ALBA S.L.S.	TCSPC	Results
000	00000	000

Development and applications of Time Correlated Single Photon Counting at ALBA

Laura Torino

October 8, 2015 Seville, Spain International Conference on Accelerator Optimization

ALBA S.L.S.	TCSPC	Results
•00	00000	000

ALBA

The Facility

- ► Energy: 3 GeV
- ► Current: up to 400 mA
- ► RF-Frequency 500 MHz
- Seven active beamlines
 - ► +1 Optical beamline
 - ► +1 x-ray Fronted

○●○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	ALBA S.L.S.	TCSPC	Results
	000	00000	000

BEAM DIAGNOSTIC USING SR

SR characteristics Beam characteristics

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-destructive

Disadvantages

- Need of a source
- Radiation exposure
- "Localized"
- Machine design

ALBA S.L.S. TCSPC R	lesults
o●o 00000 0	000

BEAM DIAGNOSTIC USING SR

SR characteristics Beam characteristics

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-destructive

Disadvantages

- Need of a source
- Radiation exposure
- "Localized"
- Machine design

Longitudinal and transverse beam characteristics can be inferred from the synchrotron radiation

ALBA S.L.S.	TCSPC	Results
00•	00000	000

POWER DISTRIBUTION

ALBA S.L.S.	TCSPC	Results
000	●000 0	000

MOTIVATION

Filling pattern measurements are needed for selective top-up operation. *Future* bunch purity measurements will be needed for time resolved experiments.

ALBA S.L.S.	TCSPC	Results
000	0000	000

FAST CURRENT TRANSFORMER

6

ALBA S.L.S.	TCSPC	Results
000	●0000	000

FAST CURRENT TRANSFORMER

- ► Reliable
- ► Online
- ► Fast

ALBA S.L.S.	TCSPC	Results
000	0000	000

FAST CURRENT TRANSFORMER

- ► Reliable
- ► Online
- ► Fast

- Shared oscilloscope
- ► Dynamic range < 10²
- Only way of measurement

ALBA S.L.S.	TCSPC	Results
000	0000	000

TIME CORRELATED SINGLE PHOTON COUNTING

Laura Torino

<ロト < (回) < ((u) < (u)) < ((u)) < ((u

ALBA S.L.S.	TCSPC	Results
000	0000	000

PHOTON COUNTER

Output		PicoHarp3	300
	Syne (Share)	Input voltage range Bin width Maximum sync rate Dead time	0 to -800 mV 4-8512 ps 84 MHz < 95 ns
time			

990

8

ALBA S.L.S.	TCSPC	Results
000	0000	000

PHOTON DETECTOR

PMT Hamamatsu H10721-210	
Photocathode Material	Ultra Bialkali
Spectral Response	230-700 nm
Input Voltage	4.5-5.5 V
Max. Input Current	2.7 mA
Max Output Signal Current	100μ A
Control Voltage Range	$0.5-1.1\mathrm{V}$
Gain (Control Voltage: 1 V)	10^{6}
Dark Current	10 nA
Rise Time	0.57 ns
Ripple Noise (peak to peak)	0.3 mV

9

ALBA S.L.S.	TCSPC	Results
000	00000	000

PHOTON DETECTOR CHARACTERIZATION

Instrumental Response Function

Image from the oscilloscope

 σ of the output signal of the device when detecting an isolated photon

0.89 ns

Transit Time Spread

FWHM of electron transit time fluctuation between the photocathode and the signal

0.23 ns => < => = のへの

ALBA S.L.S.	TCSPC	Results
000	00000	000

PHOTON DETECTOR CHARACTERIZATION

Instrumental Response Function

Image from the oscilloscope

 σ of the output signal of the device when detecting an isolated photon

0.89 ns

Transit Time Spread

FWHM of electron transit time fluctuation between the photocathode and the signal

0.23 ns => < => = のへの

ALBA S.L.S. TCSPC	Results
0000	000

DIAGNOSTIC BEAMLINE

	alts
000 0000 0000 0000)

DIAGNOSTIC BEAMLINE

ALBA S.L.S.	TCSPC	Results
000	0000	000

Frontend

ALBA S.L.S.	TCSPC	Results
000	0000	000

Frontend

ALBA	S.L.S.
000	

Real Frontend

- ► Support
- Remote control
- ► Single Photon
- ► Radiation
- ► Light always on

ALBA	S.L.S.	
000		

Real Frontend

- Support
- Remote control
- ► Single Photon
- Radiation
- ► Light always on

LBA S.L.S.	TCSPC	Results
000	0000	000

Real Frontend

Problems

- ► Support
- Remote control
- ► Single Photon
- Radiation
- ► Light always on

Cabling everything outside the tunnel

< □ > < @ > < E > < E >

ALBA	S.L.S.
000	

Real Frontend

- ► Support
- ► Remote control
- Single Photon
- Radiation
- ► Light always on

ALBA	S.L.S.
000	

Real Frontend

- ► Support
- ► Remote control
- ► Single Photon
- Radiation
- ► Light always on

ALBA	S.L.S.
000	

Real Frontend

- ► Support
- ► Remote control
- ► Single Photon
- ► Radiation
- Light always on

ALBA S.L.S.	TCSPC	Results
000	0000	000

FUTURE

ALBA S.L.S.	TCSPC	Results
000	00000	•00

OPERATION FILLING PATTERN

ALBA S.L.S.	TCSPC	Results
000	00000	000

OPERATION FILLING PATTERN

ALBA S.L.S.	TCSPC	Results
000	00000	00

OPERATION FILLING PATTERN

ALBA S.L.S.	TCSPC	Results
000	00000	000

SINGLE BUNCH

ALBA S.L.S.	TCSPC	Results
000	00000	000

SINGLE BUNCH

ALBA S.L.S.	TCSPC	Results
000	00000	000

SINGLE BUNCH

ALBA S.L.S.	TCSPC	Results
000	00000	000

HYBRID FILLING PATTERN

ALBA S.L.S.	TCSPC	Results
000	00000	000

Hybrid Filling Pattern

	sults
000 0000 000	0

APPLICATION: TOP-UP SELECTIVE REFILLING

000 00000 0000 000	ALBA S.L.S.	TCSPC	Results
	000	00000	000

APPLICATION: TOP-UP SELECTIVE REFILLING

ALBA S.L.S.	TCSPC	Results
000	00000	000

APPLICATION: TOP-UP SELECTIVE REFILLING

18

ALBA S.L.S.	TCSPC	Results
000	00000	000

CONCLUSIONS

The Time Correlated Single Photon Counting is now fully operative at ALBA.

Many thanks to Dr. U. Iriso, S. Blanch, A. Camps and all the ALBA staff for the patience and the help!

This project is funded by the European Union under contract PITN-GA-2011-289485