

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

TPC in Run 3

Marian, Kai, Jens

Offline week, March 2015

Outline

- TPC calibration flow in run 3
- Integrated digital currents
- Space charge calibration procedure
- IDx1D vs 2D cluster finder
- Further investigations for tracking in run 3
- TPC in AliceO²
- Issues summarised under 'Run3 preparation' in JIRA, filter: https://alice.its.cern.ch/jira/issues/?filter=10708

Overview

Synchronous Stage (FLP)

Integrated digital currents (IDC)

Offline week, March 2015 - TPC in run 3

Overview

Offline week, March 2015 - TPC in run 3

Overview

Overview

Overview

Track refitting with best calibration

Offline week, March 2015 - TPC in run 3

Marian, Kai, Jens

Integrated digital currents

- Integrated digital (ADC) currents (IDCs) required in the data stream
- Proposed procedure
 - On FLP integrate ADC counts per pad over 1ms
 - Build robust average (e.g. median) over group of channels
 - Inject to the data stream
- Complication:
 - The SCD depend on the ion density history of the last 160ms (ion drift from read out to cathode)
 - FLPs need to (circularly) buffer the last 160 IDC values and attach it as payload to the data sent to the EPNs
- Should be integrated into the AliceO² framework

TPC calibration flow in run 3 Long term map scaled with IDCs

- Long term average distortion map
 - Distortion vectors in r, ϕ ,z bins (72*181*166)
 - Memory representation float \rightarrow 25MB
 - Update interval few minutes
 - + scaling matrix elements (depends on dimensionality, 0D, 1D, 2D, 3D, static more or less, few tens of MB)

• Usage of IDCs

$$\vec{\Delta} = \vec{\Delta}_{ref} + \sum_{i} \frac{\partial \vec{\Delta}_{ref}}{\partial \rho_{sc}^{i}} \delta \vec{\rho}_{sc}^{i}$$

Offline week, March 2015 - TPC in run 3

https://alice.its.cern.ch/jira/browse/ATO-134

TPC calibration flow in run 3 Fine granular calibration – ITS-TRD interpolation

- From ITS TRD interpolation
 - Only residual miscalibration map on top of scaled average
 - \rightarrow The better the scaling, the better the possible compression
 - Much coarser granularity than distortion map
 - Used for the TDR: r,φ,z bins 10*144*50 → 0.6 MB (uncompressed, float representation)
 - Extraction of final calibration requires access to 'histograms' from adjecent TFs (interpolatin – moving average)

https://alice.its.cern.ch/jira/browse/ATO-108

Offline week, March 2015 - TPC in run 3

Cluster finder 2D vs. 1Dx1D

Computing requirements – Synchronous reconstruction

- Up to 100kHz IR
 - Studies ongoing → Service task: Edgar Perez Lezama

 Limited statistics

 Currently only global track parameters

Cluster QA tbd

https://alice.its.cern.ch/jira/browse/ATO-144

Offline week, March 2015 - TPC in run 3

Full distortions in AliRoot Test if eluster to treek

Tracking in run 3

Further investigation

- Test if cluster to track association works with full distortions (no correction) with current HLT code
- \rightarrow might ease reconstruction

https://alice.its.cern.ch/jira/browse/ATO-38

Offline week, March 2015 - TPC in run 3

Marian, Kai, Jens

fRow+(fDetector>35)*63:fZ

Workflow in run 3 – lossy compression – potential

- Category 1: f1 ~70 % of background clusters
 - low momenta loopers to be signed and then rejected (if not overlap with category 2) - m1(0 bits) to represent
 - \rightarrow Loop finder efficiency (ϵ) to be validated (ϵ *f1)
- Category 2: f2 ~30% of remaining will be close to the tracks (more than one cluster should be allowed to be attached)
 - to be compressed to m2(~30) bits per cluster expected
 - \rightarrow m2 expectation to be validated
- Category 3: rest ~ f3 (1-10%) will be not assigned to any topology above to be compressed to m3 bits (~40.)
- With this strategy factor 20 will be reached

Clusters belonging to physics tracks Clusters of non-physics tracks

https://alice.its.cern.ch/jira/browse/ATO-101

Short term goals

- Material + geometry ported
- Hit creation being worked on
 - Requires many classes from AliRoot
 - → Detector description classes
- Quite some work, especially if new coding conventions should be met
- Realistic implementation of distortions challenging
 - Required to develop calibration procedures
- For physics simulation parametrised distortions should be enough

https://alice.its.cern.ch/jira/browse/ATO-157

/// Construct the detector geometry void constructDetectorGeometry(); Bool t Detector::ProcessHits(FairVolume* vol) // Called for every step in the Time Projection Chamber // parameters used for the energy loss calculations const Float t prim = 14.35; // number of primary collisions per 1 const Float t poti = 20.77e-9; // first ionization potential for Ne const Float t wIon = 35.97e-9; // energy for the ion-electron pair const Float t kScalewIonG4 = 0.85; // scale factor to tune kwIon for const Float t kFanoFactorG4 = 0.7; // parameter for smearing the nu const Int t kMaxDistRef =15; // maximal difference between 2 // Float t prim = fTPCParam->GetNprim(); // Float t poti = fTPCParam->GetFpot(); // Float t wIon = fTPCParam->GetWmean(); const Float t kbig = 1.e10; Int t id, copy; Float t hits[5]; Int t vol[2]; TLorentzVector p; vol[1]=0: // preset row number to 0 if (!fPrimaryIonisation) TVirtualMC::GetMC()->SetMaxStep(kbig);

/// Create the detector materials
virtual void createMaterials():

Further work

Compression studies (loss-less + lossy)

https://alice.its.cern.ch/jira/browse/ATO-101 https://alice.its.cern.ch/jira/browse/ATO-73

Digitisation simulation (SAMPA chip)

https://alice.its.cern.ch/jira/browse/ATO-123

Development of ITS-TRD/TOF interpolation

https://alice.its.cern.ch/jira/browse/ATO-108

 Methods for fast space charge disortion calculation/correction

https://alice.its.cern.ch/jira/browse/ATO-10

Offline week, March 2015 - TPC in run 3

Marian, Kai, Jens

Backup

Offline week, March 2015 - TPC in run 3

Marian, Kai, Jens

Integrated digital currents

- Size estimates of IDCs
- Most conservative: Integration for every readout pad
 - \rightarrow 560k*4byte \rightarrow 2.1MB / ms
 - \rightarrow 320MB per header information
 - \rightarrow fractional input on (compressed) data: ~4%
- More realistic estimate:
 - Grouping in r, ϕ with granularity of the distortion map: 26k \rightarrow 0.1MB / ms

Calibration requirements General remarks

- Calibrations have two categories
 - Static (over periods or longer)
 - → Not considered problematic at all in terms of disk space, memory consumption, CPU requirements
 - Time dependent (ms to minute level)
 - → Mainly unproblematic
 - \rightarrow Space-charge distortion main impact
- All will be described in a note

Calibration requirements

Static calibrations

Туре	Memory size [MB]	Update interval	Input
Pedestal / Noise	2.2/2.2	Per fill	Raw data
Gain Map*	2.2	yearly	⁸³ Kr + tracks
Alignment	50	yearly	Tracks (low intensity run, high statistics)
contingency	100	Per fill	

- No real impact on computing
- *Gain Map: Assumes no relevant local gain fluctuations
 - \rightarrow To be shown from test beam data taken this week
 - Worst case, gain map update on sec. level, store wrt. Average \rightarrow high compression (few bits per channel)

Calibration requirements

Time dependent calibrations

Туре	Memory size [MB]	Update interval	Input
Drift velocity*	0.004	~15 min	ITS-TPC matching
Gain variation**	0.004*72	~15min	Tracks (MIP)
SCD (sync)	25	Few minutes	→ next slides
SCD (async)	0.6 (+sync)	5ms	→ next slides
contingency	100	~15min	

- *) will be most probably fitted with SCD (spacecharge distortions) – interdependent
- **) See previous slide

Calibration requirements SCD async

- From ITS TRD interpolation
 - Only residual miscalibration map on top of scaled average
 - \rightarrow The better the scaling, the better the possible compression
 - Much coarser granularity than distortion map
 - Used for the TDR: r, φ ,z bins 10*144*50 \rightarrow 0.6 MB (uncompressed, float representation)
- Computing impact
 - **ITS-TRD** interpolation
- Filling and analysing of residual histograms per cell → CPU to be estimated