
ALICE Offline Week - 19.03.2015

Dario Berzano

ALICE Offline - CERN

Documentation status, 
automatic build tests with CDash and 

daily tagging strategies

Documentation

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Rationale

• AliRoot code had diverse documentation formats:

• Official: THtml

• Some private parts: Doxygen was already used

• Most code documented with non-specially formatted comments

• Why Doxygen

• No ROOT required to generate doc

• Has a cache: continuous incremental generation is fast

• More robust

3

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

alidoc.cern.ch

• Generated and archived for every tag

• Every two hours: generated from master

4

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Documentation conventions

• Documentation conventions are available here:

• https://dberzano.github.io/alice/doxygen

• What is covered:

• Class and macro general description

• Function comments

• Commenting class data members

• Markup language used: Markdown - much easier than HTML

• If you write a new class, please document it from the beginning

5

https://dberzano.github.io/alice/doxygen

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Converting from THtml to Doxygen

• We thought we could run a script and convert it in one go

• …but AliRoot did not follow clear conventions: automation impossible

• Solution: an artificial intelligence doing the work for us

• Other solution: a script doing most of the work for you

• We wrote the script and its doc

• It does most of the work

• You check its output and make minor adjustments

• When happy you commit

6

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

thtml2doxy.py
• Python script helping* with the conversion

• Based on libclang’s Python bindings

• *Must be used carefully…

• Lots of dirty coding

• Always check the diff before committing!

• Very sensitive to libclang’s version: Python API changes frequently

• …but at the end of the day it saves from lots of manual editing

• How to use it: https://dberzano.github.io/alice/doxygen/
#convert_existing_documentation_to_doxygen

• Helping ROOT converting their doc to Doxygen

7

https://dberzano.github.io/alice/doxygen/#convert_existing_documentation_to_doxygen

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Images from ROOT macros

• THtml supports on the fly image generation via macros

• Macro block: BEGIN_MACRO … END_MACRO

• Internally, macro is run and the pad is printed to an image file

• In ALICE we want to generate doc without having ROOT

• Macro extracted to .C file and substituted with Markdown tag:

![Picture from ROOT macro](TBlah_h_foobar.png)

• Both image and source macro committed

• Manually exec a helper script to regenerate image

8

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Images from ROOT macros

• Images are PNG files committed under <yourdir>/imgdoc

• Utility to (re)generate images from ROOT macros

9

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

LaTeX blocks

• Both THtml and Doxygen support LaTeX:

• ROOT: BEGIN_LATEX … END_LATEX

• Doxygen: \f[… \f]

• Symbols like #sigma are replaced with the native \sigma

• Doxygen supports MathJax: no need to pre-render formulas!

10

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Manually adding directories to Doxygen

• In order to avoid confusion, only the directories converted to
Doxygen are considered when generating documentation

• When you are done, you must add the directory explicitly

• This is explained here too: https://dberzano.github.io/alice/
doxygen/#adding_your_directories_and_images_to_doxygen

• Probably you don’t have the permissions to do that: open a JIRA
ticket asking to add the directory to Doxygen

11

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Check result before pushing

• Generating documentation is easy:

make doxygen

• Generates HTML files locally

• You can easily test it before pushing

• Only Graphviz and Doxygen required

• This is explained here: https://dberzano.github.io/alice/doxygen/
#run_doxygen

12

https://dberzano.github.io/alice/doxygen/#run_doxygen

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Doxygen, ROOT 5 and ROOT 6

• Inline data member comments in Doxygen can have two formats:

int a; ///< Description of a  
int b; //!< Description of b

• This used to be compatible with ROOT 5’s special comments:

int a; ///< ROOT non-transient and valid Doxygen  
int b; //!< ROOT transient and valid Doxygen

13

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

ROOT 6 broke comment compatibility!

• ROOT 6 broke this compatibility (//! is OK, but //!< is not):

• int a; ///< ROOT non-transient and valid Doxygen  
int b; //!< Valid Doxygen, but non-transient!  
int c; //! Ignored by Doxygen, ROOT transient

• ROOT 6 interprets //!< as a Doxygen-only marker and does not mark
the variable as transient any longer!

• Issue opened to ROOT: https://sft.its.cern.ch/jira/browse/ROOT-7125

• Workaround: transient member comment in Doxygen, ROOT 5 and 6:

• int a; //!<! Valid Doxygen, transient in both ROOT 5 and 6

• Notice the double exclamation mark!

14

https://sft.its.cern.ch/jira/browse/ROOT-7125

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Who writes the doc?

• AliRoot

• TPC: we have partly done it as an example

• Lots of images and formulas: it was a good testing

• MUON: it was already in Doxygen format (thanks Ivana!)

• STEER, ANALYSIS,…: to be done by the Offline (will do ASAP)

• AliPhysics

• PWG members should do that

• In general every user is responsible of her own code

15

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Who writes the doc?

• We have a sensible documentation format and conventions

• Automatic generation and instructions are in place

• You need to convert and/or write the doc

16

CTest and CDash

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

A dashboard for AliRoot builds

• CTest and CDash: test your build and display results on a dashboard

• Dashboard: cdash.cern.ch

18

http://cdash.cern.ch

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Features

• Display status of builds on a shared dashboard

• How many more or less warnings/errors with respect to last build

• Build status on different platforms at a glance

• Email notifications on new warnings/errors

• Also display results from custom unit and functional tests

• Independent from the build system:

• CDash is only used to display results from CTest

• CTest can be manually launched, or automated

19

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

What we are currently testing

• We are testing AliRoot Core only on Ubuntu 14.04 LTS

• Continuous builds (incremental “make” after each single commit)

• Nightly builds (from scratch)

• Those are the “certified” builds

• In addition to Continuous and Nightly, there’s an Experimental section

• Everybody can launch a test: results published on cdash.cern.ch

• Users/sites with special builds/needs can monitor and share results
on the same dashboard

• Thanks to Mohammed for putting it in place!

20

http://cdash.cern.ch

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

What we plan to have

• AliRoot and AliPhysics

• Automatic Continuous and Nightly builds on several platforms

• Ubuntu, OS X, SLC/CC, Fedora

• Automatic email notifications to the committer that broke a build

• They immediately know what did not work and on what platform

• Add basic functional tests

• Display the results from builds coming from our next build system

• See Giulio’s presentation on Jenkins

21

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

You can test it now

• Works on AliRoot Core

• Create a config file containing the lines:

export LINUX_FLAVOUR=ubu1404 # arbitrary 
export ROOTSYS=path_to_root  
export BUILDDIR=tmp_dir_where_to_build_aliroot 
export SOURCEDIR=aliroot_source_dir

• Launch it - from the AliRoot Core source:

./Dart.sh <path_to_config_file>

• Results published at the end on cdash.cern.ch under Experimental

22

http://cdash.cern.ch

Daily tagging strategies for AliPhysics  
(discussion)

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Current status

• AliPhysics has daily tags

• At 4pm every day a script builds and tags

• Trains can be started with the new tags

• This is a porcelain system

• Users rushing to catch the train may break all at the last minute

• We are skipping daily tags if one user broke all: unfair for the others

• Recover from broken builds

• Lots of daily tedious manual work to revert commits before 4pm

• At least thanks to the split, problems are confined to AliPhysics

24

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Lots of room for automating

• Rationale:

• Do not skip daily tags

• Do not involve manual retagging

• Two major proposals plus one (collected during weekly meetings):

• Some form of automatic revert of broken commits

• Do not tag at HEAD but at the closest compiling commit

• Use pull requests and label them accordingly (with GitHub/GitLab)

25

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Automatic revert

• Order-0 idea: if a commit is broken, git revert <commit>

• Problem: lots of commits in AliPhysics

• Many of them don’t compile: we would litter the repository with
plenty of “revert commits”

• It is not always possible to automatically revert a commit: there
might be merge conflicts due to other commits!

• Even if the revert applies, we might accidentally apply a revert after
an appropriate fix has been committed already

• IMHO automatic revert is complicated and risky to implement

26

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Verified branch

• Separate branch where no one can push: call it verified

• Every commit from master is ported to verified only if it compiles

• No cherry-pick: verified and master share history (verified behind)  
 

• If a commit breaks, stop porting new commits to verified 
 

• If a fix commit appears, port it along with all the skipped ones: 
 

27

verified+master

verified master (broken)

masterverified

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Verified branch

• Advantages:

• We tag from verified: no skipping tags, no manual work

• Objections collected so far:

• “Users will not know if their code made it to the daily tag” → check
the Git history

• “It’s complicated for users to check the history” → send users an
email with a clear résumé of today’s commits

• “Users will have to wait for commits to be checked” → incremental
builds are fast, it’s a little more wait for a good cause

28

Dario.Berzano@cern.ch - ALICE Offline Week - Documentation, CTest/CDash, automatic tagging strategies

Labeled pull requests

• Assumptions:

• Using GitHub/GitLab

• Every user has her own remote repository and pushes to it only

• Users make a “pull request” to the main repository

• Automatic build system checks and labels pull requests:

• e.g. build-osx-ok build-ubu1404-broken etc.

• Administrators of main repo know if the pull request cleanly compiles

• They know if they can merge it safely

• CMS workflow - see presentation from Giulio

29

Thank you

