Recent testbeam results of 50 μm pitch 3D sensors at high incidence angle for HL-LHC

<u>I.Lopez</u>

E. Cavallaro, S. Grinstein, J. Lange, D. Vazquez

RD50 Workshop 2015 Jun 23th, 2015

1

HL-LHC experiments pixels

- Higher fluence
 - From $\phi_{eq} \sim 5 \times 10^{15} n_{eq}/cm^2$ (IBL) to $\phi_{eq} \sim 2 \times 10^{16} n_{eq}/cm^2$ for inner layers
 - → Radiation hard technology: **3D**/planar/diamond/...
- Higher pile-up/rate
 - Better position resolution is needed
 - \rightarrow Smaller pitch pixels: **50x50 \mum²** / 25x100 μ m² pixels
 - \rightarrow Lower capacitance ~ Lower noise
 - \rightarrow Lower threshold (~500 e in RD53 chip)
- Thickness
 - Thinner (~100 μ m) sensor to reduce occupancy at high-ŋ?
 - "**Thick**" (~200 μm) sensors to allow in-sensor tracking

In **bold** are the considered technologies/geometries in this talk, not preferences

"50 μm pitch" pixels in high angle

- High angle with 50 μm pitch pixels
 - Long mip path
 - \rightarrow Large total deposited charge
 - \rightarrow High "cluster" efficiency (i.e. have a cluster of any length for each track)
 - But 50x50 μ m² pitch pixels implies low charge per pixel at high angle
 - $\rightarrow~$ ~ 3.3 ke for 50 μm pitch
 - Study the "pixel" efficiency under such conditions (i.e. a pixel along the track path fired)

Possible problems for 50 μm pixels at high incidence angle

- Cluster splitting:
 - Pixel inefficiency ↔ "holes" inside a cluster
 - \rightarrow Can lead to cluster splitting
- Z position resolution in 1 point-per-plane reconstruction
 - If a pixel in an edge of the cluster is not fired due to inefficiency
 - → Cluster centre biased by pitch/2

10 x 50 µm

- Z position resolution in in-cluster-tracking reconstruction
 - Bias if any edge pixel of the cluster is not fired due to inefficiency

28 x 50 µm

Need to study 50 μm pitch pixels at high incidence angle

15 x 50 µm

(thickness)

Testbeam set-up

No 50x50 μm^2 pitch pixel 3Dsensors avilable for testbeam studies

 \rightarrow Use FEI4 3D sensors (50x250 μm^2 pixels) at high incidence angle along the short pixel direction

November 2014 CERN testbeam and March 2015 DESY testbeam

- 80 ° ($|\eta|$ ~2.4) \rightarrow clusters of ~27 pixels
- Shoot from Bump-bond side and Back side

Efficiency calculation

- Analysis:
 - Based on hit information
- Efficiency per cluster
 - At 80° incidence, cluster efficiency should be ~100%
 - Cluster inefficiency goes (naïvely) as
 - $(1-\varepsilon_{pixel})^{N_{cl}}$

- Look at per pixel efficiency instead
 - Use long clusters as "tracks"

 $\rightarrow\,$ Take long cluster's ends and count pixel hits between them

$$\varepsilon_{pixel}(i, j) = \frac{\# hits(i, j)}{\# inCluster(i, j)}$$

- Fix Cluster Size X = 1 to avoid inefficiencies from charge sharing
- Don't count first and last pixels in cluster

Non irradiated sensors

Cluster Size

CNM sensor's cluster size shifted to lower values at

lower voltages even though the set-up didn't move between measuremets

 \rightarrow Not caused by misalignment!

Cluster Size Peak

 CNM, due to the non-passing-through columns the will be regions along the sensor's thickness nondepleted (insensitive)

> EXCELENCIA SEVERO OCHOA

Jun 23th, 2015

Avg ToT per pixel

Avg ToT per pixel

Efficiency per pixel vs cluster position

Per Pixel Efficiency

- "Cluster separation": How many consecutive holes (-1) do we allow inside a cluster
- In Pixel Efficiency using clusters sizes CISize_{peak}±1 in the plateau
 - $\rightarrow\,$ Avoid noise and bias to large efficiencies
- Unirradiated sensors are >99.3%/pixel efficient

Irradiated sensors

Cluster Size

EXCELENCIA SEVERO OCHOA

Avg ToT per pixel

- Charge collection decreased after irradiation (as expected)
- CNM sensor has low charge collection at **both** ends of the clusters (as opposed to non-irrad)
 - Compatible with non-passing-through columns
- FBK sensor has relatively uniform charge collection along the clusters

Note: 0th pixel position is the closest pixel **hit** to the (0,0) pixel inside the cluster

CNM*

Efficiency per pixel vs cluster position

OCHOA

- Lower efficiency correlated with lower charge collection area in the area near the bump-bonds
- At such fluences, the area around the end of the n-column also has reduced efficiency
- Asymmetric efficiency
 - **One-sided** inefficiencies
- FBK behaviour still under

17

Per pixel efficiency

Conclusions

- High angle and high segmentation \rightarrow low charge collection per pixel (~3.3ke for 50 μ m pitch)
- However, with a non optimized 3D structure at high angle it was possible to reach:

*No charge sharing was considered

- Good efficiency was observed
 - → Small probability of cluster splitting
- Lower noise (lower capacitance due to smaller pixels) and threshold (RD53) would improve these efficiencies
- Studied charge collection for 50 µm pitch pixels at high angles:
 - Non passing-through column devices show a lower charge collection around the BB side
 - \rightarrow Can lead to (one-sided) cluster end-pixel inefficiencies
 - Clusters in non passing-through column devices get smaller for lower voltages and size distribution is broader
 - \rightarrow Also a sign of end-pixel inefficiencies
- Outlook:
 - Further studies and (edge-) TCT measurements
 - Looking forward for real 50 x 50 μm sensors

Back-up slides

Cluster Size (B/F, Unirrad)

- Cluster Separation 3:
 - A maximum of 2 unfired pixels between 2 hits to form a cluster

Efficiency per pixel vs cluster position

SEVERO OCHOA

- Lower efficiency correlated with lower charge collection area in the area near the bump-bonds
- At such fluences, the area around the end of the n-column also has reduced efficiency
 - Asymmetric efficiency
 - **One-sided** inefficiencies
 - After irradiation, a relatively uniform response is kept in fulling passingtrough columns structures