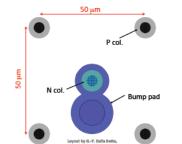
Recent Progress on 3D Silicon Detectors

Emanuele Cavallaro, Sebastian Grinstein, Jörn Lange, Iván López Paz, David Vázquez Furelos IFAE Barcelona

26th RD50 Workshop, Santander, 22-24 June 2015

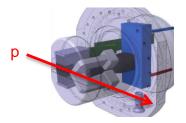
With material from the ATLAS 3D group, CNM, FBK, SLAC and SINTEF



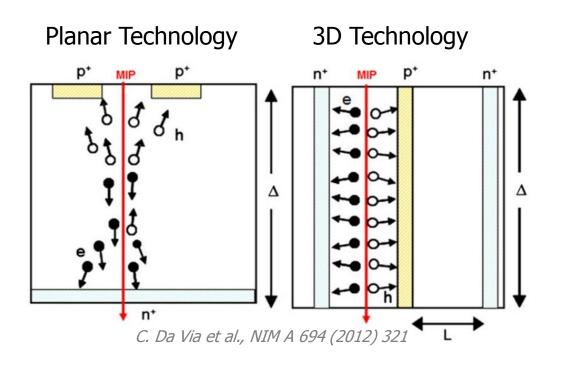
EXCELENCIA SEVERO OCHOA

3D Detectors – a Success Story

- 1997: First idea and devices
- Huge R&D effort
 - Manufacturers, ATLAS+CMS, RD50, ... n-active edge
- ATLAS IBL
 - First installation of 3D detectors in a HEP experiment
- Forward Detectors: 2nd use of 3D detectors within 1/2 year
 - ATLAS Forward Proton (AFP)
- HL-LHC Phase-2 Upgrades ~2024
 - New generation of 3D detectors



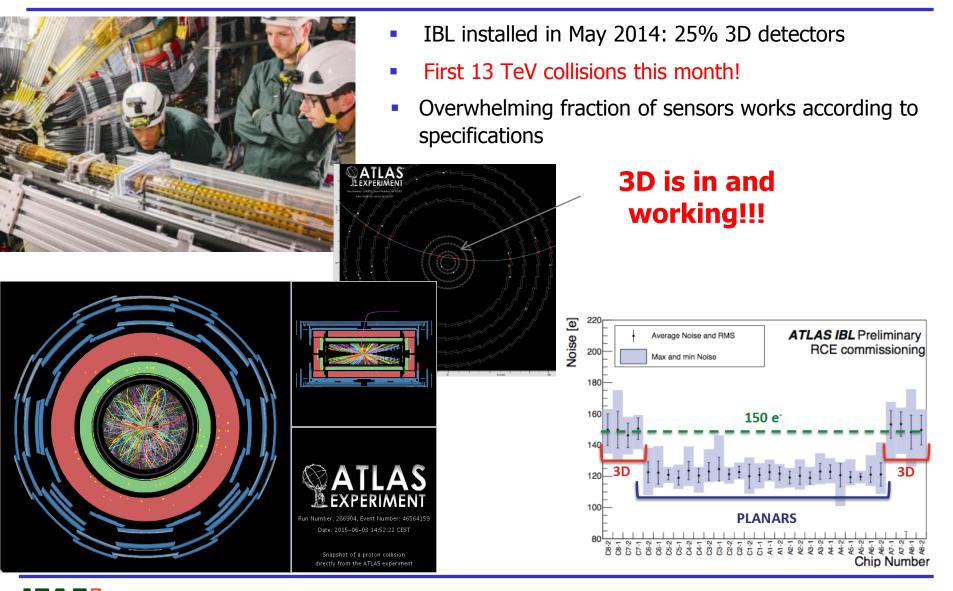
electrodes


S. Parker, C. Kenney, J. Segal

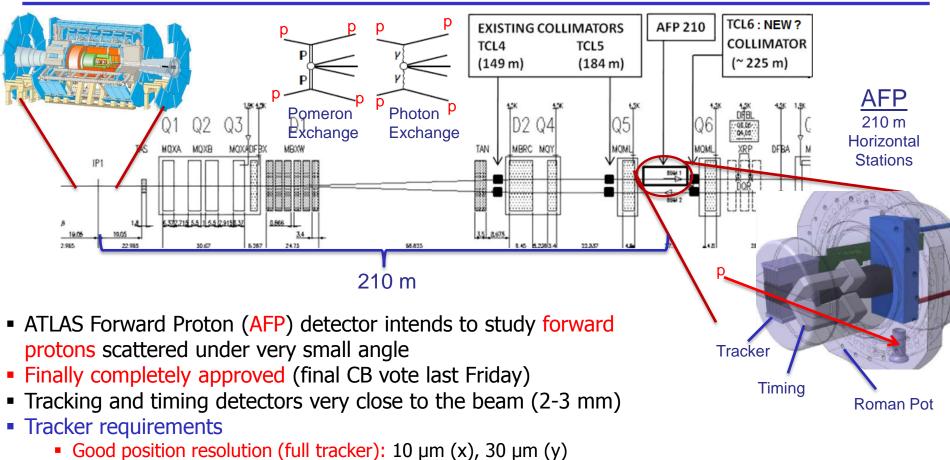
NIM A 395 (1997), 328

3D Detector Principle

Radiation-hard and active/slim-edge technology

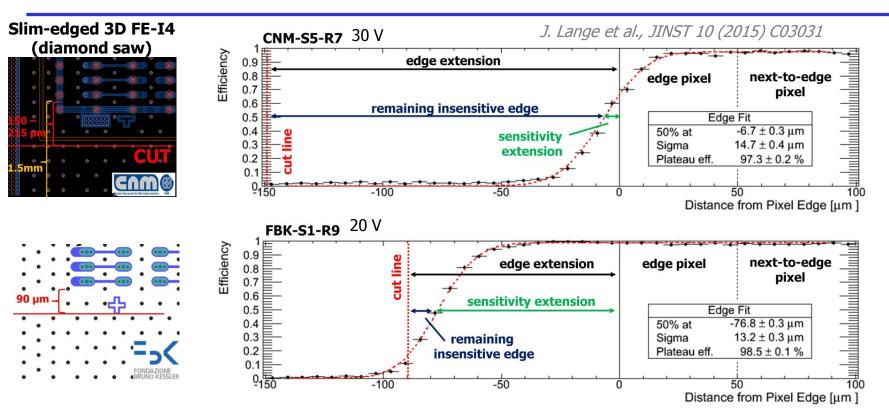

Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower V_{depletion}
 - \rightarrow less power dissipation, cooling
 - \rightarrow smaller drift distance
 - \rightarrow faster charge collection
 - \rightarrow less trapping
- Active or slim edges are natural feature of 3D technology


Challenges

- Complex production process
 → long production time
 - \rightarrow lower yields
 - \rightarrow higher costs
- Higher capacitance
 → higher noise
- Non-uniform response from 3D columns and low-field regions → small efficiency loss at 0°

IBL Installation and Commissioning


3D Sensors for Forward Detectors

- Slim edge of side facing beam: 100-200 µm
- Highly non-uniform irradiation (up to 3x10¹⁵ n_{eq}/cm²)

AFP TDR , LHCC-2015-009, ATLAS-TDR-024

AFP: Slim-Edge Efficiency

- CNM: Fully sensitive up to last pixel (3D guard ring design)
- FBK: Sensitivity extends ~75 µm beyond last pixel (no guard ring)
 → <15 µm insensitive edge: slimmest edge apart from fully active edge
- For both CNM and FBK: <150 μm insensitive edge possible

→ AFP slim-edge requirements fulfilled

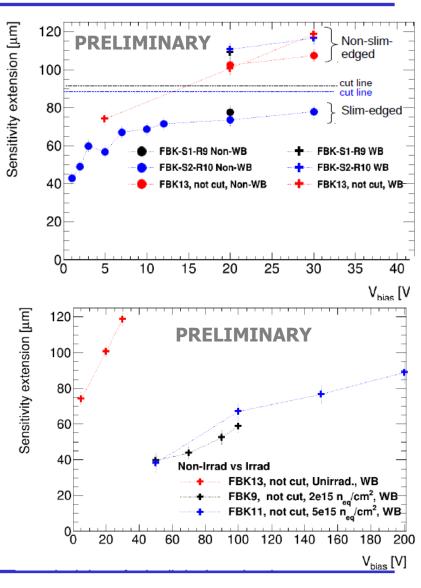
AFP: FBK Slim-Edge Efficiency –

Dependence on V, Side and Fluence

Wirebond side

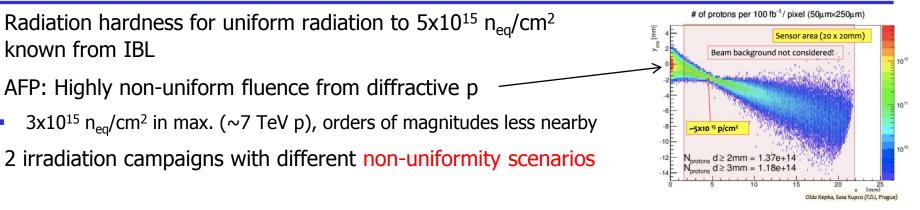
Non-Wirebond side

 \rightarrow slim-edge side (opt.)

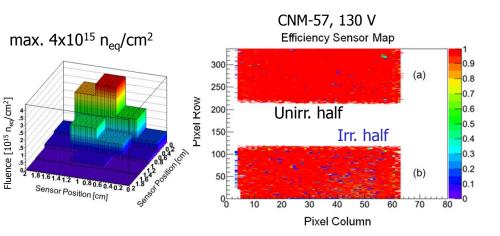

CU

- Dependence on the side
 - Edges that are cut to obtain slim-edges have ~75 µm sensitivity extension, non-cut edges ~110 µm

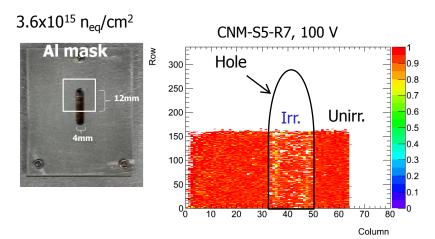
 \rightarrow probably cut (defects) influence depletion growth and increased recombination near cut edge


 \rightarrow to be followed up in simulations (FBK)

- Dependence on irradiation
 - Here: non-cut devices
 - Sensitivity extension still present after irradiation, but reduced (increasing with V)

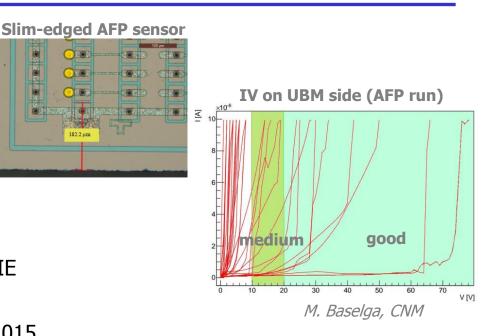


I. Lopez et al., ANIMMA 2015, Lisbon


AFP: Irradiation Studies

1) Focussed 23 GeV p irradiation (CERN-PS) \rightarrow fluence spread large

23 MeV p (KIT) through hole in 5mm Al plate \rightarrow very localised fluence with abrupt transition



S. Grinstein et al., NIM A730 (2013) 28

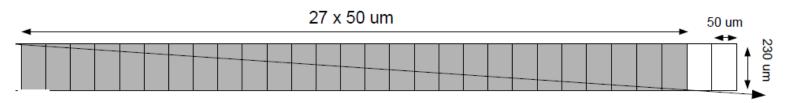
Efficiency 96-99% in all regions

AFP Production

- 3D detectors qualified for AFP
- Production run at CNM finished in July 2014
- 8 lost wafers due to machine malfunctions,
 5 wafers successfully finished (40 sensors)
- Slim-edged to 180 µm
- 9 good + 5 medium quality sensors
 → Low yield due to etching problems with DRIE
 → Identified and solved for next runs
- New IBL-like run started at CNM in February 2015
- Module assembly incl. bump- and wirebonding and QA to be done at IFAE Barcelona (on AFP flex from Oslo)
- → Installation of first two AFP stations with 2 x 4 3D FE-I4 pixel modules planned for winter shutdown 2015/16 (tight!)

IFAE Bump-Bonding

New Developments for HL-LHC


- High-Luminosity LHC (HL-LHC) upgrade 2024
 - \rightarrow increased occupancy
 - \rightarrow unprecedented radiation levels (1-2x10¹⁶ n_{eq}/cm² innermost pixels)
- Development of new pixel sensors and front-end (RD53)
 - Reduced cell size: 50x50 μm^2 or 25x100 μm^2
 - Reduced threshold ~1000e (in-time), C_{det} <100 fF/pixel, I_{leak} <10nA/pixel
- Strategy for 3D HL-LHC R&D
 - New generation of 3D productions under way
 - But takes time (~1 year)
 - Explore the limits of existing 3D technology and devices from previous productions

HL-LHC Studies: High Eta

- Large clusters \rightarrow large total charge \rightarrow efficiency for whole cluster not a problem
- But for 50 µm pitch very small charge deposition per pixel (almost parallel tracks): 3300 e
- Testbeam campaign to measure CNM+FBK IBL FE-I4 devices with 80° angle in short pitch direction (50 $\mu m)$
 - 1000 + 1500 e threshold
 - Cluster size 24-27
 - >99% efficiency per pixel before irradiation

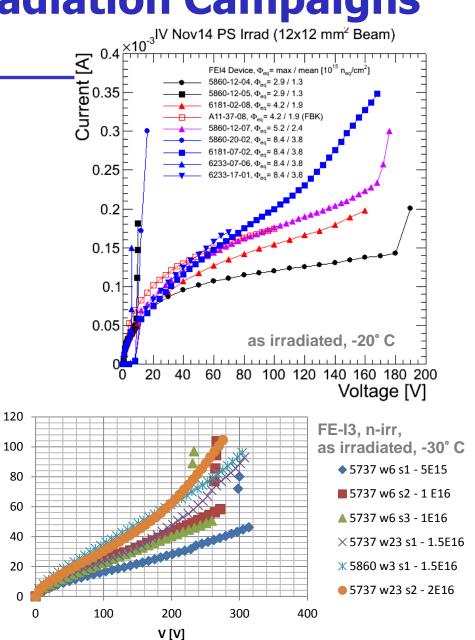
See talk by Ivan Lopez

80° (η =2.4) \rightarrow Q=3300 e/pixel (50 µm)

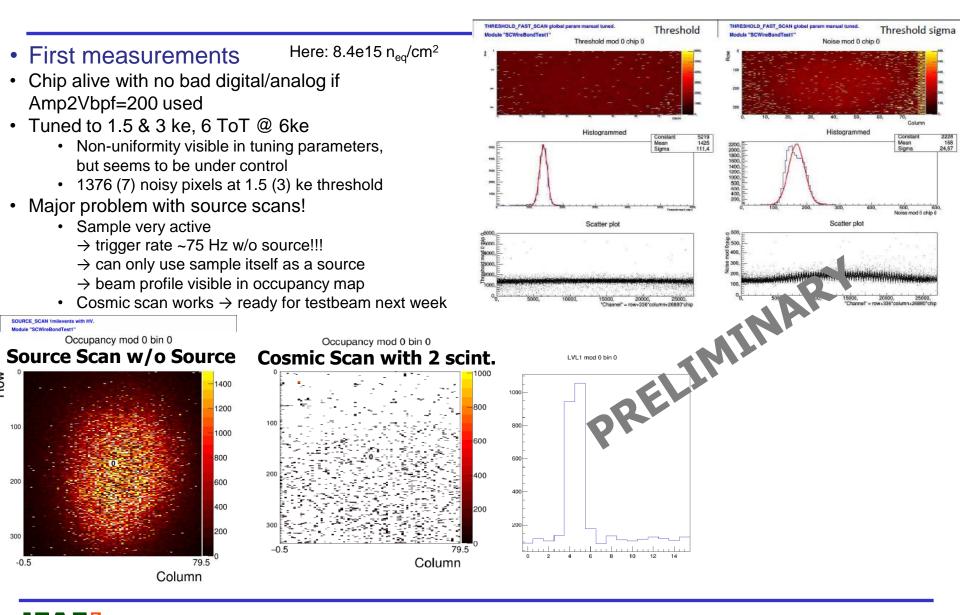
HL-LHC Studies: Irradiation Campaigns

[HA]

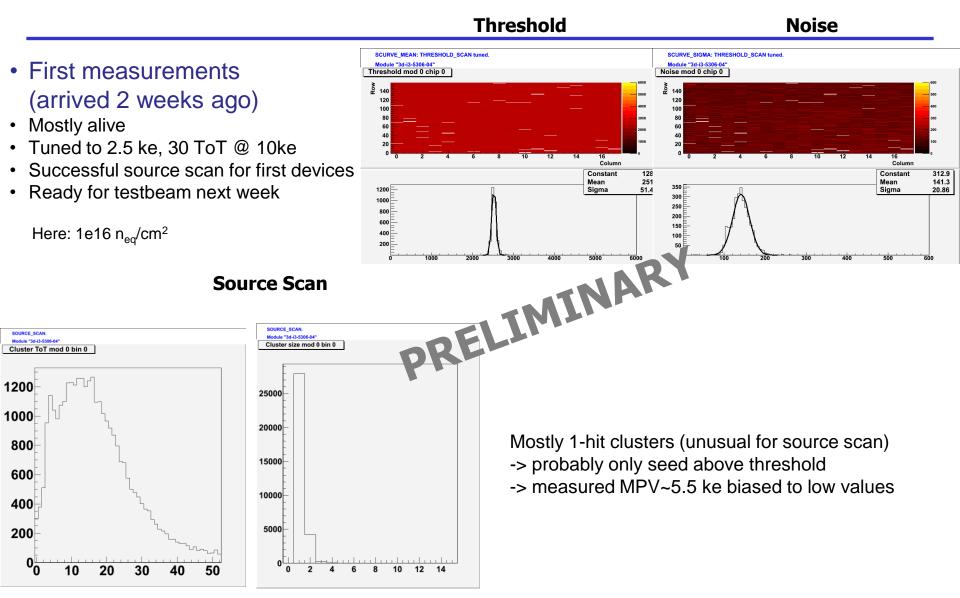
• PS 23 GeV p (Nov 2014)


→ thanks to Federico Ravotti for irradiation!

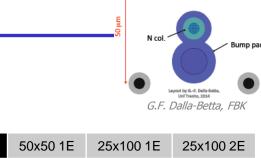
- 8 CNM, 1 FBK FEI4 bare assemblies; 3D strips
- Non-uniform (12 mm FWHM beam)
- Did not reach desired ITk fluence, but more than IBL fluence in peak (and 23 GeV instead of 23 MeV p used for previous IBL studies)
- Shipped two good pixel devices to IFAE
 - Max fluence 5.2 and 8.4e15 $\rm n_{eq}/cm^2$
 - Assembled on SCC PCBs
- The rest stayed at CERN to be irradiated further (June/August 2015)
 - 1 device non-uniformly to 2e16 n_{eq}/cm² (max)
 - 3 devices more uniformly (scanning or wider beam) to 1.1 and 1.3e16 n_{eq}/cm² (mean)


• JSI Ljubljana n (May 2015)

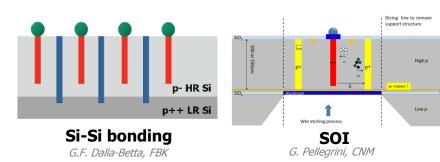
→ thanks to Igor Mandic, Vladimir Cindro for irradiation and AIDA2020 support!


- FEI3 bare assemblies from CNM IBL wafers (to avoid Ta activation, also have great V_{BD})
- 5e15, 1e16 (2x), 1.5e16 (2x), 2e16 n_{eq}/cm²
- Assembled at IFAE recently

PS p Irradiated FE-I4 Devices



JSI n Irradiated FE-I3 Devices

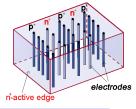

New 3D Productions at CNM, FBK, Stanford, SINTEF

- Smaller cell sizes folded into existing FE geometries, also FE-RD53 prototypes
 - Cross-experiment runs: CMS PSI46dig, ATLAS FE-I3/4, LHCb Timepix/Velopix
- Reduced cell size means reduced electrode distance L
 - Advantageous for radiation hardness
 - Need to reduce 3D column diameter to ~5 µm to keep dead material low
 - Go to thinner detectors with fixed aspect ratio (column length/diam.) 20:1 \rightarrow all vendors
 - Increase aspect ratio to 40:1 with cryogenic technique \rightarrow CNM
- Thinner sensors
 - To reduce 3D column diameter, C_{det} and cluster size at high eta
 - Double-sided: CNM 200 μm (technology limit)
 - Single-sided
 - Si-Si wafer-bonding (FBK 100-130 μm, Stanford 75-150 μm)
 - SOI (SINTEF 50+100 μm, CNM 100+150 μm)
- 6" wafer production (FBK, SINTEF)
- Improved on-wafer sensor selection (CNM: poly-Si)
- Improved breakdown (FBK: non-passing through junction column)
- Varying depth of junction columns to sense full 3D hit information (Stanford)
- Active (Stanford, SINTEF) or slim (CNM, FBK) edges

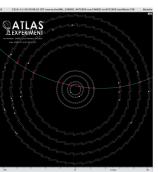
50x50 1E

28 µm

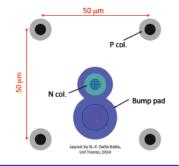
35 µm

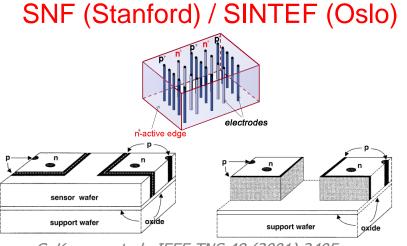

Layout

El. Dist. L


52 μm cf. FE-I4: L=67 μm

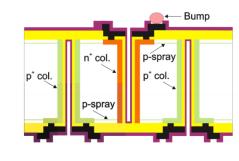
Conclusions


- 3D silicon detectors mature for HEP applications
- First-time use in HEP experiment in ATLAS IBL
 - Successful qualification, production, installation, commissioning and first collision data
- Second use in AFP imminent
 - Successful qualifications (slim edge and non-uniform irradiation)
 - Productions on-going
- R&D for HL-LHC pixel detectors on-going
 - New 3D production runs at CNM, FBK, Stanford, SINTEF
 - Smaller cell size, thinner, smaller columns, partly 6"
 - R&D with existing devices on-going

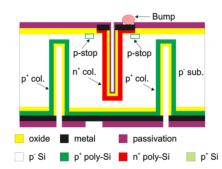


BACKUP

Different 3D Technologies



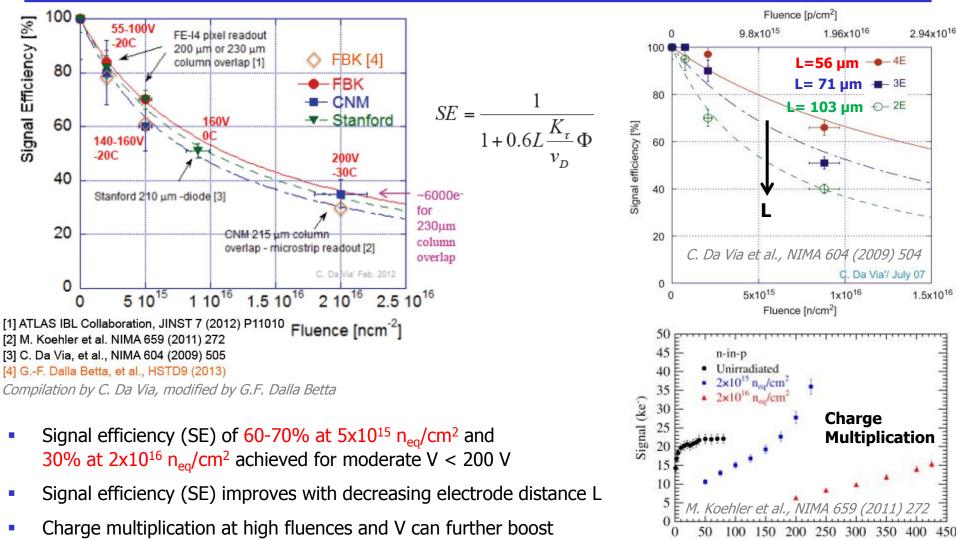
C. Kenney et al., IEEE TNS 48 (2001) 2405


Single-sided process ("Full 3D")

- Both column types (n, p) edged from front
 - Needs support wafer
 → removal needed
 - Bias to be applied at front side
 → overhanging bias tab or other front-side biasing
- Allows active edges
 - Only few µm dead material

FBK (Trento)

CNM (Barcelona)


A. Zoboli et al., IEEE TNS 55(5) (2008) 2775 G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357

G. Pellegrini et al. NIMA 592(2008) 38 G. Pellegrini et al. NIMA 699(2013), 27

Double-sided process

- n columns etched from front, p from back
 - FBK: passing-through columns, p-spray
 - CNM: non-passing-through columns, p-stop
 - No support wafer needed
 - Bias applied at back side \rightarrow no bias tab needed
 - \rightarrow reduced process and assembly complexity
- Allows slim edges
 - FBK: p⁺ guard fence $\rightarrow \sim 10 \ \mu m$
 - CNM: p⁺ guard fence + 3D guard ring $\rightarrow \sim 150 \ \mu m$

R&D Performance Summary

 Charge multiplication at high fluences and V can further boost collected charge

Bias Voltage (V)