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Outline

From AMS-02 to Planck:
The annihilating dark matter hypothesis for the AMS-02 positron excess.

Planck polarization data sets powerful model-independent constraints.

> From Fermi to AMS-02:

Status of the GeV gamma-ray excess in the inner Galaxy.
AMS-02 measurements of positrons and antiprotons can probe its origin.

- (if time permits) “Dark sector” models and some of their implications -
annihilation/decay cascades, semi-annihilation, boosted dark matter.



The AMS-02/PAMELA
positron excess
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Rise in positron fraction above 10 GeV observed by PAMELA experiment
in 2008, confirmed to extend up to at least 500 GeV by AMS-02.

Possible signal of DM annihilation, producing additional primary positrons.
(Other possibilities: pulsars, supernova remnants, modified cosmic-ray
production and/or propagation.)



DM models fitting AMS-02

© Some example models worked out
in Cholis & Hooper 1304.1840.

~ Typically require:

© Heavy DM (~500 GeV or higher,
TeV+ to also fit Fermi data)

© Cross sections significantly
higher than thermal value (2-3
orders of magnitude)

© There are significant constraints
from gamma-rays, but depend on
assumed DM density profile and
annihilation channel.

Dot—Dashed: M, =2.5 TeV, xy—¢dp—2u 2"
Dashed: M,=3.0 TeV, yy—¢¢p—2n"2n"
Solid: M, =1.6 TeV, yy—¢p—2e™, 2u*, 2n* at 1:1:2
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Cross sections taken to be:
Model 1 (ov) = 1.5 x 10~ *°cm? /s

Model 2 (ov) = 2.3 x 10~ **cm® /s
Model 3 (ov) = 6.5 x 10~ **cm? /s




“‘Dark force” models

If DM couples to a new light particle (~100 \ ¢
MeV - GeV), which then decays to light known
particles, three features naturally explained: \,\PN

Short cascade — hard spectrum.

O

Decays to antiprotons kinematically

forbidden. my ~ GeV
10)

Automatic Sommerfeld enhancement can

boost rate by O(100) factor at low -
velocities. Sommerfeld-enhanced annihilation

(above), followed by decay (below)

Proposed by Arkani-Hamed, Finkbeiner, TRS
& Weiner, + (independently) Pospelov & Ritz,
in 2008.

New light particles (which also have other
independent motivations) can be searched for
directly.




Bounds from Planck

Early this year, Planck
Collaboration released
polarization results.
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How general are these limits?
or, what determines fes?



Understanding the CMB
bounds

photons, scale-dependent
DM T .
s electrons, —— ionization —— perturbation to
annihilation . . .
positrons CMB anisotropies

Adams, Sarkar & Sciama 1998; Chen & Kamionkowski 2003;
Finkbeiner & Padmanabhan 2005

The bound for annihilating DM depends on essentially one number: excess ionization at
z~600 (Galli, Lin, TRS & Finkbeiner '11, + work in preparation).

Parameterized by efficiency parameter f: first computed in TRS, Padmanabhan &
Finkbeiner ‘09, significant updates to calculation described in Galli, TRS, Valdes & locco ’13.

fer, and hence the constraint on a given (s-wave annihilating) DM model, depends on:

PRIMARILY, how much power goes into photons/electrons/positrons vs neutrinos and
other channels.

SECONDARILY, the spectrum of photons/electrons/positrons produced (but most
variation is for particles below the GeV scale).

There is a lower bound on both of these for any model explaining the positron fraction.



The efflc:lency factor
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fer parameterizes detectability for a given DM model (mass and annihilation
channel/s). Can be computed for photons and e’e” pairs at all energies (TRS, to
appear), and integrated over the actual spectrum produced by a specific model.



The efﬁClency factor (cont.)
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Electron/positron pairs and photons behave similarly at high injection energies (fefr ~
0.4), fer rises to 0.7-1 around 10-100 MeV, can fall as low as ~0.15 around 1 MeV.
Rises steeply again for low-energy photons (but not at-rest electrons/positrons).



Example of applying the
CMB bounds

- Arecent model: Boudaud et al 1410.3799 identified a favored model:
0.5-1 TeV DM annihilating through a light medlator |nto /5% taus and
25% electrons, with a cross section of 7.4 x 10** cm°’/s at a mass of
600 GeV.

(Note: these authors assumed a Iocal density of 0.3 GeV/cm taking a higher but still
commonly used value of 0.4 GeV/em® would lower the cross sectlon by a factor of nearly 2.)

~ At this mass scale we can estimate (preliminary) fes ~ 0.4 for
electrons, and fe ~ 0.14-0.15 for the tau component (due to losses to
neutrinos). This yields an overall fe ~ 0.21, and consequently:

fog{ov) = 1.6 x 10~ **cm? /s

~ In contrast, the bound from Planck at 600 GeV constrains this
number to satisfy

frloy =25 <10 “em/s




A second example

> Cirelli et al 0809.2409: P e e e e e C
updated 2013 to include
AMS-02 data.
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A second example

> Cirelli et al 0809.2409:
updated 2013 to include
AMS-02 data.

© This plot shows 2y
annihilation channel, +
bounds from gamma rays
(assuming a cored isothermal
DM density profile).

Can calculate fs as a function
of DM mass, translate CMB
bounds to cross section limits.

Rules out 50 region for 1075 ¢
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Constraints from the CMB

The annihilating DM explanation for the positron fraction rise appears to be in fairly model-
independent tension with Planck limits.

Constraints are alleviated if;

The local DM density is higher than 0.4 GeV/cm?, or there is a large substructure
contribution - e.g. double disk dark matter (see talk by L. Randall yesterday).

A smaller cross section is required to fit the signal for other reasons, e.g. attributing
some of the rise in the positron fraction to non-DM sources or propagation.

Constraints do not apply to:
Decaying DM (slower scaling with density reduces high-redshift signal)

DM with velocity-suppressed annihilation, e.g. p-wave (however, would require a non-
thermal history)

Constraints are stronger for Sommerfeld-enhagwced DM3annihiIation, as typical velocity at
z~600 is typically << velocity of halo DM (~10 " cvs 10 " c).



The GeV gamma-ray
EXCEeSS



VWhat we know

Discovered in public data from the Fermi Gamma-Ray Space Telescope, first in the Galactic
Center (Goodenough & Hooper 09) and later extending to higher latitudes (Hooper & TRS 13).

Spectral properties:

Rises at energies below 1 GeV, peaks around ~2 GeV (in Esz/dE, power per logarithmic
interval), falls off above ~5 GeV.

Best-fit DM annihilation models have a ~thermal relic cross section.
Spatial properties:

Generally consistent with spherical symmetry around the Galactic Center (some hints of
extension along an axis NOT the Galactic plane).

Small-r power-law slope of power/volume ~ 2 (corresponds to NFW profile with inner
slope y~1.1-1.4).

Appears centered on Sgr A*.

Extends out to at least 10 degrees from the GC.
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Spectral properties
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> Top: Daylan et al *14. Left: Galactic
Center spectrum. Right: Inner Galaxy
spectrum (cross-hatched band and
blue points indicate spectra if same

analysis applied to other sky regions).

- Bottom: Calore, Cholis & Weniger '14.
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Spectral properties
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> Top: Daylan et al *14. Left: Galactic
Center spectrum. Right: Inner Galaxy
spectrum (cross-hatched band and
blue points indicate spectra if same

analysis applied to other sky regions).

- Bottom: Calore, Cholis & Weniger '14.
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What does the Fermi

Collaboration say?
© Talk presented by Simona DATA MODEL

Murgia at Fermi Symposium 2RI
20-24 October.

- “We find an enhancement
approximately centered on the
Galactic center with a spectrum
that peaks in the GeV range, that -
persists across the models we 1.
have employed” )

W 1R )

© “"Peaked profiles with long tails
(NFW, NFW contracted) yield the
most significant improvements in
the data- model agreement”




The DM mterpretatlon
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Preference for DM below the 100 GeV scale, best fits come from annihilation to
quarks.

-~ These results taken from Calore, Cholis & Weniger '14, include a first estimate of
systematic uncertainties. (Left panel: scanning DM mass at best-fit morphology;
right panel: scanning slope of profile at fixed DM mass.)

Consistent results from several independent groups.



Dark matter

Dark matter

Naturally explains:
The invariance of the spectrum with position.
The ~spherical morphology of the signal.
The profile: steeply peaked at the Galactic
Center but extending out to (at least) 10
degrees.

Required annihilation cross section lines up with

long-standing predictions from the simple

“thermal relic” scenario.

Spectrum can be easily produced by
annihilation of light DM.

BUT: no detection yet in other channels - is DM
excluded? (short answer: no, but is constrained)
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- Fermi study of stacked dwarfs with Pass 8 (1503.02641) can constrain nominal

cross section for some channels.

- But no uncertainties on density profile for inner Galaxy study included in this

analysis; also assumes that dwarfs have NFW profiles (not a strong effect, but
important at the borderline).

Hope for a possible detection!
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- Fermi study of stacked dwarfs with Pass 8 (1503.02641) can constrain nominal

cross section for some channels.

- But no uncertainties on density profile for inner Galaxy study included in this

analysis; also assumes that dwarfs have NFW profiles (not a strong effect, but
important at the borderline).

Hope for a possible detection!
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Geringer-Sameth et al (1503.02320, upper left) claim
2.3-3.70 (depending on background modeling)
excess from newly discovered dwarf candidate
Reticulum Il, in ~2-10 GeV range. Lower right: DM
fits. (Similar results found by Hooper & Linden,
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What can AMS-02 tell us?

- Stringent limits from AMS-02 on annihilation to
leptonic final states

Antiproton measurements from PAMELA already
have sensitivity to hadronic scenarios - but large
uncertainties on propagation



Leptonic final states
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Bergstrom et al 1306.3983: AMS-02 positron fraction yields
strong bounds on the cross section for relatively light DM
annihilating to channels that produce hard positrons.

Liu et al 1412.1485: test constraints for annihilation
through dark photons as well as 2e. These authors include
systematic uncertainties from solar modulation & magnetic
fields, and find somewhat weaker constraints (also plot 3
sigma exclusions rather than 90% CL).
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Cosmic ray antiprotons
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Antiprotons (cont.)
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Antiprotons (cont.)

Constraints from antiproton flux = 1072
I (D)
3 o=
=
5 102 ¢ PAM ELA E 1075
= =
P
g 5 0%
~N
=
g 102 9
3 8 1072
Q @
w2 7]
w w2
o)
o 10” -
S No ELDR S
- .
= T N s w07/ —— PAMELA With ELDR|
s —  Einasto MED = XX — AMS-02 With ELDR
§ — Einasto MAX : g Einasto MED — - AMS-02 No ELDR
10_28 l : . . L L L —28 L 1 Ll Ll 1 L L L 1Ll L1111
10 100 1000 10000 T 100 1000 10000
DM mass mMpM [GCV] DM mass mpM [GCV]

Boudaud et al 1412.5696: important to take into account energy losses from tertiaries and diffusive
reaccelerating (neglecting these effects can cause a false preference for a DM signal). Their different
modeling does not pick up the claimed low-energy excess.

Predict that AMS-02 will have sensitivity to thermal relic DM below ~150 GeV for MED propagation model -
initial results based on preliminary AMS-02 data posted on arXiv today.
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Antiprotons (cont.)
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Boudaud et al 1412.5696: important to take into account energy losses from tertiaries and diffusive
reaccelerating (neglecting these effects can cause a false preference for a DM signal). Their different
modeling does not pick up the claimed low-energy excess.

Predict that AMS-02 will have sensitivity to thermal relic DM below ~150 GeV for MED propagation model -

initial results based on preliminary AMS-02 data posted on arXiv today.



Indirect detection & dark
sectors



Annihilation through a dark
sector

As in “dark force” models, dark matter could -
be embedded in a complex “dark sector” e
containing other states.

DM annihilation/decay within dark sector can
match relic density while suppressing direct/

collider signatures.
SM states

Potential novel signatures in indirect detection
from dark sector physics - many examples,
just a few shown here. (See also talk by L.
Randall.)

For GeV excess: 12.__. ----- ———— . Best lli‘ltSpecl ra —

i

Direct annihilation favors hadronic channels.

Dark sector cascades can broaden more sharply peaked
spectra to match the data better, + allow somewhat
higher DM masses (e.g. Elor, Rodd & TRS '15).

E,*dN,/dE, (x1077)

Essentially indistinguishable in photon spectrum -
distinguishable in other channels? e.g. few antiprotons in
leptonic/photon-dominated channels




Slides contributed
Multi-Component vs. Single Sector by Jesse Thaler

Well-known that there might be multiple dark matter species
Less well-known that single dark matter sector can have many mass scales

E.g.: Scaled-up QCD without weak interactions

Proton, neutron, charged pion mutually stable Neutral pion still decays to photons
m 8
Mt n (triangle 0
T inequality) T —---==-

Diverse gamma ray spectrum from multiple processes
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[D’Eramo, Thaler, 1003.5912; see also Hambye, 0811.0172, Hambye, Tytgat, 0907.1007]



Cosmic Ray Spectra from Semi-Annihilation

Equal mass
DM states:

Unequal mass
DM states:

Slides contributed
by Jesse Thaler
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Conclusions

Planck CMB polarization measurements appear to exclude annihilating DM
as primary source for AMS-02 positron excess.

- Constraints especially strong for Sommerfeld-enhanced models.

- Can be evaded in the presence of a large boost factor from DM density
(e.g. from a dark disk), or suppression of annihilation at high redshift.

- AMS-02 e'e” and antiproton measurements can probe DM explanations for
the GeV gamma-ray excess in the inner Galaxy.

+ - . . .
- e e measurements place powerful constraints on leptonic scenarios.
- Antiproton measurements could potentially detect or rule out a counterpart

signal, in hadronic DM annihilation scenarios - but currently limited by
propagation/modulation uncertainties.



