

Cryogenic Current Comparator (CCC) Beam intensity monitor for the Antiproton Decelerator

Miguel Fernandes

07/10/2015

International Conference on Accelerator Optimization

Presentation outline

- 1. Motivation and specifications for new intensity monitor
- 2. CCC functioning overview and design considerations
- 3. First beam measurements
- 4. Current limitations (monitor + cryogenics)
- 5. Summary

Antiproton Decelerator at CERN

Miguel Fernandes

Motivation for new monitor in AD

DCCT:

Insufficient resolution (1µA) for the low current regime (low β ,N)

Fast BCTs:

Limited to bunched phases

Schottky monitor:

Un-bunched:

- time resolution of $\sim 1s$
- accuracy error > 10%

Bunched:

- time resolution of 20 ms
- accuracy error of <10%

Bunch length dependency Complex calibration process

Schottky Intensity Measurement

Coasting beam Bunched beam

Specifications for new intensity monitor

Requirements for a new current/intensity monitor:

- Current resolution:
- Intensity resolution:
- Bandwidth:

- 10 nA 5 x 10⁵ charges
- DC 1 kHz

Requirements for the cryostat

- "Zero-boil off" using a pulse tube cryocooler as He reliquefier unit
- Long term operation

Collaboration partners:

CCC functioning overview

Magnetic shield:

Suppresses all field components except azimuthal beam component

Pickup coil:

Soft ferromagnetic material with highpermeability concentrates flux

Flux transformer:

Couples magnetic flux (down to DC) to SQUID

SQUID + Electronic readout:

- Superconducting QUantum Interference Devices
- Measures the magnetic field induced in the SQUID's input coil

۰VF

≥r,

Monitor and cryogenic system

CCC magnetic shield and ferromagnetic core • fabricated by collaboration partners

New coupling circuit was designed using commercially available SQUID system

- New cryostat was designed and fabricated
 - Low-level of mechanical vibration
 - Low heat in leak
 - Capacity for 50 liters liquid Helium ٠
 - Diameter of ~ 0.8m

- SQUID's are very sensitive magnetometers
- But periodic transfer function limits its dynamic range

 I_b

- SQUID's are very sensitive magnetometers
- But periodic transfer function limits its dynamic range

ന്ത

- SQUID's are very sensitive magnetometers
- But periodic transfer function limits its dynamic range
- Necessary to limit slew-rate of coupled signal to avoid flux-jumps

$$\frac{d\phi_s}{dt} \le 5 \ M\varphi_0/s$$

Miguel Fernandes

- SQUID's are very sensitive magnetometers
- But periodic transfer function limits its dynamic range
- Necessary to limit slew-rate of coupled signal to avoid flux-jumps

$$\frac{d\phi_s}{dt} \le 5 M\phi_0/s$$
AD injection: $\frac{d\phi_s}{dt} \approx 400 M\phi_0/s$!!

Limiting slew-rate of input signal

- Implement signal filtering to decrease slew-rate
- RC filter in coupling circuit
- RF-bypass in ceramic at beam pipe

Laboratory measurement

- Time response to a current signal identical to AD beam injection
- Simulated signal using CST Wakefield simulation and linear system treatment
- Laboratory measurement of wire carrying current through beam pipe

International Conference on Accelerator Optimization

Measurements with no beam

- Current resolution is mainly limited by noise/perturbations at 50Hz + harmonics
- Offset jump around moment of injection due to discharge of bunch rotation cavities

Beam current measurements

- First measurement during beam setup
- After signal filtering it's possible to obtain resolution ~30 nA
- Good example of how this measurement can speed up setup of AD beam (currently takes ~3 weeks)

Beam intensity measurements

Coasting beam Bunched beam

- Intensity obtained by normalizing beam current with velocity
- Noise of current measurement is amplified for low-β.

Nominal injection:
$$N_{ini} = 3.7 \times 10^7$$

Beam intensity measurements

Coasting beam Bunched beam

- Intensity obtained by normalizing beam current with velocity
- Noise of current measurement is amplified for low-β.

Low intensity injection:
$$N_{inj} = 0.61 \times 10^7$$

Performance limitations

Cryostat vaccum vessel **Cryostat thermal shield RF-bypass** Needed for reducing signal slew-rate opens path for perturbation currents flowing in beam pipe pert. Charged beam mirror beam **Could be responsible for:** Noise at 50Hz+harmonics SQUID Amplifier Integrator Offset jump due to discharge of rotation cavities <R_F $+\infty$

Intensity measurement limitations

Cryostat vaccum vessel

Cryogenic performance limitations

- Cryogenic system is not able to keep a constant level of liquid Helium
- Current investigations indicate this is due to excessive heat-load in thermal shield of: 12.1 W (while design value is 7 W)

1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken

- 1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken
- 2. Measurement of beam current with 30nA resolution (after filtering) was demonstrated

- 1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken
- 2. Measurement of beam current with 30nA resolution (after filtering) was demonstrated
- 3. First time ever CCC monitor is used on a synchrotron with a "fast" bunched beam

- 1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken
- 2. Measurement of beam current with 30nA resolution (after filtering) was demonstrated
- 3. First time ever CCC monitor is used on a synchrotron with a "fast" bunched beam
- 4. Observed resolution limitations should be due to perturbation currents flowing in the beam pipe

- 1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken
- 2. Measurement of beam current with 30nA resolution (after filtering) was demonstrated
- 3. First time ever CCC monitor is used on a synchrotron with a "fast" bunched beam
- 4. Observed resolution limitations should be due to perturbation currents flowing in the beam pipe
- 5. Cryostat needs to be periodically refilled due to excessive heat-load in thermal radiation shield

- 1. CCC monitor adapted to AD-ring was implemented and installed, and first beam measurements were taken
- 2. Measurement of beam current with 30nA resolution (after filtering) was demonstrated
- 3. First time ever CCC monitor is used on a synchrotron with a "fast" bunched beam
- 4. Observed resolution limitations should be due to perturbation currents flowing in the beam pipe
- 5. Cryostat needs to be periodically refilled due to excessive heat-load in thermal radiation shield
- 6. Corrective measures for these limitations are to be implemented during next year end technical shutdown

Acknowledgements

- J. Tan; T. Koettig; A. Lees; J. Brachet; D. Lombard; P. Odier;
- J. Belleman; E. Oponowicz; M. Ludwig

C. Welsch

F. Kurian; T. Schiwckert; T. Sieber; H. Reeg

R. Geithner; R. Neubert

Thank you !

EXTRA SLIDES

Magnetic shielding

- Number of meanders is the dominant factor to total attenuation
- Magnetic field:

• Earth: 50
$$\mu T$$
;

• Signal: $\sim pT$

$$A_{tt} \ge \sim 120 \ dB$$

• Coupling strength to magnetic core of magnetic field from beam is much higher than for other modes

Stability limits

BCCCA functioning overview

Frequency response

Calibration

