Smart Technologies for Large Control Systems

10th June 2015

>

CERN Open Day

Elisabeth Bakany, Siemens-ETM Filippo Tilaro, CERN

Siemens - Smart Data to Business

WinCC Open Architecture (OA)

Perfect for large scale applications

- for big and/or complex systems
- for geographically wide distributed plants
- freely scalable and expandable
- for supervisory layer
- supports redundancy
- for the highest security requirements
- the only SCADA system with SIL 3-certification

Supports > 10,000,000 data points

3

WinCC OA as Distributed System

CERN openlab

>

 \bigcirc

WinCC OA – flexible and open

- Fast adaptation of control and visualization of the plant to suit current market requirements
- Implement new processes quickly and easily also by in-house programming and developments enabling independence and know-how protection
- > Standardized solutions enable continuous use
 - SCADA Platform for OEMs
 - Brand labeling is supported

- Platform independent (Windows, Linux, Solaris)
- Object orientation
- Open achitecture
- Platform in use in many industrial sectors
- Easy Integration with other SW
- Fast development time

WinCC OA within Siemens

SIEMENS									
PG Power and Gas	WP Wind Power &Renewables	EM	BT	MO	DF	PD Process	HC		
PG Power Generation Services		Energy management	Building technologies	Mobility	Digital factory	Industries and Drives	Healthcare		
DG	WP	LP 🥚	BT 🥚	MM O	FA 📒	LD	AU		
SU		HP	CPS	TPE 🔶	VinC OA PL	OM 🔶	CX		
СР		MS 🔶		MLT 😑	EC	PA	DX		
ES		EA		UT 🔶	СР	MD	CP		
IE	$2 \circ $	SG		CS	CS		IM		
GT		ts 🔶			MC				
		TR			(17 product OA	s based on		

A bit of history...

Long successful collaboration

- For more than 20 Years
- More than 600 Simatic control systems installed
- Partnership, Much more than a client-provider relationship

Large deployment of Siemens systems

- Supervision systems (WinCC OA, WinCC)
- Programmable Logic Controllers (PLC)
- Control modules
- Panels, ...

Application	Systems installed
ALICE	~100
ATLAS	~130
CMS	~90
LHCb	~160
Accelerators	~200
Total	>600

Joined openlab in 2009

- Phase III (2009-12): Security, Large scale deployment
- Phase IV (2012-15): High performance archiving, Data Analysis
- Next phase V (2015-18): Data Analytics, WinCC OA enhancements

Siemens' Smart Data Technologies @ CERN

Code name "ELVis"

- Cloud-based BIG Data Analytics for Time Series Sensor Data
- Real-Time Stream Processing at customizable KHz-Rates
- High Performance Online
 Visualization in Rich Web-based UI
- Intelligence for Sensor Data Validation
- Job-based Offline Data Analysis

Code name "WatchCAT"

Director Constrained Director Director <thdirector< th=""> Director Director</thdirector<>
Legislationprofilation Legislation Legislati

- Data Fusion of events & sensors
- Complex Event Processing
- Automated Learning of fault patterns
- Logical Reasoning for Fault Detection & Isolation
- Fault prediction based on recognizable patterns

Siemens' Smart Data Technologies: Control System Analysis

Understanding the GAS system behaviour with Smart Data: Identifying a root-cause

irt	Local Time	Alias	Descriptio	n	Domain	Nature	Name		Value		
	2013.09.27 15:49:37.8	0 CMSCSC_Di_61InP	resAl PTxx24 -	Rack 61 input	CSC_Details		PT:o:24 -	Rack 61 input p	es FALSE	1	
	2013.09.27 15:49:42.8	0 CMSCSC Di 68hP	resAl PTxx24 -	Rack 68 input	CSC_Details		PT:o:24 -	Rack 68 input p	es FALSE	+	
1	2013.09.27 15:49:42.8	U CMSCSC_Di_70hP	resAl PTxx24 -	Rack 70 input	CSC_Details		PTxx24 -	Rack 70 input p	es FALSE	+	
_	2013.09.27 15:49:42.8	0 CMSCSC_Di_69hP	resAl PTxx24 -	Rack 69 input	CSC_Details		PTxx24 -	Rack 69 input p	es FALSE	L	
	2013.09.27 1: Shart L	ocal Time	Alias	Des	cription	0	Domain	Nature Nam	е		Value
4	2013.09.27 1: W 2	13.09.27 15:49:37.810	CMSCSC Di 61In	PresAl PTx	x24 - Rack 61	input C	SC Details	PT:o	24 - Rack 6	1 input pres	FALSE
	2013.09.27 P	13.09.27 15:49:42.890	CMSCSC Di 68In	PresAl PTx	x24 - Rack 68	B input C	SC_Details	PT:o	24 - Rack 6	B input pres	FALSE
_	2013.09.27 1: W 2	13.09.27 15:49:42.890	CMSCSC Di 70h	PresAl PTx	x24 - Rack 70) input (C	SC Details	PT:c	24 - Rack 71) input pres	FALSE
_	2013.09.27 1 W 2	13.09.27 15:49:42.890	CMSCSC Di 69Inl	PresAl PTx	x24 - Rack 69	input C	SC_Details	PTx	24 - Rack 6	9 input pres	FALSE
_	2013.09.27 1 W 2	13.09.27 15:49:42.890	CMSCSC_Di_67Inl	PresAl PTx	x24 - Rack 67	input C	SC_Details	PT:o	24 - Rack 6	7 input pres	FALSE
	2013.09.27 P	13.09.27 15:49:43.090	CMSCSC_Di_63Inl	PresAl PTx	x24 - Rack 63	B input C	SC_Details	PT:o	24 - Rack 6	3 input pres	FALSE
1	2013.09.27 I W 2	13.09.27 15:49:43.090	CMSCSC Di 64Ini	PresAl PTx	x24 - Rack 64	l input C	SC_Details	PTxc	24 - Rack 6	4 input pres	FALSE
F	2013.09.27 1 W 2	13.09.27 15:49:43.090	CMSCSC_Di_65Inl	PresAl PTx	x24 - Rack 68	input C	SC_Details	PTx	24 - Rack 6	5 input pres	FALSE
	2013.09.27 1 W 2	13.09.27 15:52:09.900	CMSCSC_Di_690	utPresFA4 PTx	x26 - Rack 69	far out C	SC_Details	PTx	26 - Rack 6	9 far output	TRUE
	2013.00.27 1 W 2	13.09.27 15:52:09.900	CMSCSC_Di_660	utPresAl PTx	x25 - Rack 66	6 output C	SC_Details	PTx	25 - Rack 6	6 output pre	TRUE
	2013.00.27 I W 2	13.09.27 15:52:09.900	CMSCSC_Di_690	utPresAl PTx	x25 - Rack 69	eutput C	SC_Details	PTx	25 - Rack 6	9 output pre	TRUE
	2013-00-27 1/W 2	13.09.27 15:52:09.900	CMSCSC_Di_700	utPresAl PTx	x25 - Rack 70) output (SC_Details	PT:o	25 - Rack 71	D output pre	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:09.900	CMSCSC_Di_700	utPresFA4 PTx	x26 - Rack 70	far out C	SC_Details	PT:c	26 - Rack 71) far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:09.900	CMSCSC_Di_670	utPresFA4 PTx	x26 - Rack 67	far out C	SC_Details	PT:c	26 - Rack 6	7 far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:09.900	CMSCSC_Di_660	utPresFA4 PTx	x26 - Rack 66	far out C	SC_Details	PTx	26 - Rack 6	6 far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:09.900	CMSCSC_Di_670	utPresAl PTx	x25 - Rack 67	output	SC_Details	PT:o	(25 - Rack 6)	7 output pre	TRUE
	2013.09.27 I: W 2	13.09.27 15:52:09.900	CMSCSC_Di_680	utPresAl PTx	x25 - Rack 68	3 output 0	SC_Details	PT:o	25 - Rack 6	B output pre	TRUE
	2013.09.27 1: 2013.09.27 1: W 2	13.09.27 15:52:09.900	CMSCSC_Di_680	utPresFA4 PTx	x26 - Rack 68	far out C	SC_Details	PT:c	26 - Rack 61	B far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:10.440	CMSCSC_Di_640	utPresFA4 PTx	x26 - Rack 64	far out C	SC_Details	PT:c	26 - Rack 6	4 far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:10.440	CMSCSC_Di_640	utPresAl PTx	x25 - Rack 64	l output C	SC_Details	PTx	25 - Rack 6	4 output pre	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:10.440	CMSCSC_Di_650	utPresAl PTx	x25 - Rack 66	5 output C	SC_Details	PT:o	25 - Rack 6	5 output pre	TRUE
	2013.09.27 I: W 2	13.09.27 15:52:10.440	CMSCSC_Di_650	utPresFA# PTx	x26 - Rack 65	far out C	SC_Details	PT:o	26 - Rack 6	5 far output	TRUE
	2013.09.27 1: W 2	13.09.27 15:52:10.440	CMSCSC_Di_63D	utPresAl PTx	x25 - Rack 63	3 output 0	SC_Details	PT:c	25 - Rack 6	3 output pre	TRUE
	2013.09.27 1 W 2	13.09.27 15:52:10.440	CMSCSC_Di_610	utPresAl PTx	x25 - Rack 61	output	SC_Details	PTxc	25 - Rack 6	1 output pre	TRUE
1	2013 09 27 1 W 2	13.09.27 15:52:10.440	CMSCSC_Di_630	utPresFA4 PTx	x26 - Rack 63	far out C	SC_Details	PTx	26 - Rack 6.	3 far output	TRUE
	2013.09.27 1 W 2	13.09.27 15:52:10.440	CMSCSC_Di_610	utPresFA4 PTx	x26 - Rack 61	far out C	SC_Details	PTio	26 - Rack 6	1 far output	TRUE
	2013.09.27 1 A 2	13.09.27 15:52:12.890	CMSCSC_Di_660	utPresAl PTx	x25 - Rack 68	6 output C	SC_Details	PT:o	25 - Rack 6	6 output pre	TRUE
	2013.09.27 1: 4 2	13.09.27 15:52:12.890	CMSCSC_Di_660	utPresFA4 PTx	x26 - Rack 66	far out C	SC_Details	PT:o	26 - Rack 6	6 far output	TRUE
	2013.09.27 1 Bad 2	13.09.27 15:52:12.950	CMSCSC_Di_DiRa	ick66PCO Dist	ribution rack 6	6 PCO 0	SC_Details	Full	Stop Alarm S	datus	TRUE
	2013.09.27 1: Bad 2	13.09.27 15:52:12.950	CMSCSC_Di_DiRa	ick61PCO Dist	ribution rack 6	1 PCO 0	SC_Details	Full	Stop Alarm S	Status	TRUE
	A 2	13.09.27 15:52:13.370	CMSCSC_Di_610	utPresFA4 PTx	x26 - Rack 61	far out C	SC_Details	PTio	26 - Rack 6	1 far output	TRUE
I	A 2	13.09.27 15:52:13.370	CMSCSC_Di_610	utPresAl PTx	x25 - Rack 61	output C	SC_Details	PT:o	25 - Rack 6	1 output pre	TRUE
ĺ	A 2	13.09.27 15:52:32.110	CMSCSC_Di_Alan	ninRack& Son	te alarms in ra	ck 66 🛛	SC_Details	Rack	66 alarm		TRUE
	A 2	13.09.27 15:52:32.110	CMSCSC_Di_Alan	mInRack6' Son	ne alarms in ra	ck 61 (SC_Details	Rack	61 alarm		TRUE
1	A 2	13.09.27 15:57:47.130	CMSCSC_Xh_Atm	PrSensAll PTO	101 - Atmosah	eric pril	SC Details	PTO*	01 - Atmosp	heric press	TRUE

Sequence: Confidence: 100.0 % / Appearance count: 6

CMSCSC_Di_62PRegAl | Alarm Unacknowledged | Rising CMSCSC_Di_62PRegAl | Position Status (HH-LL) | Rising

CMSCSC_Di_YC60995 | Auto Off/Close Request Status | Falling CMSCSC_Di_YC60995 | Auto On/Open Request Status | Rising CMSCSC_Di_YC60995 | Off/Closed Status | Falling CMSCSC_Di_YC60995 | On/Opened Status | Rising CMSCSC_DI_YC60995 | Output Order Value Status | Rising

Sequence: Confidence: 83.3 % / Appearance count: 5

CMSCSC_Di_62PRegAl | Alarm Unacknowledged | Rising CMSCSC_Di_62PRegAl | Position Status (H-L) | Rising CMSCSC_Di_62PRegAl | Position Status (HH-LL) | Rising

CMSCSC_Di_AlarmInRack62 | Alarm Unacknowledged | Rising CMSCSC_Di_AlarmInRack62 | Position Status | Rising

CMSCSC_Di_YC60995 | Auto Off/Close Request Status | Falling CMSCSC_Di_YC60995 | Auto On/Open Request Status | Rising CMSCSC_Di_YC60995 | Off/Closed Status | Falling CMSCSC_Di_YC60995 | On/Opened Status | Rising CMSCSC_Di_YC60995 | Output Order Value Status | Rising

Extracted fault signatures

Objective: Support the operator during diagnostic activities shortening the analysis time and avoiding or shorting the downtimes

- 1st Phase: learning system behaviour by extracting fault signatures
- 2nd Phase: automatic fault classification by comparing the current events and alarm with the previously extracted signatures

SIEMENS

CERN openlab

SIEMENS

Data Analytics use-cases: few examples, but many more!

Title	Description	Analysis Results				
On-line analysis of control alarms	Alarms analysis to detect anomalies or abnormal behaviours at the single device level					
Fault sensor measurements detection for the cryogenic system	Design and implementation of algorithm to detect faults in sensors measurements					
Cryogenic valves oscillation	Optimize the regulation of control valves by spotting oscillator behaviours	The window of the signal under analysis: CSMA_SHT_PC01302A0.POS $T \sim 1.5h$ $T \sim 1.5h$				

14

Centralized Deployment Tool (CDT)

Large control applications @CERN:

+150 interconnected WinCC OA systems

Upgrade sets of WinCC OA applications in a centralized fashion

ASCII Manager is a key component of the CDT

- > Projects DB imports/exports from/to files
- > Hardware equipment configuration

```
Goal
```

- Introduce XML based file format for export/import
- > XML is easier to validate and integrate with external tools than current ASCII files

CERN openlab

SIEMENS

WinCC OA 3.X

- XML schema defined
- First implementation of XML export functionality
- Code and schema currently under review at ETM

IOWA-based SCADA system

- Completely new platform (including data model) Xerces
- New way to interact with the runtime
- CERN involvement since an early stage
- Influence the requirements and technology selection
- Pioneering the usage of the new SDK
- Valuable feedback sent to ETM on SDK and tutorials
- Prototype available

Successful collaboration

LHC Logging

SIMATIC WinCC OA

RDB

SIEMENS

- Improvements implemented and tested at CERN
- Code transferred to ETM
- New functionality made available to all ETM customers

> Success story: migration to Oracle Archiver

- 200 LHC-related applications
- Required to run the LHC at 13 TeV (QPS)
- 200 000 values/s steady state, 10⁶ values/s in peak

Essential also for CERN experiments

Oracle archiver used since 2007

Unified archiving technology CERN-wide

- ~500 CERN production systems and ~10 databases
- Deployed on time for the LHC Run II

CERN openlab

SIEMENS

ORACLE

ORACLE

More on Data Processing

Reporting Manager

Significant performance improvements

- parallel request processing
- redesign of architecture for Oracle queries
- Already available in WinCC OA 3.13

R&D: Big data and NoSQL

Research on technology for future archiving system

Prepare future run of LHC: throughput/size increase by a 10x factor

Hadoop

- Workshop to transfer knowledge to ETM
- Initial investigation of other technologies
 - Elasticsearch, IMPALA
- Synergy with Data Analytics
 - Archiving subsystem is essential

CERN & Siemens collaboration: Benefits for CERN

Increased System Reliability

Minimized forced outages

Complete data analysis

• Reduced service effort: weeks \rightarrow hours

24/7 Expert Knowledge Availability

One central knowledge base

Operation support

- Forecast system status and take proper actions in time
- Prevent possible faults and system downtime
- > Identify hidden patterns 10th June 2015

Diagnosis support

- > Identify root causes
- > More accurate analysis
- Accelerate analysis
 From weeks to hours

Siemens CERN openlab

Engineering support

- Improve operational performance
- Increase reliability and efficiency by design
- Lead control system decisions 19

CERN & Siemens collaboration : Next Steps

Data Analytics

- Innovative Siemens' Smart Data technologies suited for the analysis of many CERN control systems
- Integration of CERN specific extensions & data analysis algorithms

- Broaden the spectrum of activities to other areas like:
 - Visualization: Web, widgets enhancements
 - Secure Remote Access
 - Alarms: Screen and alarm hierarchies
 - Enhanced Reporting / Data Analytics integration
 - Prototype of NoSQL-based archiver system
 - Development tools

Any Questions

Thank you for your attention!

CERN openlab

SIEMENS