intensity-sensitive and position-resolving cavity

Xiangcheng Chen

✤ Why is that needed?

How to make one?

How is the performance?

07.10.2015, Seville, Spain

principle of nuclear mass measurements

$$\frac{\delta f}{f} = \left(\frac{1}{\gamma^2} - \frac{1}{\gamma_t^2}\right) \frac{\delta p}{p}$$
$$B\rho = \frac{p}{q}$$

$$\frac{\delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\delta(m/q)}{(m/q)}$$

storage ring as a mass spectrometer

tune the ring to the isochronous mode, i.e. operate at the transition energy

signal pickup device, e.g. capacitive plates

resonant frequency ω_0 quality factor $Q_0 = \frac{\omega_0 W}{P_l}$ shunt impedance $R_s = \frac{(\int dz E_z)^2}{P_l}$

single-ion sensitivity

anisochronismeffect

 $\frac{\delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\delta(m/q)}{(m/q)} + \left(1 - \frac{\gamma^2}{\gamma_t^2}\right) \frac{\delta v}{v}$

In order to minimize systematic errors, position detection is needed to correct for the anisochronism effect.

$$\frac{R_s}{Q_0} = \frac{(\int \mathrm{d}z E_z)^2}{\omega_0 W}$$

rectangular cavity

shunt impedance map

shunt impedance in the aperture region is a 2D function of the coordinates of the transverse cross section

dependence graph

calculated shunt impedance

after pipes are attached ...

simulated shunt impedance

the edges are rounded by 1.2 cm

benchtop test

prototype cavity, scaled down by 4

bead-pull perturbation method

$$\frac{\Delta f}{f_0} = -\frac{\alpha_b E^2}{W}$$

test bench setup

measured shunt impedance

lateral excess is due to an artifact of the perturbation method

condusion

Why is that needed?

to correct for the anisochronism effect

How to make one?

offset the pipes in the horizontal direction stretch the cavity in the vertical direction

How is the performance?

looks promising awaiting beam time

Thank you!

This work was funded by the European Union under grant No. 289485.

design specifications

objective:

mass resolving power of the order of 10⁶ within a short period of 20 ms

requirements:

frequency resolution

$$\delta f = 50 \text{ Hz}$$

resonant frequency

$$f_0 = \frac{\gamma_t^2 m \delta f}{\delta m} = 169.28 \text{ MHz}$$
$$\frac{R_s}{Q_0} = 37.7 \Omega$$

shunt impedance