# AMS Results on Light Nuclei: Measurement of the Cosmic Rays Boron-to-Carbon Ratio with AMS-02



AMS Days 17/04/2015 CERN

#### **Redundant Measurements of Energy**



### **Multiple Measurements of Charge**

|                         |                    | ge Resolution<br>or Z=6 (c.u.) |
|-------------------------|--------------------|--------------------------------|
|                         | Tracker Plane 1    | 0.30                           |
| TRD                     | TRD                | 0.33                           |
| 2                       | Upper TOF          | 0.16                           |
| 3-4<br>5-6-3-2<br>7-8-7 | Tracker Planes 2-8 | 0.12                           |
| RICH                    | Lower TOF          | 0.16                           |
| 9                       | RICH               | 0.32                           |
| ECAL                    | Tracker Plane 9    | 0.30                           |

#### **Cosmic-Rays Composition with AMS**



AMS Days - B/C - A. Oliva

#### **B/C Event Selection**

#### **Selection**

- a) Tracker and TOF Charges compatible with Z=5, 6.
- b) Track passing through L1 with good charge.
- c) Tracks with at least 5 points and a good fit ( $\chi^2$ <sub>V</sub> L2-L8 < 10).
- d) Rigidity above geomagnetic cutoff (R>1.2  $R_c$ ).
  - → Statistics for 40 months: **7M Carbons and 2M Borons.**

#### **Long Lever Arm Analysis**

- a) Tracker Layer 9 Charge compatible with Z=5, 6.
- b) Full Span Track with a good fit ( $\chi^2_{\gamma}$  L1-L9 < 10).
  - → Highest possible MDR (about 2.5 TV).

#### **Large Statistics Analysis**

- a) No requirement on L9.
- b) Track with a good fit ( $\chi^2_{Y}$  L1-L8 <10).
  - → Factor 5 more events, and less interacting events.





#### **B/C Event Selection with Inner Tracker**

Misidentification from neighboring charges is < 10<sup>-3</sup>. Identification efficiency is > 98%.



#### **B/C Sample Purity**

The main background of these analyses consists of nuclei fragmenting through hadronic inelastic interaction. These events can be controlled using the AMS upper detectors.



## **Boron Sample Purity**



## **B/C Ratio Measurement**



B and C have similar behavior. The small differences in detection efficiency are evaluated directly from data. A global correction of 5% (mostly due to B purity cut) is accounted.

Monte Carlo (MC) is used to derive the geometric term, the resolution matrix for the bin-to-bin migration and the Top-of-the-Instrument corrections.

## **B/C Trigger Efficiency Ratio**

Trigger efficiency for ions is very high (nearly 100%). Veto counters condition is relaxed when signal in TOF is larger than charge 1.



#### **B/C Track Efficiency Ratio**



#### **B/C Survival Probability Ratio**

We can estimate the fraction of events interacting in the lower part of AMS (TOF+RICH).

The difference between B and C accounts for the different interaction effect of the different cross-section in approximately "1/3" of AMS materials.

From the comparison between data and MC an additional systematics of 1% is added.



#### **Top-of-the-Instrument (TOI) Correction**



Fragmentation of nuclei before L1 is accounted.

Correction is derived from a MC tuned to reproduce the survival probabilities observed in the data.

Most important channels are:

$$P(B|C) = (4.5 \pm 1.0) \times 10^{-3}$$

$$P(B|O) = (1.4 \pm 1.0) \times 10^{-3}$$

#### **Verification of Unfolding and Acceptance**



13/20

#### **B/C Error Breakdown**



### **B/C Ratio**



#### **B/C Ratio**



#### **B/C Ratio converted in Kinetic Energy**



### **B/C Ratio converted in Kinetic Energy**



#### **B/C Ratio converted in Kinetic Energy**



#### **Conclusions**

• The B/C flux ratio, based on an exposure time of 40 months of AMS-02, 7M Carbon and 2M Borons has been shown between 2 GV and 1.8 TV rigidity.

 Sources of differences between Boron and Carbon counts were investigated and systematics included in the error.

• The high accuracy of AMS-02 B/C measurement gives possibility to distinguish between current models and reveals new details about the cosmic-rays propagation.