$	150 GeV, $m(\tilde{\chi}_1^0) = 5$	50 GeV			
Source	ATLAS	CheckMATE				
Generated events	157106.0	50000.0				
Total Events	157106 ± 0	-				
Generator Filter*	100000 ± 190	-	_			
Cleaning Cuts*	990930 ± 0	-	$\overline{\mathbf{x}}$			
Trigger*	49660 ± 180	-	Kim			
Two 10 GeV SF leptons	3668.1 ± 60	3670 ± 18				
Isolation	2844.6 ± 53	3270 ± 18	20			
opposite sign	2805.2 ± 52	3270 ± 18	(2015)			
$m_{\ell\ell} > 20~{ m GeV}$	2744.7 ± 52	3150 ± 18				
Trigger lepton p_T requirements	2613.5 ± 51	2980 ± 18				
2 b-jets	1074.1 ± 33	1190 ± 13				
$m_{T2}^{\mathrm{b-jet}} \geq 160 \; \mathrm{GeV}$	151.9 ± 12	182 ± 5.4				
$m_{T2} \le 90 \text{ GeV}$	147.6 ± 12	175 ± 5.3				
leading lepton $p_T < 60 \text{ GeV}$	75.3 ± 8.7	60.3 ± 3.1				

Example 6: some of the not so good guys...

- Missing or incomplete validation information
 - **❖** CMS-SUS-12-028 (α_T)
 - ★ No cutflows; no answers from CMS to requests

X Dead end!

- CMS-SUS-13-007 (1 lepton+b-jets+met)
 - ★ Semi-official validation material provided (that cannot be used in the public validation)
 - **★** No cutflows
 - ★ Messy definition of the benchmark points

▲ We'll do our best...

Missing or incomplete analysis information

- ♣ ATLAS-EXOT-2013-10 (monolepton)
 - ★ The average trigger efficiency is 80%–90% in the muon channel"
 - ★ 80% of the muons are reconstructed with most of the loss coming from...
 - ★ No precise information on signal event generation
 - ★ No signal distributions on HEPDATA

Unfortunately: many more examples!

The wishlist - part I

- ◆ Analysis description
 - Clear description of the selections, including their sequence
 - \star A tabulated form would be appreciable (possibly on the analysis wiki pages)
 - * Efficiencies for physics (electrons, muons, jets, taus, b-tagging, mistagging rates, etc.)
 - \star Including p_T and η dependence
 - ★ Or a reference with the information
 - * Efficiencies for triggers, event cleaning, etc.
 - ★ Effects that cannot be modeled in our fast simulation
 - Digitized figures
 - ★ Missing in particular the performance results (reading off log-scale histograms...)
 - ★ ROOT format, text format, etc.
 - Special variables (e.g., the CMS razor)
 - ★ Providing snippets of code would be highly appreciated
 - \star Some variables have different definitions in different analyses (e.g., asymmetric M_{T2})

The wishlist - part 2

- ♦ Validation material ➤ quality of the reinterpretation
 - Benchmark scenarios
 - ★ Spectra and decay tables (under an SLHA-form)
 - ★ Several scenarios are appreciable
 - ★ Publicly available on the wiki pages or HEPDATA
 - Monte Carlo tools configuration
 - ★ Cards, tunes, merging information, etc.
 - ★ Better, the CMS way: LHE files with shower inputs (no new source of discrepancies)
 - ★ Publicly available on the wiki pages or HEPDATA
 - Detailed cutflows for the benchmarks, with the correct selection ordering
 - ★ Including each step of the (pre)selection
 - ★ For several benchmarks
 - ★ The more steps are available, the better (even the preselection, the cleaning, etc.)
 (pin-down the differences in our machinery, in the fastsim vs. CMS-ATLAS simulation)
 - * Kinematical distributions at different steps of the selection
 - ★ Extra cross-check of our machinery

The wishlist: summary

- ◆ Analysis description
 - Clear description of the selections, including their sequence
 - Efficiencies for physics
 - * Efficiencies for triggers, event cleaning, etc.
 - Digitized figures
 - Special variables
- **♦** Validation material
 - Benchmark scenarios
 - Monte Carlo tools configuration
 - Detailed cutflows
 - Kinematical distributions

Reproducibility is the ability of an entire experiment to be reproduced, possibly by an independent (pheno) study