

Status and Plan for the Analyses of ttbar near threshold at the ILC

Akimasa Ishikawa (Tohoku University)

Top Physics at Lepton Colliders@Valencia (Remote)

Analysis was done by T. Horiguchi

ttbar at threshold

- σ_{tt} VS Vs is sensitive to
 - $-M_t$
 - Theoretically well-defined running mass
 - Vacuum instability in the SM
 - $\Gamma_{\rm t}$ (or V_{tb})
 - Deviated from SM if new physics in decays
 - y_t
 - Higgs exchange diagram gives 9% enhancement
 - α_s
 - not yet done
- Fit to σ_{tt} to obtain m_t , Γ_t and y_t simultaneously.

S. Alekhin et al

Simulation Setup for σ_{tt}

Top quark mass	174 GeV
\sqrt{s} (threshold scan)	<u> 341 - 350GeV (every 1 GeV, 10 points)</u>
Polarization	p(e ⁺ , e ⁻) = (-30%, +80%), (+30%, -80%) (In this talk, I call them "Right" and "Left")
Integrated Luminosity	5 fb ⁻¹ (each \sqrt{s} & pol, total 100fb ⁻¹)
Event Generation	Physsim (LO ,QCD enhancement, on ISR/ beamstralung/beam energy spread)
Simulation	ILD_01_v05 (DBD ver.)

Signal and Backgrounds

Reconstruction

Reconstruction method	6-Jet	4-Jet
Isolated Lepton(l _{iso}) finding using cone energy cut (cosθ _{cone} > 0.96, P _{track} > 15 GeV, E _{cone} < 10 GeV)	# of <i>l_{iso}</i> = 0	# of l_{iso} = 1
Jet clustering using Durham algorithm	6jets	4jets
Extraction of 2 b-likeness	s jets	
Reconstruction of top quark pair and finding the best candidate by χ^2 from invariant mass	(b+q+q') × 2	(b+q+q') & (b+ l_{iso}+v)
$\chi_{6-\text{Jet}}^2 = \frac{(m_{3j^{\text{a}}\text{reco.}} - m_t)^2}{\sigma_t^2} + \frac{(m_{3j^{\text{b}}\text{reco.}} - m_t)^2}{\sigma_t^2} + \frac{(m_{3j^{\text{b}}\text{reco.}} - m_t)^2}{\sigma_t^2}$	$rac{2\mathrm{j}^{\mathrm{a}\mathrm{reco.}}-m_w)^2}{\sigma_w^2}+$	$\frac{(m_{2j^{\rm b}\rm reco.} - m_w)^2}{\sigma_w^2}$
${}_{20150530} \chi^2_{t=1} = \frac{(m_{3jreco.} - m_t)^2}{\sigma_t^2} + \frac{(m_{jl\nu reco.} - m_t)^2}{\sigma_t^{2jrmasa \ Ishikawa}} + \frac{(m_{2jr}m$	$\frac{1}{\sigma_w^2}$	5

Cut-flow for 350GeV

Table : 6-Jet Left handed

 $\int \mathcal{L}(t)dt = 5(\text{fb}^{-1}) \quad S = \frac{N_{Sig}}{\sqrt{N_{Sig} + N_{BG.}}}$

6

<mark>(e+,e-)=(+30,-80%)</mark>	tt6j	tt4j	tt2j	SM bkg.	S _{6i}	ε _{6i}
Generated	1643	1583	381	0.13M	4.4	100
# of lepton = 0	1590	353	18	0.11M	5.0	96.8
btag > 0.09 × 2	1499	330	17	19336	10.3	91.2
Thrust<0.825	1439	285	11	2447	22.3	87.6
Evis>300 GeV	1424	61	0	1092	28.0	86.6
m _t >107 GeV × 2	1383	37	0	492	31.6	84.1
# of pfos>84	1376	33	0	442	32.0	83.8
y45> 0.0012						
y56 >0.0006	1362	31	0	392	32.2	82.9
Sphericity>0.22	1347	24	0	329	32.7	82.0

√s=350 GeV	S _{n-Jet}	ε _{n-Jet}
6-Jet (e+,e-)=(-30, +80%)	23.5	84.6
4-Jet (e+,e-)=(+30, -80%)	31.0	66.3
²⁰¹⁵⁰⁶³ 4-Jet (e+,e-)=(-30, +80%) ^{kimasi}	^{a Ishikaw} 21.9	68.2

Fitting with templates

- fit to σ_{tt} with template to extract three variables, m_t , Γ_t and y_t simultaneously.
 - Two dimensional template (m_t , Γ_t) —
 - y_t from normalization
 - α_s is fixed at 0.12
- Template is made from
 - Theoretical $\sigma_{tt}(s)$ from Y. Kiyo-san (NLO calc)
 - Efficiency from Physsim (LO) and DBD setup

400

200

0

340

342

344

1.2 GeV

1.4 GeV

1.6 GeV

348

350

Ecm7(GeV)

346

Results

Stat. Error	6-Jet			4-Jet		
(m _t , Γ _t :MeV/y _t :%)	PS m _t	Γ _t	У _t	mt PS	Γ _t	Уt
Left(50fb⁻¹)	47	65	9.6	52	71	11
Right(50fb ⁻¹)	68	94	14	75	106	16
Left (50fb ⁻¹) + Right(50fb ⁻¹)	39	53	7.9	43	59	9.1

Combined ALL

m _t ^{PS} (GeV)	Γ_{t} (GeV)	y _t	
172±0.029	1.4±0.039		5.9 %

- Error estimated in arXiv:1310.0563 is wrong and should be replaced to above.
- y_t uncertainty from theory (error on total cross section ~4%) is 22%
 - M. Beneke et al pointed out in Arxiv.1506.06865, that 4.2% error is not likely and we fully agree (and we did not say the error is determined only from exp. stat.). Theoretical uncertainty should be reduced if we want to observe Higgs exchange effect with 5σ.
- Uncertainty from luminosity spectrum to be estimated.
- If 200fb⁻¹ data is accumulate (H20 run scenario), errors can reduced by factor $\sqrt{2}$

Comparison with (2+1) and 3

- (2+1) par fit : m_t and Γ_t simultaneously. y_t from normalization
- 3 par fit : all simultaneously
- Mt worse than (2+1) fit

20150630

• Simultaneous fit gives correct error matrix

error	(2 + 1) param fit	3 param fit
m _t	19 MeV	29 MeV
Γ _t	38 MeV	39 MeV
Υ _t	4.6%	5.9%

Correlation	(2 + 1) param fit	3 param fit
m _t vs Γ _t	0.52	0.57
m _t vs y _t	-	0.72
Γ ₊ vs y ₊	Akimasa Ishikawa	0.33

Forward-Backward Asymmetry

• From S and P waves interference, A_{FB} is generated at threshold which is sensitive to Γ_t and α_s which control the overlap of S and P waves.

- To identify the charge, 4jets+lepton mode is used.
- We choose the Vs=346GeV which gives the maximum interference

Setup

 $\sqrt{s} = 346 \text{ GeV}$ (between S- and P- wave) $\mathcal{L} = 50 \text{fb}^{-1} (\text{e+,e-}) = (+0.3, -0.8)$ $\mathcal{L} = 50 \text{fb}^{-1} (\text{e+,e-}) = (-0.3, +0.8)$

Reconstruction

- To get correct combination, several selections are applied.
- 38% efficiency

Cut flow tahles

 To maximize the significance (S_{top}), bkg. are rejected.

$$S_{top} = \frac{N_{signal}}{\sqrt{N_{signal} + N_{bkg.}}}$$

 # of PFOs is used except top tagging cut (previous page).

Left 50fb ⁻¹	tt4j	tt6j	tt2j	SM bkg.	S _{top}	Efficiency
Gen.	12619	13101	3039	1 M	12.2	100
# of I _{iso} = 1	9648	418	909	0.3M	16.9	76.5
cosθ _{bW} <-0.7	8989	397	834	0.2M	18.4	71.2
X ² <10	6856	65	164	13134	48.2	54.3
cosθ _{bb} <0.8	4881	3	6	271	67.9	38.7
# of PFOs > 50	4872	3 <u>.</u>	imasa Ishikawa	182	68.5	38,6

Results

- From the 1 σ error of A_{FB}, we estimated statistical errors of Γ t and α s.
 - $-\delta\Gamma_t = 290 \text{ MeV}$
 - $-\delta \alpha_s = 0.015$
- Input A_{FB}= 0.0427

50 fb ⁻¹	# of events (NNLO)	δΑ _{FB}
Left handed	5537	0.013
Right handed	2564	0.020
Left + Right (100 fb ⁻¹)	8101	0.011

Summary

- We measured m_t , Γ_t and $y\tau$ from cross section VS Vs
 - $-\delta m_t = 29 MeV$
 - $\delta\Gamma_t$ = 39MeV
 - $\delta y_t = 5.9\%$
- We also measured AFB to extract $\alpha_{\rm s}$ and $\Gamma_{\rm t}$
 - $-\delta\Gamma_{t}$ = 290MeV
 - $-\delta \alpha_s = 0.015$ (not so sensitive)
 - We need some improvement

Plan

- Publication. Horiguchi is preparing the paper draft.
- New student Ozawa will study
 - Top momentum (to measure Γ_t and α_s)
 - Systematic error from beam spectrum
 - Which is also important for σ_{ZH} , m_{H} (and m_{W}) measurement.
 - Perform combined fit to σ_{tt} , A_{FB} and top momentum simultaneously to extract four parameters : M_t , Γt , Y_t and α_s
 - But α_s can be measured precisely from other measurements?
- Coupling measurements
 - Angular analysis with polarized beam

backup