Timing performance of LGAD-UFSD

- 1. New results from the last CNM LGAD runs
- 2. A proposal for LGAD segmentation

Nicolo Cartiglia

with INFN Gruppo V, Santa Cruz, CNM Barcelona

Structures from the last LGAD CNM Run (7509-7589)

Multipad structures with different distances from bottom edge

Single pad, 3x3 and 8x8 mm

Laboratory Setup for signal acquisition

- Picosecond Diode Laser;
 - Laser head (1064 nm 400nm);
 - Voltage Source Keithley 2410 (High Voltage);
 - Power supply Rohde & Schwarz HMP2030 (low Voltage);
- Broadband amplifier Cividec, 40 dB, 2 GHz BW;
- SMA amplifier Cividec;
- Oscilloscope LeCroy Waverunner 2.5 Ghz BW;
- Detector;

New results from the last LGAD CNM Run

(laser data)

CNM run 7859: 3 different gain doping: 1.8, 2.0, 2.2 *10¹³ cm²

- This device belongs to the lowest gain production.
- Gain value in line with expectations
- Linear gain with Vbias

LGAD diodes from CNM Run 6474 and 7589

The two devices, from two different runs, show good consistency in the gain value with respect of the implanted boron dose

Achieved ~ 70 ps resolution with laser pulses

Extrapolation to thinner sensors and higher gain

Assuming the same electronics, and 3 mm² LGAD pad with gain 6 and 10, we can predict the timing capabilities of the next sets of sensors.

CNM first production: $\sigma_{t} \sim 150 \text{ ps}$

300 micron thick, 5x5 mm, no guard ring, gain 10

CNM second production: $\sigma_{t} \sim 70 \text{ ps}$

300 micron thick, 3x3 mm, guard ring, gain 6

Why so much improvement, even with a diode with lower gain?

$$S_t \mu \frac{\text{Noise}}{\text{dV/dt}}$$

The secret is in the noise: these small sensors have very low leakage current and much smaller capacitance → very low noise

Timing in a "many particles" environment

Is it possible to do precise timing measurements in a calorimeter using silicon pads?

CMS decision:

Tungsten – silicon calorimeter

What is the best shower depth to do timing?

Shallow timing layer:

- B Less particles
- © No time dispersion of the particles
- © Lower radiation damage

Deep timing layer

- © A lot of deposited charge right away (up to 100 particles)
- 🐵 Intrinsic time dispersion of particles in a single silicon pad
- ⊗ High radiation damage

Time r<u>esolution of UFSD and PIN d</u>iodes (laser pulses)

For 1 MIP, A UFSD with gain ~ 6 shows a factor of 3 better time resolution than PIN diodes: 70 ps vs 200 ps

For many MIPS the difference is becoming less and less

A proposal for LGAD segmentation

Uniform multiplication in segmented detectors

Electrode segmentation makes the E field very non uniform, and therefore ruins the gain and timing properties of the sensor

Non uniform E field and Weighting field

We need to find a design that produces very uniform E field, while allowing electrode segmentation.

LGAD with a resistive n++ electrode

Details of AC coupling - I

Additional Rise time

 $R_{Ampl} * C_{detector} \sim 100 \ \Omega * 1 \text{pF} \sim \textbf{100 ps}$

Only a small part of the detector is involved

Details of AC coupling - II

Summary

Timing performance of LGAD

- 1) We tested the new CNM production of LGAD
- 2) Very good timing performances due to the reduced noise
- 3) Testing of additional pads soon
- 4) Testbeam coming in the next weeks
- 5) Timing for calorimeters using silicon pads

LGAD Segmentation

- 1) We propose to use the resistivity of the n++ electrode to achieve AC segmentation.
- 2) For appropriate values of R_{Sheet} and C_{AC} , the signal is frozen in place for $\sim 100 \mbox{ ns}$

Extra

New results from the last LGAD CNM Run

We received samples from two runs: 7509 and 7859.

