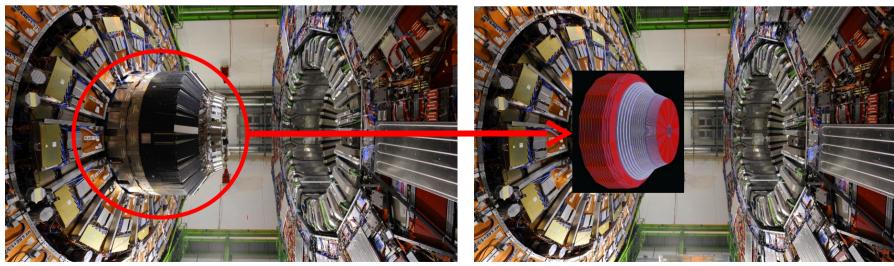
Update on radiation hardness of Silicon Diodes for the future CMS High Granularity Calorimeter (HGCAL)

Esteban Currás^{1,2}, Marcos Fernández², Christian Gallrapp¹, Alexandra Junkes³, Marcello Mannelli¹, Michael Moll¹, Shervin Nourbakhsh⁴, Christian Scharf³, Georg Steinbrueck³, Iván Vila²

> ¹CERN ²IFCA(CSIC-UC) ³Hamburg University ⁴University of Minnesota

26th RD50 workshop Santander, June 22-24, 2015

- High Granularity Calorimeter (HGCAL)
- HGCAL silicon sensors
- Results of the characterization after neutron irradiation:
 - ►IV, CV
 - ► CCE
 - MIP sensitivity
- Precision timing and test beam
- Summary and future activities


High Granularity Calorimeter (HGCAL)

CMS needs to replace End-cap Electromagnetic and Hadronic calorimeters for Phase II due to radiation damage. This opens a new possibility for the Calorimeter design and the **HGCAL has been the technology chosen for this upgrade**.

We are working for the future implementation of the High Granularity Calorimeter with \sim 6M channels of silicon pads, integrating EE and HE functions (CALICE concept) with a Back HE to capture energy tails.

We expect that with such detailed information from the calorimeter, coupled with a precision silicon tracker, we will be able to measure physics objects with high precision.

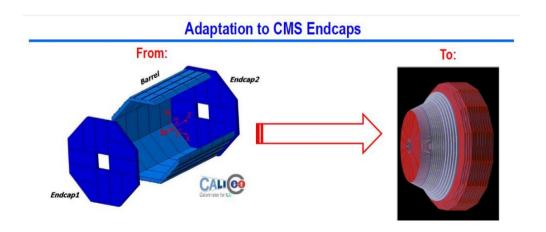
Current detector

An Si Based HGC CMS at the HL-LHC

High Granularity Calorimeter (HGCAL)

Major Engineering Challenges

~600 m2 of Silicon in a high radiation environment.


- ✓ Cost.
- ✓ Very high radiation levels need to plan for 1.5x10¹⁶ neutrons/cm²

Cooling.

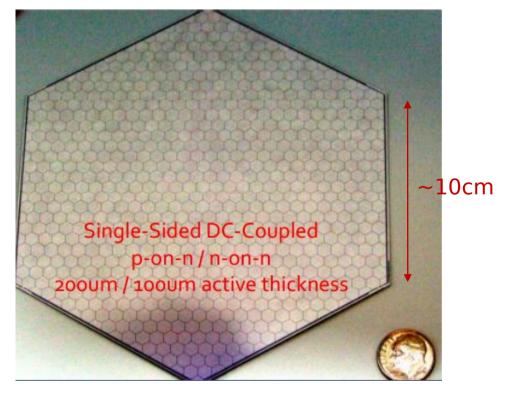
- ✓ We need a compact calorimeter with small gaps between absorber plates.
- ✓ We need to operate at 30°C
- ✓ Total power is ~ 100 kW.

Data and Trigger

- Channel count is 6M, with 21.5K detector modules and 40 Si planes. Producing an enormous amount of data.
- ✓ Data used in the Level- 1 CMS event trigger.

HGCAL Silicon sensors

Tolerance study of large area pad diodes as active sensor for a High Granularity Electromagnetic Endcap Calorimeter for Phasell Upgrade


Investigate sensor performance after **neutron irradiation** with neutron equivalent fluences up to $1.5 \cdot 10^{16}$ n/cm²

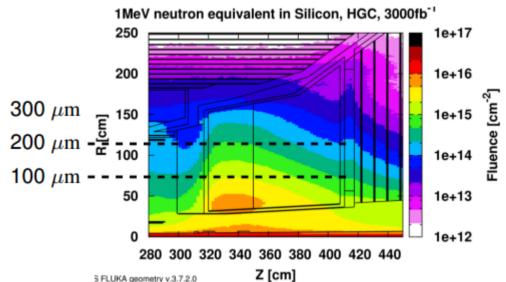
Sensors under investigation:

- Silicon growth technique (Epi: epitaxial layer, FZ: floating zone)
- Polarity: n-on-p (p-type), p-on-n (n-type)
- Active thickness:
 - ✓ FZ: 320, 200 and 120 um
 - ✓ Epi: 100 and 50 um
- ✓ Size:
 - ✓ Large diodes : 5 × 5 mm²
 - Small diodes : 2 × 2 mm²

HGCAL operating conditions:

- ✓ Temperature (T) < $-30 \circ C$: ~ $-35 \circ C$
- ✓ Bias voltage (U): 600 ÷ 800 V

HGCAL Silicon sensors


Available sensors

- Sensors irradiated in Ljubljana
- Sensors initially measured at Hamburg 3 and then shipped to CERN
- P: bulk P (n-on-p)
- N: bulk N (p-on-n)

List of sensors, only Floating Zone:

Status during Hamburg measurements

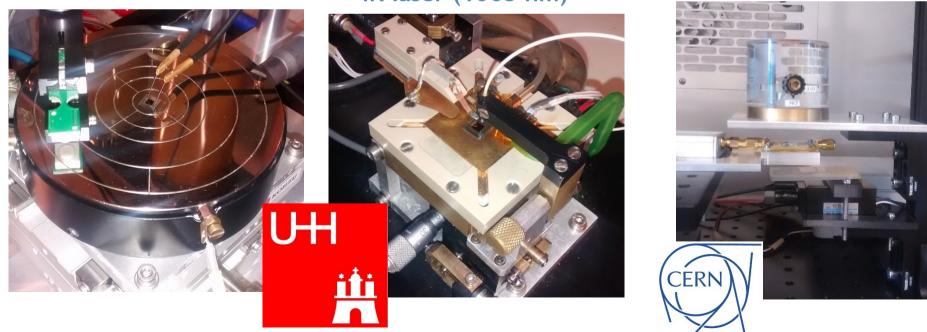
		Thickness (um)	
Fluence n/cm ²	320	200	120
4.00E+014	2 N-type, 2 P-Type		
6.00E+014	2 N-type, 2 P-Type		
9.00E+014	0		
1.50E+015		2 N-type, 2 P-Type	
2.50E+015		2 N-type, 2 P-Type	
4.00E+015		0	
6.25E+015			2 N-type, 2 P-Type
1.00E+016			2 N-type, 2 P-Type
1.60E+016			2 N-type, 2 P-Type
	•		

Current status at CERN

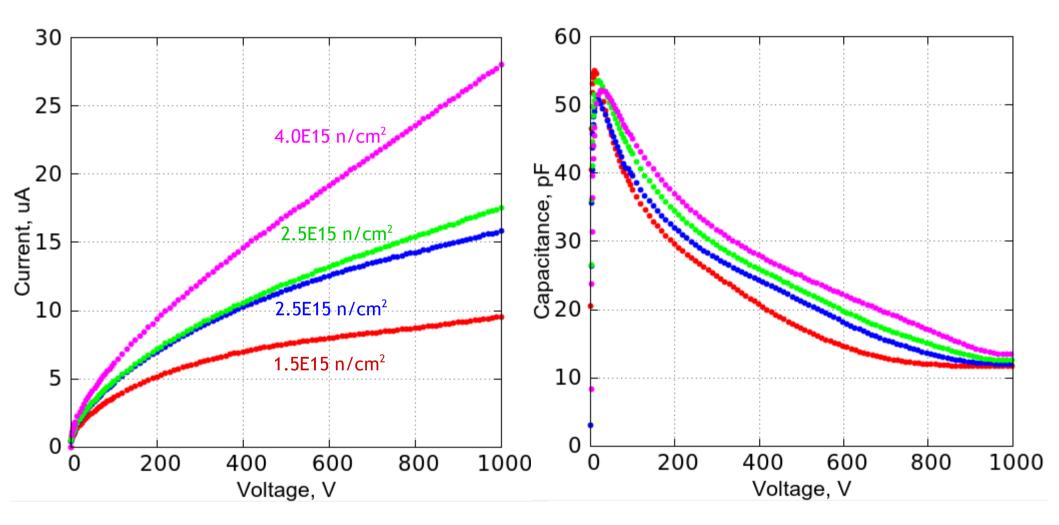
After

re-irradiation

Fluence n/cm ²	320	200	120
4.00E+014	1 N-type, 1 P-Type		
6.00E+014	2 N-type, 2 P-Type		
9.00E+014	1 N-type, 1 P-Type		
1.50E+015		1 N-type, 1 P-Type	
2.50E+015		2 N-type, 2 P-Type	l
4.00E+015		1 N-type, 1 P-Type	
6.25E+015			1 N-type, 1 P-Type
1.00E+016			2 N-type, 2 P-Type
1.60E+016		ſ	1 N-type, 1 P-Type

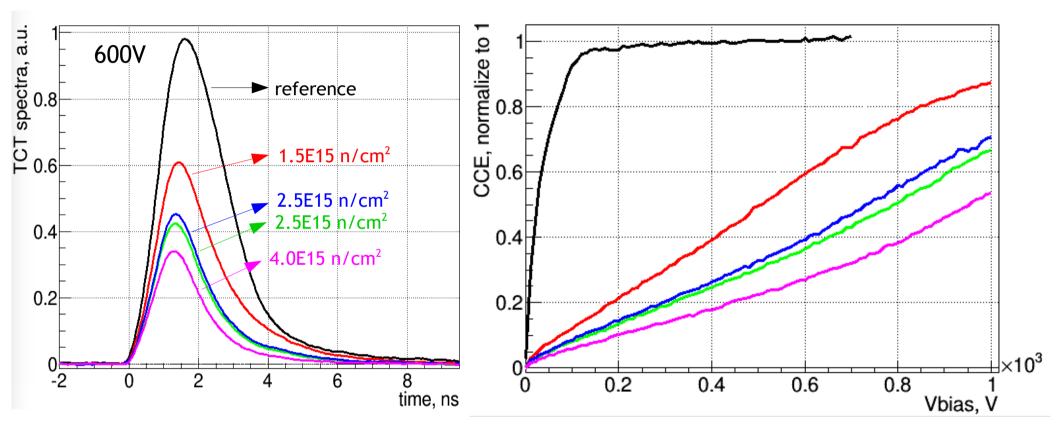

Properties to be measured:

- ✓ Bulk current I(U, Φ , h) → power consumption, noise
- ✓ Capacitance (1 MHz signal): $C(U, \Phi, h) \rightarrow capacitance$ seen by electronics (below ~50pF)
- ✓ Charge collection efficiency CCE(U, Φ , thickness) → signal
- \checkmark MIP sensitivity with beta source \rightarrow for calibration purpose and S/N
- Effect of annealing on the properties (up to 3 months at room temperature)

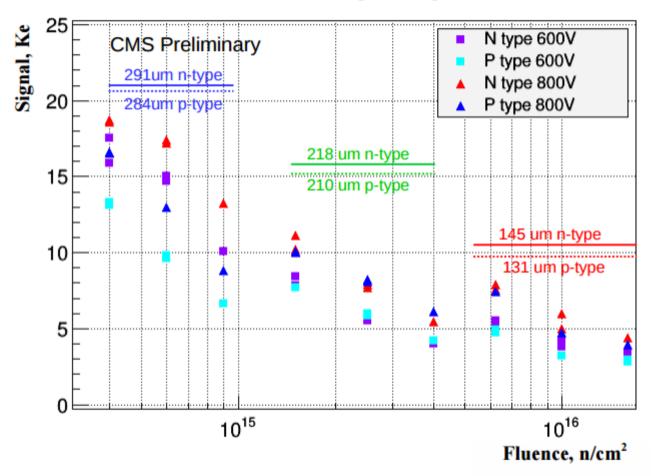

IV/CV set-up

TCT set-up for CCE IR laser (1063 nm)

MIP sensitivity with RS


Examples of IV and CV measurements: FZ 200um N-type, at -20°C (455Hz for CV)

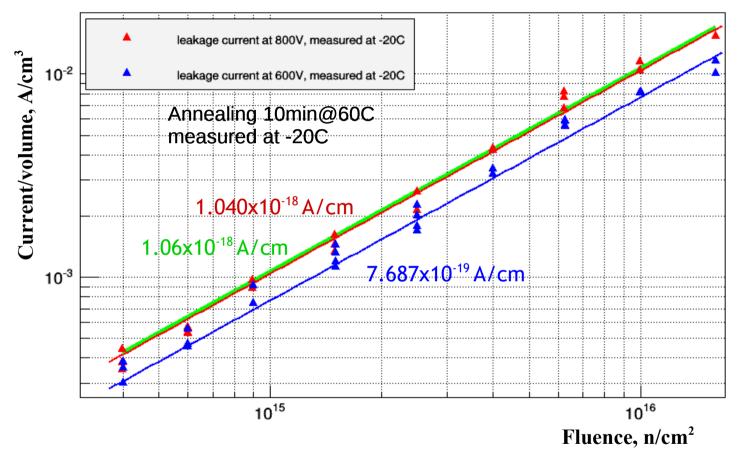
- ✓ The higher the fluence, the higher is the leakage current
- Higher is the fluence higher is the capacitance, depletion voltage increases with fluence --> capacitance increase.



TCT measured at -20° C, IR laser(1060 nm) pulse width: 50 ps, top illumination FZ 200um N-type

- Shorter pulse and rise time after irradiation --> relevant for timing
- Collection time < 10 ns
- CCE lower after irradiation
- At these high fluences it is hard to estimate the depletion voltage, CCE is increasing with Vbias.

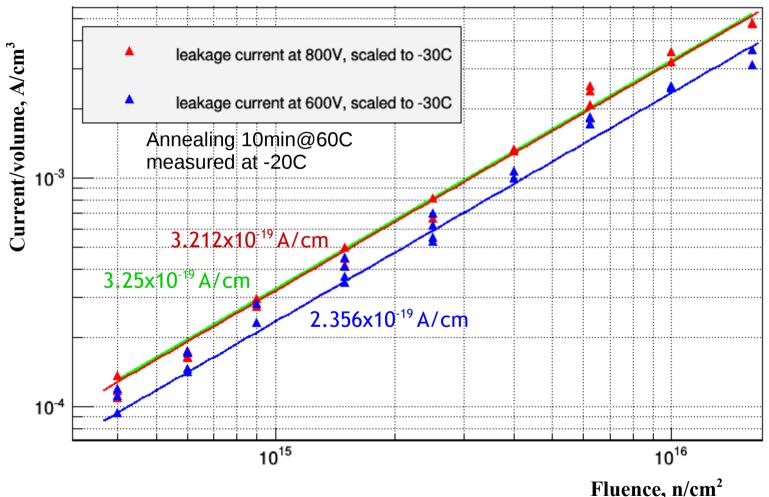
Signal normalized to 73e/um from CCE on pad sensors -20C, 1063nm, annealing 10min@60C



- ✓ Charge collection efficiency for \approx 300 µm (leftmost set of points), \approx 200 µm (middle set of points), and \approx 120 µm silicon sensors (rightmost set of points).
- ✓ For 300 µm, low fluences, p-type diodes show lower values of CCE. For 200 µm and 120 µm both are closer.
- ✓ The lowest value of the charge measured is ~4.0/5.0 ke- for the nominal fluence (120 um). It is ~3.0/4.0 Ke- for ×1.5 the nominal, lower than expected, but still enough.

M. Moll's Thesis alpha value scaled to -20C: ~1.06x10⁻¹⁸ A/cm

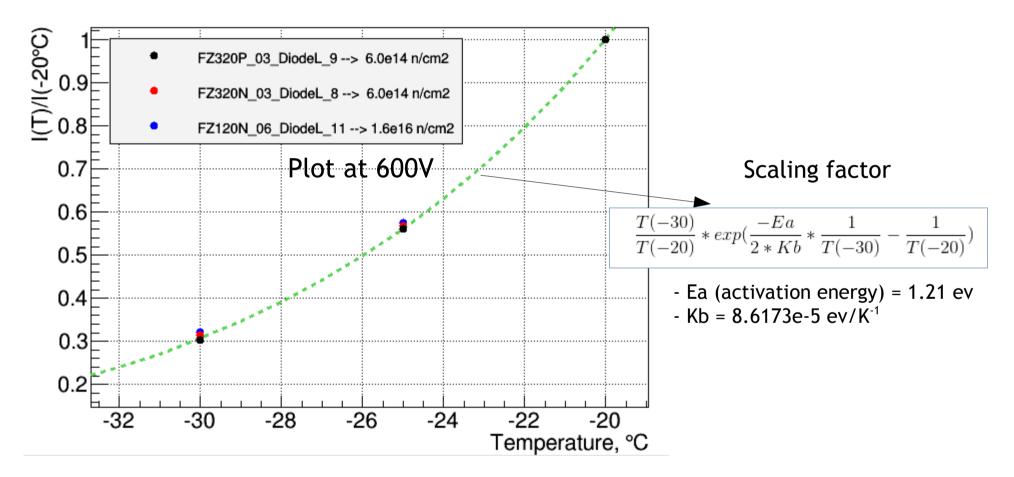
Leakage current comparison


- Leakage current normalized by the volume of the diode (for all thicknesses and two type of bulk doping) increases proportional to the fluence
- The value measured at 800V is equal the alpha value given in the bibliography.
- Value at 600V a bit lower than expected.

 $\Delta I = \alpha \, \Phi_{eg} \, V$

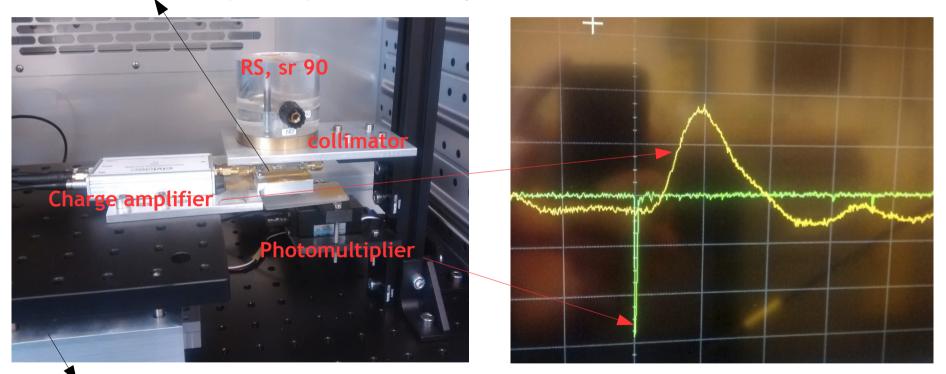
M. Moll's Thesis alpha value scaled to -30° C: -3.25×10^{-19} A/cm

Leakage current comparison



Same plot, but now scaled to -30° C, closer to the operation temperature of the HGCAL.

✓ Same agreement, lower temperature --> lower values of the leakage current



Measurement of bulk current vs bias voltage (IV) as a function of the temperature (-20°C,-25°C,-30°C)

- Normalized to value of the current at -20°C
- Results are compatible between p-type and n-type
- Also compatible between different active thickness and different irradiation fluences
- ✓ The scale factor for the alpha value from -20℃ to -30℃ is in agreement with our measurements. Green curve shows the formula used to scale from -20 to -30℃.

MIP sensitivity set-up \rightarrow is ongoing, but it still needs extra work in order to get the first good measurements

Sensor (FZ120P) mounted on a pcb

XY stages --> allow the external positioning of the sensors inside the beam

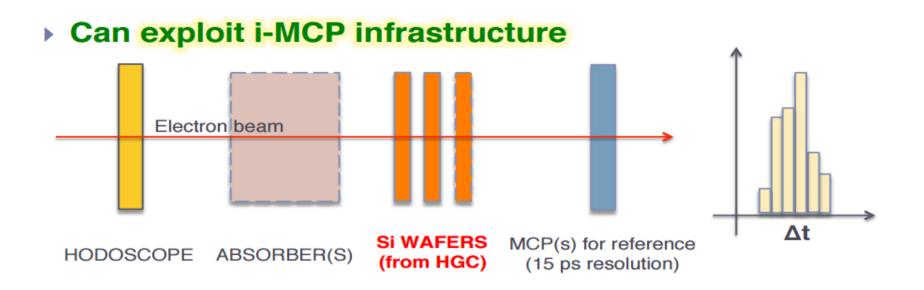
- Example of one single signal given by the charge amplifier in yellow. The amplitude of this signal is
 proportional to the charge collected from the sensor after one MIP.
- Set-up inside a climatic chamber:
 - ✓ Operation temperature between -70° C and 180° C
 - ✓ Humidity below 10% RH

Precision timing and test beam

Test of time response with Si PAD

General timing studies in CMS

- Vertex location to better than 1 cm in diphoton events from photon timing with 30 ps precision proven
- Event and object cleaning with 30 ps timing of vertices (from hits associated to charged tracks) and of showers studies ongoing
- Simulation studies with HGCAL
 - ✓ Single cell timing to O(100) ps possible with ToT electronics for deposits above about 30 MIPs
 - Photon and (high-energy) hadron shower timing to <30 ps from combined cells information


Proposed test of time response of Si PADs with beam

- Digitize pulses, emulate pulse discrimination offline, verify that the intrinsic detector jitter does not exceed few 10 ps.
- ✓ Implementation
 - Measure spread of the time difference between different wafers aligned along the beamline
 - Repeat measurements with variable absorbers in front to study the dependence on the number of MIPs

Precision timing and test beam

Test of time response with Si PAD

Test beam plan:

- \checkmark Run w/o absorber or muons to calibrate response to MIPs
- Run with absorbers (available from zero to $7X_0$):
 - Estimate <# of MIPs> from the signal amplitude relative to one MIP
 - Measure the time resolution as a function of MIPs multiplicity (<signal amplitude>)
 - There is enough precision in the electronics/DAQ to verify intrinsic jitters at the level of 10-20 ps.

Summary and future activities

- ✓ Measurements after neutron irradiations of IV, CV and CCE done at Hamburg and crosschecked at CERN also with higher fluences and after the first step of annealing 10min@60°C
- CCE values and leakage current measured are in agreement with the expected values

✓ To do:

- ✓ Perform 80 min at 60°C additional annealing on the diodes (two weeks at room temperature) → repeat measurements
- ✓ Workshop for comparison of results with HPK campaign (and other data, lower fluence neutrons, but also protons...)
- ✓ First results with beta source coming soon \rightarrow for MIP sensitivity
- ✓ Precision timing test → ongoing

