Single top and Matrix Element matching - Parton Shower

Ignacio García M.Perelló, E.Ros, M.Vos

Workshop on Top physics at the LC 2015 IFIC - Valencia (Spain), 30 June - 2 July

Outline

Single top production

- Single top vs *tt* production
- Impact on a experimental study at 500 GeV
- Impact in a study of top mass at threshold

Matrix Element-Parton Shower

- *e*+*e* -> *tt* events at 500 GeV ILC
- MonteCarlo Samples
- WHIZARD MLM procedure and modelling

Conclusions

Single top

• This part of the talk is focused in the paper

"Study of the single top production at high energy electron positron colliders" <u>http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-015-3453-2</u>

- The top quark has never been produced in e+e- machines
- The study of top quark properties is therefore one of the most exciting prospects for a future linear collider
- Single top production, through $e^+e^- \rightarrow W^-t\overline{b}, W^+\overline{t}b$ is abundant at e⁺e⁻ colliders that operate at $\sqrt{s} > 300 \text{ GeV}$

• In this work we investigate the impact of single top events in a few published analysis

Distinguishing single top from *t*t̄ production

- Question: how can one distinguish single top events from tt
- Answer: No algorithm can ever separate them fully -> interference between the production diagrams
- $e^+e^- \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b}$ events generated using WHIZARD at $\sqrt{s} = 500$ GeV including ISR and the Beam energy spread expected at the ILC

Distinguishing single top from *t*t̄ production

- Question: how can one distinguish single top events from tt
- Answer: No algorithm can ever separate them fully -> interference between the production diagrams
- $e^+e^- \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b}$ events generated using **WHIZARD** at $\sqrt{s} = 500$ GeV including ISR and the Beam energy spread expected at the ILC
- So we consider a mass window to separate partially single and double-top events

$$|m_{Wb} - m_t^{MC}| < 15 \text{ GeV}$$

Single top properties

• We have checked at truth level the composition of $e^+e^- \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b}$ samples, using the mass **window of 15 GeV**, and typically is:

	e⁻∟e+ _R		e⁻ _R e⁺ _L
✓ tt events:	90,2%		94,3%
✓ single top:	8,9%	\rightarrow	5,6%
✓ non-top:	0,9%	\rightarrow	0,1%

1. The fraction of single-tops is non-negligible (5-10%)

Single top content depends on the beam polarisation (lower for e⁻_Re⁺_L) and the centre-of-mass energy (up to ~50%)

It may have a significant impact in the measurement of the top quark properties

Experimental study at $\sqrt{s} = 500$ GeV

IFIC/LAL study of ILC lepton+jets tt @ 500 GeV [arXiv:1307.8102] Analysis based on the study of cross-sections and the asymmetries

Impact in the cross-section

Even in the best case ($e_{R}e_{L}$), the selected sample contains a ~5% of single top after quality cuts -> increase in the measured tt cross-section

Impact in the forward-backward asymmetry

e⁻∟e⁺ _R	WbWb	ttbar	tWb
ε ₁ (%)	52,4	52,8	51,8
ε ₂ (%) χ2 < 15	36,7	38,3	26,8
A _{FB} Reco χ2 < 15	0,32	0,34	0,04

 $\in_{1}: \text{ kinematical and identification cuts} \\ \in_{2}: \chi^{2} \text{ cut formed by the } M_{\text{top}}, E_{\text{beam}} \text{ and } E_{\text{b}}^{*} \\ d^{2} = \left(\frac{m_{cand.} - m_{t}}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{E_{cand.} - E_{beam}}{\sigma_{E_{cand.}}}\right)^{2} + \left(\frac{p_{b}^{*} - 68}{\sigma_{p_{b}^{*}}}\right)^{2} .$

The forward-backward asymmetry is even more sensitive -> the measured value is 0.32 instead of the expected 0.34 (6% smaller)

Analysis of top mass at threshold

- We also review the study [arXiv:1303.3758v3, Katja Seidel, Frank Simon et al.]
- NLO calculations for W+bW-b process in WHIZARD 2.2.3 around the doubletop production threshold (MC top mass 174 GeV)
- Content of single top and non-top events in the W+bW-b

The tt cross-section may be obtained quite exactly by shifting down the W+bW-b cross-section by some 0.022 pb

354

√s [GeV]

344

346

348

350

352

Analysis of top mass at threshold

• This result is also **supported by the NNLL** result in:

A.H. Hoang, C.J. Reisser, P. Ruiz-Femenia, Phase space matching and finite lifetime effects for toppair production close to threshold.

Phys. Rev. D 82, 014005 (2010). arXiv:1002.3223

The tt cross-section may be obtained quite exactly by **shifting down** the W+bW-b cross-section by some **0.050 pb**

The presence of single top events modifies significantly the cross-section in the threshold region

Energy dependence

• The composition of $W^+bW^-\bar{b}$ is energy dependent

The rate for the $e^+e^- \rightarrow tt$ drops at very large centre-of-mass energy, single top and non-top increase rapidly

10

Matrix Element Matching and Parton Shower

- Compare a number of alternative schemes to generate e⁺e⁻ -> tt
 events at 500 GeV ILC
- WHIZARD 2.2.2. includes an implementation of the MLM matching procedure
- Modelling uncertainties on the cross-section and AFB
- Validate the IFIC/LAL study of ILC lepton+jets tt @ 500 GeV performed with samples generated with the WHIZARD 1.95 without MLM Matching

MONTE CARLO SAMPLES

- tt
 -jets events in the Matrix Element and matched to the Parton Shower with 3 additional
 jets (maximum)
- ISR and FSR are included and beams are 100% polarised (R=+100%, L=-100%)

The generated samples are:

inclusive $e^+e^- \rightarrow t\bar{t}$

for both polarisations $e_L^- e_R^+$ and $e_R^- e_L^+$

 $e^+e^- \rightarrow t\bar{t} + t\bar{t}j + t\bar{t}jj + t\bar{t}jjj$

for different p_t of the additional jets $(p_{t_{min}} > 10, 15, 20, 25 \text{ GeV})$ for $e_L^- e_R^+$ $p_{t_{min}} > 10$ for $e_R^- e_L^+$

1 million of events per sample

Then the events are passed to the PYTHIA8 for the parton shower and the hadronisation

ANALYSIS CHAIN

- Analysis is done using truth particles No detector simulation
- **1. Semi-leptonic** events are selected keeping only **1-lepton events** $e^+e^- \rightarrow t\bar{t} \rightarrow l\nu qqb\bar{b}$
- 2. Stable particles are passed to FastJet -> Reconstruction of the 4 jets using k_t algorithm with R = 1.5 exclusive clustering mode
- 3. b-tagging: look for the closest jets to the b and b Monte Carlo particles.
- 4. Top candidates are reconstructed using the χ^2 method (as always)

$$d^2 = \left(\frac{m_{cand.} - m_t}{\sigma_{m_t}}\right)^2 + \left(\frac{E_{cand.} - E_{beam}}{\sigma_{E_{cand.}}}\right)^2 + \left(\frac{p_b^* - 68}{\sigma_{p_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^2$$

- 6. Similar cuts are applied.
 - $180 < M_{had} < 420 \text{ GeV}$
 - $50 < M_W < 120$ and $120 < M_{top} < 270$ GeV

Maintaining the maximum similarity with the previous analysis

Validation and systematic uncertainties

Reconstructed W mass

Reconstructed top mass

Mass distributions are practically not affected by the matched additional jets

Validation and systematic uncertainties

Forward-backward asymmetry

Differences between the matched and unmatched simulations are small

Therefore we can consider that the event generation with WHIZARD 1.95 is sufficiently accurate

Modelling uncertainties

Efficiencies of selection

Uncertainty in the selection efficiency is **0.3%**

The effect of the modelling is increased with the quality cut which goes to 1% for $\,\chi^2 < 15\,$

$p_{t_{min}} (\text{GeV})$ $A_{FB}^t \ \chi^2 < 15$ A_{FB}^t $(A_{FB}^t)_{\underline{gen}}$ 0,3332 0,390 100,3944 0,3300 0,3963 0,391 150,3917 0,3269 0,386 200,3254 0,3925 0,389 25unmatched $t\bar{t}$ 0,3895 0,3259 0,382

Forward-Backward Asymmetry

Statistical uncertainty ~0.5% on these numbers

Maximum variation (relative) about 2%

Conclusions

- Single top has a significant impact in the measurement of the top quark properties when in $e^+e^- \rightarrow t\bar{t}$ samples are analyzed
- Single top events cannot be fully separated from *tt* final states
- We claim to calculate e⁺e⁻ → WbWb to high orders (NLO, NNLO, etc...) instead of e⁺e⁻ → tt
- Matrix Element matching procedure has not a large impact in the crosssection and the A_{FB}

THANK YOU FOR YOUR ATTENTION

Workshop on Top physics at the LC 2015 IFIC - Valencia - Spain, 30 June - 3 July 2015

Distinguishing single top from tt production

- We also generated $e^+e^- \rightarrow W^+bW^-\overline{b}$ events with **WHIZARD** at $\sqrt{s} = 500$ GeV including ISR
- Only semi-leptonic decays are selected
- Significant fraction of events in the diagonal —> Mostly single top events

 $E_{lep}+E_{had}=\sqrt{s}$

Potential criterium for the partial separation of single and double-top events