
Jenkins & CMS Build
Infrastructure

Giulio Eulisse

Problem
• CMS Offline SW (CMSSW) consists of 6M SLOCs, roughly

150 active users per month.

• Same amount of code from roughly 100 externals, which
we keep under our control, from gcc / glibc up (the only
things we do not compile ourself are basically the kernel
and X11).

• 13 active release cycles, 4 active architectures. Up to 40
releases / day.

• All of this using Git & GitHub: as part of the migration we
agreed to tests PR for users in order to have them
surrender their “commit everywhere” rights. 400 PRs per
month need to be tested (sometimes multiple times).

• An extensible open source Continuos Integration (CI) server: http://
jenkins-ci.org. Opensource, Java based, but works well also for  
C++ projects. Literally hundreds of plugins and wide industry
support.

• Initially used just to build releases, now used as a general batch
system for release engineering and deployment:

• Maintenance jobs (clean up jobs, web page generation)

• Day by day integration builds, validation & QA

• Pull Request testing & QA

• (Semi) Automated release building

• Scheduling jobs on a 250 cores, CERN OpenStack, cluster.

Driving CI: Jenkins

http://jenkins-ci.org

• Simplifies the creation of complex workflows. Jobs
have dependencies and can trigger different behavior
depending on results of the previous step.

• Simplifies access to logs and keeps history of what
happens.

• Simplifies access to build infrastructure to newcomers.
Pointing them to a Jenkins “Job” page seems to be
much easier than having them look at some script.

• Provides scheduling, structuring and monitoring of
jobs.

Driving CI: Jenkins

• Actual payload scripts are actually maintained in a GitHub
repository rather then in Jenkins itself.

• For “multistage” behavior, we use comments in GitHub issues to
drive integration.

• Pull request approval process is updated by a Jenkins job which
keeps track of the +1 / -1 by coordinators in GitHub PR
comments.

• Automated release building steps (request, build, upload,
announce) are also tracked as comments in a GitHub Issue.

• Using GitHub comments as state tracker for our bot allows us to
avoid a private integration state tracking DB.

• Using GitHub PR labels to show current state for various PRs.

Driving CI: cms-bot

• Some tasks are bigger then others: non-
homogeneous load => static partitioning of build
machines hits us.

• One alternative is to create fake builders, so that
short lived, trivial tasks are executed “out of band”
WRT long tasks. This leads to maintenance burden.

• Apache Mesos to the rescue. Jenkins can create
differently sized slaves on a Mesos Cluster,
dynamically distributing payloads. This solution has
also the advantage that Mesos is really a must for
long running services (e.g. Elasticsearch) as well.

Dealing with load

CMS Build Infrastructure

Slave Slave Slave

Resource arbitration via 3-way
redundant Apache Mesos

setup, using different
OpenStack zones, leader

election via Zookeeper (1 dead
master resilience)

Service Discovery via DNS,
populated with A and SRV

records discovery by mesos
registry information (ala

Consul) or using Marathon
Framework REST API.

Slave Slave Slave

Master MasterMaster

nginx /
haproxy
frontend

nginx /
haproxy
frontend

nginx /
haproxy
frontend

Frontend with HA setup using
CERN LB DNS, nginx for SSL
termination and authorisation,
haproxy for traffic routing and

SSO backend

Services run on
undifferentiated CPU boxes,

either running on the bare OS
or running inside Docker

Services which we run varies
from Jenkins build slave, to

web server backends or
Elasticsearch

All the services are being
restarted automatically by

Marathon whenever they die
on machines that offer a

compatible set of resources.
Looking forward dynamic
resource allocation (i.e.

persistent disk storage on
slaves) to simplify setup even

further.

• Another problem is that sometimes we need to
provide support for both SLCX and SLC(X+1).

• Sometimes is desirable to migrate infrastructure to
a new platform before Offline SW provides support
for it.

• Again, Apache Mesos and Docker come to the
rescue. Builders are created on the fly, using a
special Docker container (e.g. based on SLC5). We
can therefore decouple migration of the
infrastructure from the migration of job environment.

Dealing with multiple archs

• Jenkins provides some minimal level of monitoring /
logging:

• Job statistics

• Slave statistics

• Build log (possibly parsed via various plugins)

• Now that Mesos allows us to maintain an
Elasticsearch cluster for “free”, we have started to
push more and more information into it to allow data
mining via the Opensource “Kibana” dashboard.

Monitoring

Monitoring: Jenkins

Available
queues

Errors
IBs

Start time
distribution

Monitoring: ES & Kibana

• Results for general consumption are created as
static views from different sources (Elasticsearch,
log tarballs on AFS, etc) and published routinely
(via Jenkins) as “GitHub Pages”.

• Allows us to exploit the GitHub CDN for most of
the web pages. Big data files still kept at CERN.

• Allows us to keep historical information at
minimal cost (do not underestimate git ability to
compress very similar, day by day, data).

Presenting results

