Top quark mass and α_s at a LC

Martín Perelló Roselló IFIC (U.Valencia/CSIC), Spain

With special thanks to:

M. Vos, I. García, E. Ros, P. Gomis, J. Fuster (IFIC Valencia) J. Reuter, F. Bach (DESY), G. Dissertori (ETHZ)

Introduction

- Several authors have applied **multi-parameter fits to cross-section obtained in scan** (+ other distributions) at future linear colliders.
- Statistical precision on 1S or PS mass for 10 x 10/fb: **16 30 MeV** (range of results can be understood from assumptions and fit details).
- This study tries to contribute to the previous works through new developments.

Signal sample

• Inclusive process: $e^+e^- \rightarrow W^+bW^-\overline{b}$

• To avoid single top mis-identification.

See: Fuster, Garcia, et al. Study of single top production at high energy electron-positron colliders, arXiv:1411.2355

\sqrt{s}	10 points around ttbar threshold : 344-353 GeV		
Luminosity	$10fb^{-1}$ (100 fb^{-1} in the total threshold scan)		
Beam structure	ISR+beamstrahlung		
Beams polarization	$P(e^{-}, e^{+}) = (-80\%, +30\%)$		
MC generator	Whizard 2.2.6 (SM_tt_threshold) - LO+NLL		

• **Parton-level study**: preliminary study of theoretical and systematic uncertainties, but NOT included in the minimization.

Multi-parameter fit

1) Top quark mass at the 1S threshold scheme: m_{1S}

• Conversion from 1S to \overline{MS} : (*P. Marquard et al.*, *arXiv:1502.01030*, *PRL114* (2015))

$$\frac{n_t(m_t)}{GeV} = 163.643 \pm 0.007 + 0.069 \,\delta_{\alpha_s} - 0.096 \,\delta_{m_t}^{1S}$$

$$\delta_{\alpha_s} = [0.1185 - \alpha_s]/0.001$$

$$\delta_{m_t}^{1S} = [172.227 \, GeV - m_t]/0.1$$

2) Is the top width a free parameter?

$$\Gamma \left(t \to Wb \right)_{SM} = \frac{G_I m_t^3}{8\pi\sqrt{2}} V_{tb} |^2 \left(1 - \frac{M_W^2}{m_t^2} \right) \left(1 + 2\frac{M_W^2}{m_t^2} \right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2} \right) \right]$$

 Change to a Vtb analysis (see F.Bach's talk, <u>https://indico.desy.de/contributionDisplay.py?sessionId=11&contribId=19&confId=10353</u>).
 The strong coupling constant, α_s.

Statistical analysis

- χ^2 minimization (LS method): $\chi^2(m_{1S}, V_{tb}, \alpha_s) = \sum_{i=1}^{10} \left(\frac{y_i - \sigma(\sqrt{s_i}; m_{1S}, V_{tb}, \alpha_s)}{\delta y_i} \right)^2$
- Factorization method: $\sigma(m_{1S}, V_{tb}, \alpha_s) = \sigma(m_{1S})\sigma(V_{tb})\sigma(\alpha_s) \frac{\sigma(174 \text{ GeV}; 1; 0, 118)}{\sigma(174 \text{ GeV})\sigma(1)\sigma(0, 118)}$

Only valid around the factorization point.

1 vs 2 vs 3 floating-parameters strategy

Fit	$\Delta m_{1S} [{ m MeV}]$	ΔV_{tb}	$\Delta \alpha_s$	
Only <i>m_{1S}</i> *	10	-	-	* to
$m_{1S} \operatorname{vs} V_{tb}$	10	0,0095	-	n
m_{1S} vs α_s	15	-	0,0007	
$m_{1S} \operatorname{vs} V_{tb} \operatorname{vs} \alpha_s$	32	0,023	0,0017	

*Vtb and α_s fixed to their respective nominal values.

- Little impact of Vtb to the mass extraction, α_s hits harder.
- 3 floating-parameters strategy aggravates the uncertainties estimation.
- The negative impact of the multi-parameter fit must be canceled by reducing the number of floating-parameters.

Using prior knowledge (current values)

Adding prior information on the χ^2 minimization...

- $\Delta V_{tb} = 0,032$ (PDG2014) $\Delta \alpha_s = 0,0006$ (world average).
- Vtb prior does not have an important impact in the $m_{1S} \alpha_s$ interplay.
- α_s prior reduces considerably the uncertainties

Using prior knowledge (α_s role)

• The $\overline{\text{MS}}$ mass uncertainty can be reduced with a more precise value of α_s .

With an uncertainty of ≤ 0.0001 on α_s a limit of 12 MeV on the top quark mass is reached (higher value considering systematics).

TopLC15 - IFIC (Valencia) 30, June 2015 Martín Perelló (martin.perello@ific.uv.es)

α_s scenarios – Z & W boson physics

<u>ILC</u>

• Giga-Z program (TDR: Z boson hadronic-to-b-quark ratio): $\Delta \alpha_s \sim 0,0005$

Results scaling from a TLEP study... (See arXiv:1308.6176v2)

• W had. branching-fract. through WW events at 500 GeV at highluminosity program: $\Delta \alpha_s \sim 0,0005$

 $\Delta \alpha_s \sim 0,0004$

ALTERNATIVE SCENARIOS??

α_s scenarios – 500 GeV Tour

- <u>Study: cross-section from WbWb + 1jet at $\sqrt{s} = 500 \text{ GeV}$ </u>
 - Similar sensitivity to α_s as threshold, but very small top mass dependence.
 - Single α_s extraction through the cross-section.

Integ. Lumin.	$500 fb^{-1}$	$4 ab^{-1} (Lumi - upg.)$
$\Delta lpha_s$	0,0005	0,0002

Only competitive if the theory uncertainties are controlled at 0.5% - few per mil.

Not very optimistic for a big α_s uncertainty reduction from ILC

TopLC15 - IFIC (Valencia) 30, June 2015 Martín Perelló (martin.perello@ific.uv.es)

Summary and plan

PRESENT...

- Previous results at a tt̄ threshold are confirmed through a WbWb study.
- α_s limits the statistical precision of the top quark mass even using the current world-average ($\Delta m^{\overline{MS}} = 41$ MeV).
- Including a precise value of α_s ($\Delta \alpha_s \sim 0.0001$) can reduce the mass uncertainty to $\Delta m^{\overline{MS}} = 12$ MeV.

FUTURE...

- Complete study at detector level.
- Theoretical and systematic uncertainties.

THANK YOU!!