

High β* 2015

by Helmut Burkhardt

with input from Riccardo de Maria for the optics file repository and VdM synergy and Tatiana Pieloni for the beam-beam team

Basic strategy 2015 : priority for high-energy 25 ns commissioning,

- time for physics production and MDs reduced
- ~1 week for special runs VdM + high-β* 90 m

Very high $\beta^* > 1000 \text{ m}$ after 2015 when Q4 cables installed in both IP1&5

Start from known optics, only change what is needed, minimize extra setup time Maximize synergies with standard optics and VdM $\beta^* \sim 20$ m Use the existing de-squeeze 11 --> 90 m

New: Crossing angle for more bunches as requested by TOTEM Make crossing angle and separation bumps compatible with standard physics / VdM 2015 : use all 3 MCBX at same current Naming conventions within madx files, many changes from V6.503 to run II directory : /afs/cern.ch/eng/lhc/optics/runII/opt_med

more : my presentation in TREX#6 26/2/2015

Works as expected -- apply to Q4 in IP1 asap !! (ECR in prep.)

 β_{*} (m), β_{*} (m)

Standard 90 m optics

 $\pi/2$ in y to roman pot and ~ π in x and, as in 2011/2012, shown for IP5, RP at 220 m

V6.503/HiBeta/ IP1_beta90.str, IP5_beta90_2010.str -->

runII/opt_med/ IR1/ir1_90000.madx IR5/ir5_90000.madx

With current cabling required to have quad strength ratios within 0.5 < b1/b2 < 2.0

kq4.15b1/	kq4.15b2=	0.970945	kq4.r5b1/	kq4.r5b2=	1.10542
kq5.15b1/	kq5.15b2=	1.04019	kq5.r5b1/	kq5.r5b2=	0.961367
kq6.15b1/	kq6.15b2=	1.05394	kq6.r5b1/	kq6.r5b2=	0.938599
kq7.15b1/	kq7.15b2=	1.5816	kq7.r5b1/	kq7.r5b2=	0.525421
kq8.15b1/	kq8.15b2=	1.33077	kq8.r5b1/	kq8.r5b2=	0.571775
kq9.15b1/	kq9.15b2=	1.03071	kq9.r5b1/	kq9.r5b2=	0.964224
kq10.15b1/	kq10.15b2=	0.94919	kq10.r5b1/	kq10.r5b2=	1.05372

Standard injection, ramp, de-squeeze IP1 and IP5, first part already used for VdM

Technical changes required compared to run1 de - squeeze :

run1 : \pm 2 mm constant separation in IP1 & 5 through de-squeeze to 90 m, beyond strength limits at 7 TeV, beams size reduced (1/ \sqrt{E}),

run2 : ± 1 mm constant separation in IP1 & 5 through de-squeeze to 90 m

At p = 6.5 GeV, $\beta^* = 90$ m at $\epsilon_N = 3.75$ μm $\sigma^* = 220.72$ μm $\Delta sep = \pm 1$ mm 8.8σ at $\epsilon_N = 2$ μm $\sigma^* = 161.19$ μm $\Delta sep = \pm 1$ mm 12σ

Principle of separation by crossing angle at higher β^*

Low β^* (< L*)

beam size and separation increase $\propto \Delta s$, \Rightarrow separation in units of σ about constant around IP all parasitic crossings adding up with similar contribution

Instead high β* **:**

beam size ~ constant = σ^* , separation in σ increases as $\Phi\Delta s$ where Φ is the crossing angle, dominated by 1st parasitic crossing 100 ns bunch spacing 4× more separated than 25 ns and negligible contribution from next 200, 400 ns ...

We had one higher-luminosity fill 2836 with 112 bunches / beam on 13/07/2012 Without crossing angle : Maximum #bunches = 156 For 2015 : Matching crossing angle bumps using the default planes and correctors (up to Q6) for the existing 90 m optics Vertical crossing in IP1 Horizontal crossing in IP5 Strength files for tests / simulations made available to TOTEM, ALFA in spring 2014 Now finalized with Riccardo for maximum synergy with standard optics and VdM

6.5	TeV.	separation	in σ f	or ±50	urad	crossing	angle
	,	· · · · · · · · · · · · · · · · · · ·					

spacing in ns	sep in σ	sep in σ	max # bunches	
	2 μm	3.75 μm		
25	2.4	1.8	2808	
50	5.5	4	1404	
75	8.3	6.1	936	
100	11	8	702	-

IR1, ATLAS-ALFA

Vertical crossing

IR5, CMS-TOTEM

Horizontal crossing

Shown for ±1 mm separation (end of de-squeeze) ± 50 μrad (half) crossing angle

100 ns spacing, 10¹¹ p/bunch, 6.5 TeV, ±50µrad crossing angle, 2µm emittance

Tedious and time consuming (all names, changed, strength slightly changed...) final versions expected to go on <u>http://lhc-optics.web.cern.ch/lhc-optics/www/</u> but also useful to spot possible issues -- of more general relevance

Additional complication for high- β optics : global tune compensation 90m IR1+IR5 Δ qx = 0.4455, Δ Qy = 0.1097 with main quads remaining ± 0.002 differences b1, b2 with trim quads Use 90 m files in runII/opt_med IR1/ir1_90000.madx IR5/ir5_90000.madx with currently on_x1 := 0.8333 ; on_x5 := 0.8333 ; to get ±50 µm crossing angle

Thin optics version required for tracking, beam-beam (footprint)

- needed for any optics considered, including high- β
- using a single sliced runII/opt_med/V6.5.thin.seq

checked and improved, relevant for all 2015 optics ➡

(old) default

TEAPOT, same # slices

16 slices for Q1-Q3, ~15% beta-beat (max ~50%) with (old) default (simple) reduced to <1% with TEAPOT slicing

- 2015 : files prepared, checked and passed on to OP re-commissioning 90 m, start with few bunches, then more with crossing angle
- 2016 : cables installed both IR1 & IR5 TOTEM/ALFA short cross section measurement runs at very high $\beta^* > 2000$ m more extended high luminosity run at 90 m at some point will pay off to speed up by higher injection β^* or combined ramp & de-squeeze 90 m likely to be continued in 2017, 2018, with new very fast (10ps) timing detectors to deal with higher pile-up and other forward detectors (AFP or similar) outside the beam pipe

2022: high- β program expected to end with LS3

Backup

Quadrupole strength evolution during de-squeeze 11-90 m

13

TOTEM request

Mario Deile LPC Meeting <u>18.09.2013</u>

reminder from LPC 11.06.2013

- 1. Substantial running at $\beta^* = 90$ m
 - early commissioning at new energy while LHC lumi is low
 - \rightarrow elastic scattering + total cross-section
 - introduce crossing-angle
 - → run with ~ 1000 small bunches (7 x 10¹⁰) → low pileup ($\mu \sim 5\%$) at L ~ 10³¹ cm⁻² s⁻¹
 - \rightarrow study Central Exclusive Production with CMS

request: 2 x 1 week

2. Very high β^* (≥ 2500 m to reach CNI region)

Will try to get the magnet cables installed during LS1.

- 3. Low β^* : Insertion tests with consolidated horizontal RPs
- 4. RP Operation at any lower-energy or ion runs requested by others