

Proposal for a new RD50 project "Strip sensors made of N-rich FZ silicon (NitroStrip)"

Alexander Dierlamm

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Recap N-rich Si (NitroSil Project)

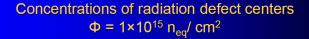
- See talks by Topsil and ITME in last RD50 workshop
- Nitrogen effective in reducing vacancy related defects
- Development of N-rich silicon wafers with high resistivity and homogeneity
- We now want to go a step further from microscopic measurements to sensor properties

FZ Si nitro	gen-doned	high-	resistivity	/ samp	les
	gen aepea	, mgm	1 Colotivity	Julip	

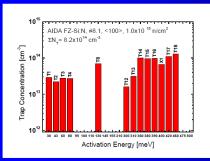
Sample label	Orien- tation	ρ (300 K) (Ωcm)	[N] (x10 ¹⁵ cm ⁻³)	[O] (x10 ¹⁶ cm ⁻³)	[C] (x10 ¹⁵ cm ⁻³)
A (2.1)	<100>	4700	0.98	0.6	1.0
B (1.1)	<111>	1700	2.26	1.1	1.0
C (4.2)	<100>	500	1.42	< 1	< 1
D (6.1)	<100>	4100	2.0	0.5	< 1
E (8.1)	<100>	5300	0.92	0.2	< 1
F(10.2)	<111>	1700	2.5	0.9	3.0

Nitrogen atoms in Si lattice

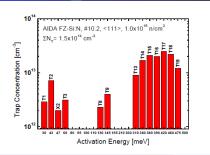
- W. von Ammon et al. Journal of Crystal Growth 226 (2001) 19-30
- N-N pairs are stable up to 1270 °C
- · Interaction of N-N pairs rather than single nitrogen atoms with vacancies leads to suppression of vacancy aggregation


The following reactions are proposed to be responsible for vacancy annihilation:

- (1) I+V **₹** 0
- (2) 2N₁ **→** N₂
- $(4) N_2 + V \Rightarrow N_2 V$ (5) N₂V+I **₹**N


Presentation of Topsil

TOPSIL


Proposal for RD50 project

Sample F, $[N] = 2.50 \times 10^{14} \text{ cm}^{-3}$

Total traps concentration: 8.2×10¹⁴ cm⁻³

Total traps concentration: 1.5×10¹⁴ cm⁻³

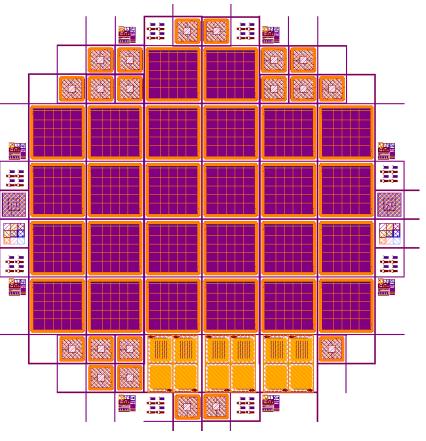
High-Resolution Photoinduced Transient Spectroscopy (HRPITS)

Ingredients

- As partners of the NitroSil project we get 20 4" n-type wafers (300µm)
 - 10 standard FZ
 - ρ ~ 2kΩcm
 - 10 N-rich FZ
 - $[N] = (1.3-1.6) \times 10^{15} \text{ cm}^{-3}$
 - $[O] < 1x10^{16} cm^{-3}$
 - $\rho \sim 2k\Omega cm (N_{eff} \sim 2x10^{12} cm^{-3})$

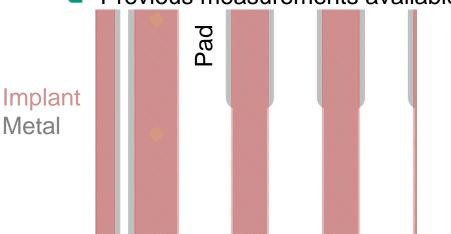
- "In the nitrogen-enriched wafers the shallow donors related to N-O complexes can be formed at temperatures 600 900°C. The concentration of them is estimated to be in the range from 10¹¹ to 10¹² cm⁻³. So, to some extent they can affect the material resistivity."
- I got quotes from D+T and CiS to process these 20 wafers (~20k€)
 - further wafers at ~600.-/wafer
- One could use "old" masks of a previous project (0€) or produce new ones to benefit from new/optimized layouts (~5k€)
- Costs for irradiations within this project could be >2k€ (if AIDA2020 TA does not apply)
- At the moment there are four institutes interested to participate
 - KIT, CERN, ITME (contribute the wafers), CNM (offered to add DOFZ and MCz; maybe 4x5 wafers?)
- Who else is interested to join? (at a share of < ~2250€?)</p>

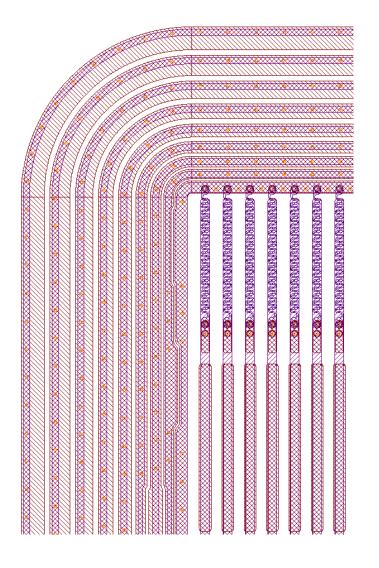
22.6.2015


Previous RD50 mask at CNM (RD50-C for n-in-n)

- 20 diodes (6.3x6.3mm²)
- 26 strip sensors (1.25x1.25cm²)
- 12 pixel (gap30, array 22x40) for PSI46

Several test-structures



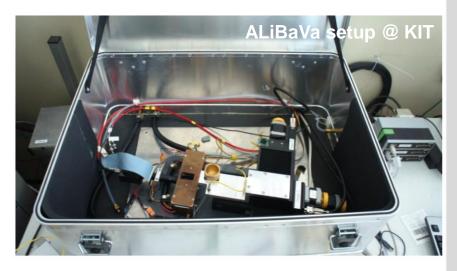


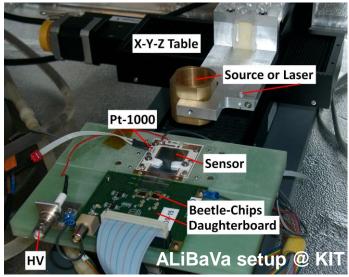
Strip sensor details

- Strips length: 10.5mm
- Pitch: 80μm; width: 30μm
- # strips: 131
- Negative metal overhang (-1µm)
 - better have pos. ~5µm overhang?
 - → just modify metal layer
- Multi-guard ring structure OK?
 - Previous measurements available?

Irradiation plans

- Material: FZ, N-FZ, (DOFZ, MCz)
 - maybe 4x5 wafers, 130 sensors for each material
- Fluences: 1e14, 5e14, 1e15, 5e15n_{eq}/cm²
- Particles:
 - 25MeV protons (KIT/Birmingham)
 - 300/800MeV protons (FNAL/Los Alamos)
 - 24 GeV protons (CERN)
 - reactor neutrons (JSI/Vienna/Brown)
- Initial program:
 - 2 sensors each irradiated with single particle type
 - Total: $\frac{2}{4} \times 4 \times 4 \times 2 = \frac{64}{128}$ sensors (1/4 of production)


Proposal for RD50 project


Then: let's see...

Measurements

- Sensor characterization
 - IV, CV on all
 - Strip measurements on samples
- Read out strip sensors with
 - ALiBaVa setup
 - Sr90 source
 - @ -20°C
- CC, cluster size, noise
 - vs. voltage
 - vs. annealing min. steps: initial, 2w@RT, 20w@RT
- Min. program ~2 days per sensor!
 - Participants need measurement capacity!

22.6.2015

Tentative schedule

- Wafers already available
- Two weeks to finalize list of participants (8.7.15)
 - please contact me: <u>alexander.dierlamm@kit.edu</u> or later in the coffee break...
- Decide on mask layout by end of July
 - or hopefully earlier if RD50-C mask is sufficient

Proposal for RD50 project

- Order beginning of August
- Wafer delivery ~November
- Initial qualifications Nov Dec
- Start of irradiation program Jan.'16