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Outline

Introduction to eTCT and HVCMOS detectors

Measurement campaign

Raw data: depletion width and Collected Charge

Some thoughts on limits of eTCT for HVCMOS 

Interpretation of depletion width

Conclusions
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3

Introduction to HVCMOS

Unconfirmed guesses:
DNwell~1×1020 cm-3 ? , 5 µm depth (n-type) 
Bulk 10 Ω.cm=1.4×1015 cm-3 (p-type)

Hybrid pixels
Monolithic CMOS

Bump bonding 3D integration
R

.Turchetta, N
IM

A
 458, 677-689 (200 1)

HVCMOS sketches from I. Peric

M. Fernandez - 26th RD50 meeting
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Q  z=∫
0

25ns

I t , zdt

X

Transient – current waveform I(t,z)

Charge profile
1D scan

Q x , z=∫
0

25ns

I t ; x , z dtCharge maps:
2D scan

ETCT summary

M. Fernandez - 25th RD50 meetingY

Signal maps:
2D scan

I(t ; z) z variable

G. Kramberger et al., IEEE TRANSACTIONS ON NUCLEAR 
SCIENCE, VOL. 57, NO. 4, AUGUST 2010

Amplifier



5

▪ 25th RD meeting: measurement of n-irradited 
(0, 1e15, 7e15, 2e16 n

eq
/cm2) in eTCT 

configuration.
▪ Detectors mounted on custom designed PCB. 
Many reflections observed. 
▪ Only readout of a passive diode is needed → 
Overkilled solution

PCB design by 
C. Weisser

FanoutHVCMOS

25th RD50 meeting
Adhoc PCB

TCT+ setup
Low noise and 
T-controlled [-20.80] C

▪  26th  RD50 meeting: measurements repeated 
on fresh samples using CERN SSD TCT+ setup. 
Measurement campaign by C. Gallrapp.
▪ Detectors mounted on a passive PCB, diode 
connected to fast current amplifier .
▪ T-controlled setup

HVCMOS

5
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Analysis of 
raw data
Neutron irrad: 0, 1e15, 7e15, 2e16 n

eq
/cm2

M. Fernandez - 26th RD50 meeting
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Z (towards bulk)

X

Detector edge 2D scan at 3 voltages and 3 Temperatures:

X

1) Good to measure lateral X dimension
2) depletion thickness (along Z)

X XLaser

Q(x,z)=Charge maps [5ns]

Q  x , z ;5 ns=∫0

5
I t ; x , z dt

Note: detector breakdown~90V. Detectors biased up to 80V only.

Top side

M. Fernandez - 26th RD50 meeting



8

0
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7·1015 

2·1016 

-20C
Q(5ns)
-70V

Fixed scale

X axis length 
and Y axis 
length is the 
same in all 
plots, even if 
the absolute 
coordinates 
are not the 
same.

Therefore the 
plots show 
windows of 
the same area 
including the 
detector.

0 C 20 C
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Q(5ns)
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Fixed scale
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Z

X

Detector edge 1D Zscan in steps of 10V, 3 temperatures:

X

1) Good to measure lateral X dimension
2) and depletion thickness, as a function of V, along Z.

Laser XLaser

M. Fernandez - 26th RD50 meeting
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Φ 
[neq/cm2]

Q(z) FWHM 
[mm]

0 0.022

1015 0.028

7×1015 0.048

2×1016 0.034

T=0C
-80 V

Q  z ,5ns=∫0

5
I t , zdt

Charge profiles:

CC=∫0

90m
Q  z ,5nsdz Q  z ,5ns=∫0

5
I t , zdt[a.u.] with:

 Absolute Charge Collection CC is the depth integrated charge profile

 Relative CC is the absolute CC of an 
irradiated detector divided by the 
absolute CC of the unirradiated 
detector. 

rCC=
∫0

90m
Qirr  z ,5ns dz

∫0

90m
Qunirr  z ,5ns dz

90 µm

M. Fernandez - 26th RD50 meeting
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CC=∫0

90m
Q  z ,5 nsdz

[a.u.]

Absolute CC

rCC=
∫0
90 m

Qirr z ,5 nsdz

∫0
90m

Qunirr  z ,5nsdz

Highest absolute CC for 7e15 n
eq

/cm2: 

Collected Charge (20 C)

T=20C T=20C

M. Fernandez - 26th RD50 meeting

▪ for bias>20V, CC at 7e15 is higher than unirradiated
▪ At 80V charge is 80% bigger (~40% geometrical effect: wider depleted region 
→ more beam integrated)

CC for 2e16 is 20% of unirradiated. 

Trend is the same for -20, 0, 20 C (see backup slides). 

Note: Error bars are spread in the mean (average over several measurements)
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HVCMOSv3 performance vs fluence
0 1e15              7e15                                               2e16

T=20C

0

0 1e15              7e15                                               2e16

0                         1e15              7e15         2e16

CCE_vs_Fluence.C

T=20C

CCE is maximum at 7e15.

FWHM is folded with laser beam width

At 2e16 depletion region is wider than 
unirradiated, but collected charge is 
smaller (→ trapping)

FWHM of charge plots clearly points to 
Neff decrease.

M. Fernandez - 26th RD50 meeting
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Calculation of:

1) depletion width
2) resistivity

M. Fernandez - 26th RD50 meeting
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w V =20V

Questions: 

2) Since resistivity ρ (conversely Neff) can be calculated from:

What's the maximum thickness (FWHM) uncertainty σ
W 

we can afford 

in low resistivity materials to obtain accurate ρ?

Typical knife 
edge scan 
(TCT+)

La
se

r 
b e

am
 w

i d
th

 [
m

m
]

Position [mm]

2015-04-04_16-56-50_crgg_CERN_2935-7

1) what is the minimum bulk 
thickness eTCT can resolve with 
a σ

laser
=10 µm beam width?

M. Fernandez - 26th RD50 meeting

For 10 Ω.cm, 8 µm depletion 
width expected at 80V. Our beam 
width is 10 µm (FWHM=24 µm)
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▪Convolute a Gaussian (=laser) with a squared box (=active zone, efficient for 
charge collection). Shown FWHM of convoluted response.

Simulation of charge profiles Q(z)

Simulated  eTCT FWHM 
(σlaser=10 µm, ρ= 10 Ω.cm). 
This represents the 
measurement.

Simulation

Theoretical

FWHM_eTCTvsSimulation.C
FitRhoFromSim.C

Measurements

Expected depletion 
width from theory 
(abrupt junction).

Simulation “slope” flatter than 
theoretical. Calculated 
resistivity from FWHM 
measurement smaller than 
actual value.

w p [m]≈woffset0.3[⋅cm ]V

w p [m]=0.3[⋅cm]V

Sim

Theory

M. Fernandez - 26th RD50 meeting
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For measured eTCT FWHM values≥40 µm the difference between measured 
and real FWHM is <1 µm for all resistivities. 

Difference between simulated and real depleted width, for different resistivities, as a function 
of the measured FWHM

eTCT resolution: 4σ laser

σlaser=10 µm

M. Fernandez - 26th RD50 meeting
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w V = 20q∣N eff∣
V ⇒  Neff=

40
q

V

w3
W

2) Estimation of Neff from eTCT FWHM

Therefore we need:

T=-20C

Reliable estimation of Neff

Measured FWHM does not 
coincide with real depleted 
thickness

w p[m]≈0.3[⋅cm]VV bi  ⇒ =
2
0.3  

V
w σW [µm] σρ [Ω.cm] σNeff [cm-3]

1 2.4 4 ×10-14

@V=80, w=8 µm 
10 Ω.cm=1.4×1015 cm-3 (p-type)

1) measured FWHM bigger than 40 µm (⇒ FWHMeTCT=depletion width) 

2) Step width ≤1-2 µm (bigger step allowed if ρ>10 Ω.cm)

… or we need to unfold the laser beam width from the measured FWHM 

M. Fernandez - 26th RD50 meeting

Neff: 30% error
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Deconvolution of laser width

M. Fernandez - 26th RD50 meeting

1) Difficult task for low resistivity, when 
depletion width << 4σ

laser. 
For instance, 

charge profiles at 0 and 80V are very 
similar

non-
irrad

2) We have to assume a model for the 
shape of the active region. Waiting to have 
input from TCAD simulation of HVCMOS. 
First attempt done by guess/error

Drift

Region of lower 
detection efficiency. 
Either due to:
  1) diffusion
  2) drift from region 
with lower E-field

exp(a+bx)

2) Work in progress. Fits are always very 
good, but we need to interpret results for 
small FWHM.

Best results obtained for 7e15, where 
depletion width is biggest. Example shown:

Model is used to fit measured curves and 
extract parameters
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Conclusions

▪ Revisiting radiation hardness of neutron irradiated LGAD devices under improved 
measuring conditions: low noise, simplified PCB, T-controlled setup.

▪ Collected charge for 1e15 and 2e16 is very similar. Boosted for 7e15.

2e16: 20% drop wrt non irradiated
7e15: 80% increase wrt non irradiated

▪ Low resistivity of HVCMOS challenges e-TCT resolution with 8-10 µm laser gaussian σ.
It would be a good case to proof Twp Photon Absorption TCT power..

In our setup (CERN-SSD), measured FWHM should be > 40 µm to draw 
accurate conclusions on Neff.

Trying to unfold the actual depleted width from the measured FWHM
We are testing different models for active region shape ← not finished in time 
for this meeting

 

▪ First measurements for p-irradiated samples... next talk

Thanks to: CERN PH-DT bonding lab
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HVCMOSv3 FWHM description...

M. Fernandez - 26th RD50 meeting

Φ=0
N

eff
=1.14×10-15 cm-3

Φ=1e15
N

eff
=3.16×10-14 cm-3

Φ=2e16
N

eff
=3.58×10-14 cm-3

Φ=7e15
N

eff
=1.61×10-14 cm-3

w p [m ]≈woffset0.3[⋅cm ]V

p1 p0
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(Very) first look at proton 
irradiated HVCMOSv3

Sample irradiation at CERN PS with protons:

             1.43e15, 3.72e15, 6.88e15 n
eq

/cm2

On-going measurement campaign by C. Gallrapp

T=-20 C, 0 C, (20 C ← missing)
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Neutrons, T=0C Protons, T=0C

Mind the different vertical scales!!!

7e15 neq/cm2: same relative CC as with neutrons

For lower fluences:
1e15    neutrons: rCC ×1 (rCC=relative to non-irrad)
1.4e15 protons:   rCC ×6

Proton irradiation collected charge (T = 0C)

PRELIMINARY
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Depletion width (FWHM) vs Fluence (n+p)

25

1e15 (n)

7e15 (n)

2e16 (n)

1.43e15 (p)

3.72e15 (p)

6.88e15 (p)

PRELIMINARY
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Neff vs Fluence (n+p)

26

1e15 (n)

2e16 (n)

1.43e15 (p)

3.72e15 (p) 7e15 (n)
6.88e15 (p)

Error bars= spread on the mean, not σ
Neff

PRELIMINARY
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Extra info
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M. Benoit – CERN Detector Seminar, June 12th, 2015
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Laser power over 2 weeks

IR laser stability better than 1% over 2 weeks (measured on InGaAs 
monitoring diode) → Negligible. 

We can discard laser as source of any variations in the data shown later on .

Power variations slightly not gaussian
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▪Depleted zone interpreted as fully efficient to create e-h pairs. 
Simplest case first: discarding contribution due to diffusion. A 
gaussian laser beam is swept across the depth of the detector. 
Simulated eTCT response is calculated as the convolution of the 
gaussian beam G with a square (depletion) box B. 
Toy simulation=random numbers distributed according to:

▪Case of 300 µm thick sensor measured 
with σ

laser
=10 µm. Due to the non-zero 

beam width signal is collected before 
(after) the center of the beam enters 
(leaves) the detector  

▪Case of 50 µm thick 
sensor measured with σ=10 
µm. 

Gauss fit
Gauss ⊗ box

Simulation of charge profiles Q(z)

Q  z =N⋅∫−∞

∞

G  z− z ' , ,B  z ' dz '

B(z) =  1   if (-d/2 < z < d/2)
            0          otherwise  

Simulation
Fit

S
ca

n

z

Depl. 
bulk

Undepleted
bulk

Laser
σ=10 µm
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Highest 
absolute CC for 
7e15
For bias>20V, CC 
at 7e15 is higher 
than unirradiated

CC smallest for 
2e16. 

Trend is the 
same for -20, 0, 
20 C. Higher CC 
at higher T 
(because of 
higher 
absorption)

CC=∫0

90m
Q  z ,5 nsdz

[a.u.]

Absolute CC

M. Fernandez Garcia, C. Gallrapp, D. Muenstermann, M. Moll 

rCC=
∫0

90m
Q irr  z ,5nsdz

∫0

90m
Q unirr  z ,5 nsdz
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33Depleted thickness grows with resistivity. Difference decreases with resistivity
Difference also depends on voltage

~15 µm

~4 µm
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(RT)

(RT)

(T=0 C)
(T=0 C)

Charge Collection=integral of Q25(z) over 90 µm (z in [-0.03,0.06])

25th RD50 meeting

TCT+

Here considering 
different thickness 
depending on the 
fluence

Comparison of measurement campaings
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FREE SCALE
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unirrad
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Q(5ns)
FREE SCALE

unirrad

1015 

7·1015 

2·1016 

T -20C 0C 20C

neq/cm2
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