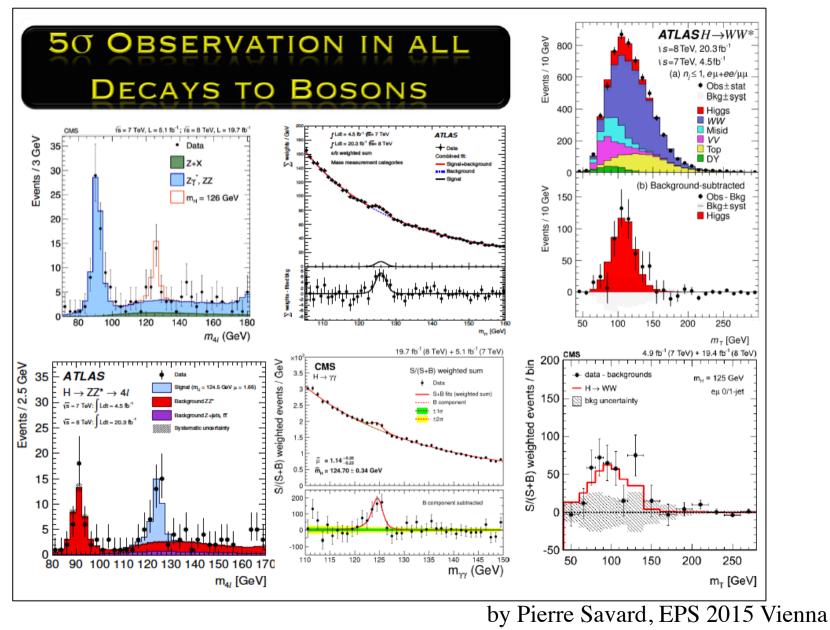
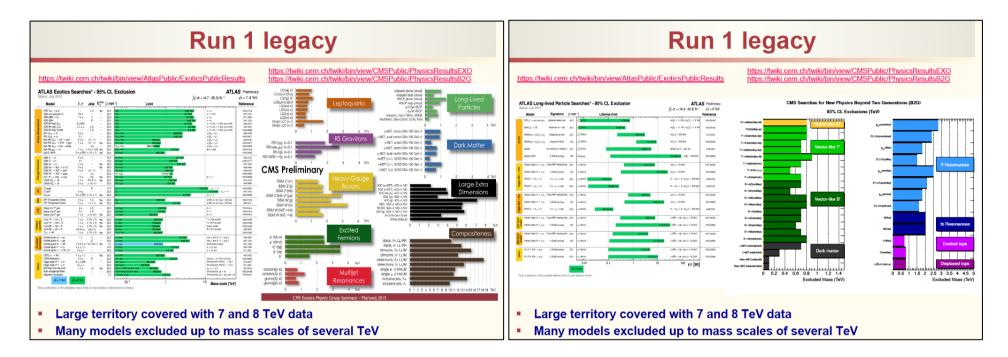
Outlook and Future Prospects for HEP

CERN-JINR European School of High Energy Physics Bansko, Bulgaria 2 - 15 September 2015

> Tatsuya Nakada EPFL-LPHE Lausanne, Switzerland

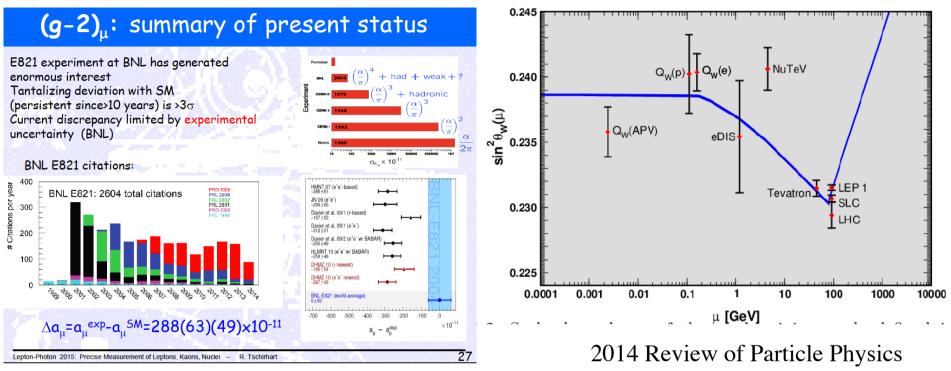


• We learned that the Standard Model is now complete


- All the necessary particles discovered

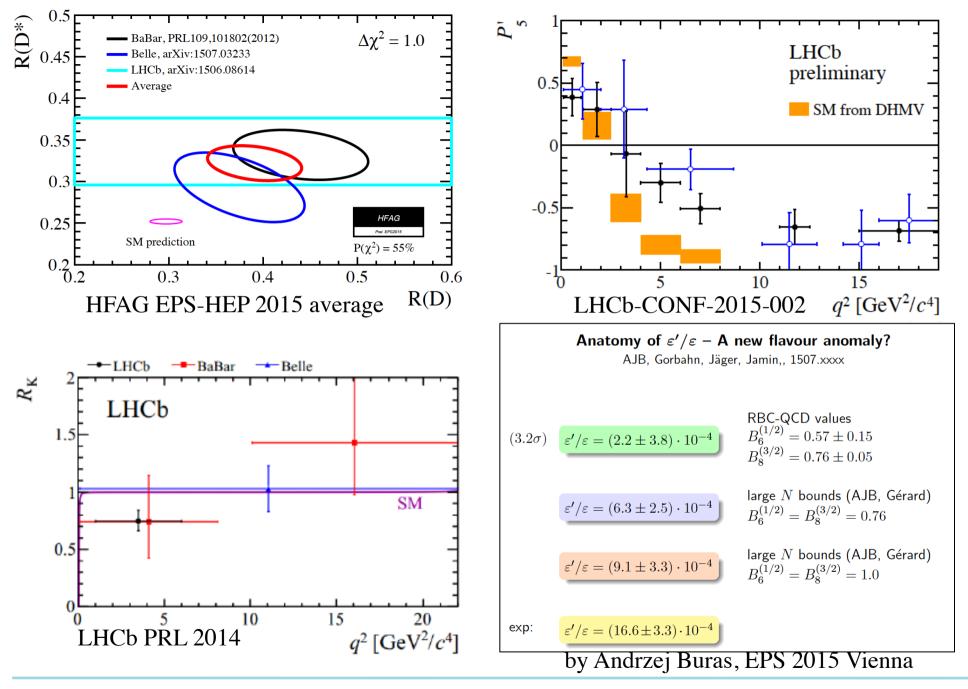
Including Higgs

- We learned that the Standard Model is now complete
 - All the necessary particles discovered
 - No additional particle discovered


New particle search by ATLAS and CMS

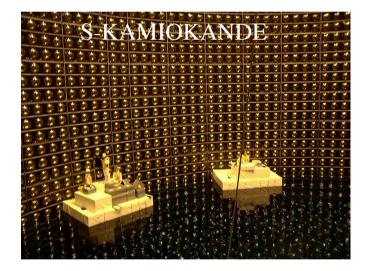
by Ivan Mikulec, EPS 2015 Vienna

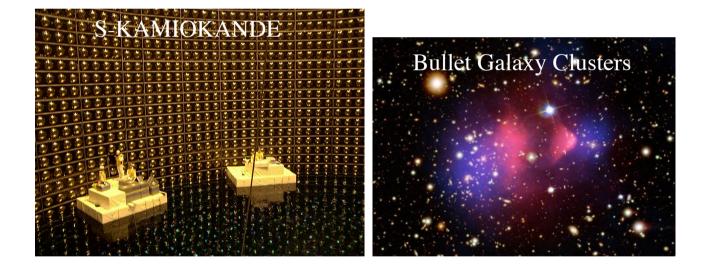
- We learned that the Standard Model is now complete
 - All the necessary particles discovered
 - No additional particle discovered
 - Precision measurements in electroweak and flavour physics are in agreement with the Standard Model predictions:


- We learned that the Standard Model is now complete
 - All the necessary particles discovered
 - No additional particle discovered
 - Precision measurements in electroweak and flavour physics are in agreement with the Standard Model predictions: with some interesting deviations...
 - $\mu(g-2)$ with $\sim 3\sigma$, A^{b}_{FB} with $\sim 2.6\sigma$, θ_{W} from NuTeV?
 - some interesting features in $b \rightarrow sl^+l^-$ signature?
 - $Br(B \rightarrow D^{(*)}\tau\nu)/Br(B \rightarrow D^{(*)}\mu\nu), Br(B \rightarrow K\mu\mu)/Br(B \rightarrow Kee)$
 - $\operatorname{Re}(\varepsilon'/\varepsilon)$ too large by $(2\sim 3\sigma)? \dots$

by Bob Tschirhart, Lept-Phot 2015, Ljubljana

$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01616 ± 0.00008	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.6
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1029 ± 0.0003	-2.3
$\overline{A_{FB}^{(0,c)}}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0003	-0.5


2014 Review of Particle Physics


- We learned that the Standard Model is now complete
 - All the necessary particles discovered
 - No additional particle discovered
 - Precision measurements in electroweak and flavour physics are in agreement with the Standard Model predictions: with some interesting deviations...
 - $\mu(g-2)$ with ~3 σ , A^{b}_{FB} with ~2.6 σ , θ_{W} from NuTeV?
 - some interesting features in $b \rightarrow sl^+l^-$ signature?
 - $Br(B \rightarrow D^{(*)}\tau\nu)/Br(B \rightarrow D^{(*)}\mu\nu), Br(B \rightarrow K\mu\mu)/Br(B \rightarrow Kee)$
 - $\operatorname{Re}(\varepsilon'/\varepsilon)$ too large by $(2\sim 3\sigma)$?...
 - No deeper understanding on the structure of the Standard Model: mass matrix (quark&leptons), three generations, three different gauge interactions, small $<\theta_{QCD}>$ i.e. no CPV in strong interactions, $m_{\rm H}$, etc. etc. ...

- We learned that the Standard Model is now complete
 - All the necessary particles discovered
 - No additional particle discovered
 - Precision measurements in electroweak and flavour physics are in agreement with the Standard Model predictions: with some interesting deviations...
 - $\mu(g-2)$ with ~3 σ , A^{b}_{FB} with ~2.6 σ , θ_{W} from NuTeV?
 - some interesting features in $b \rightarrow sl^+l^-$ signature?
 - $Br(B \rightarrow D^{(*)}\tau\nu)/Br(B \rightarrow D^{(*)}\mu\nu), Br(B \rightarrow K\mu\mu)/Br(B \rightarrow Kee)$
 - $\operatorname{Re}(\varepsilon'/\varepsilon)$ too large by $(2\sim 3\sigma)$?...
 - No deeper understanding on the structure of the Standard Model: mass matrix (quark&leptons), three generations, three different gauge interactions, small $\langle \theta_{\text{QCD}} \rangle$ i.e. no CPV in strong interactions, m_{H} , etc. etc. ...

• Observational evidences for New Physics – Neutrino oscillations, i.e. $m_v \neq 0$ (0 in SM)

- Observational evidences for New Physics
 - Neutrino oscillations, i.e. $m_v \neq 0$ (0 in SM)
 - Dark matter (no SM candidate)

Bullet Galaxy Clusters

- Observational evidences for New Physics
 - Neutrino oscillations, i.e. $m_v \neq 0$ (0 in SM)
 - Dark matter (no SM candidate)

 $-N_{\rm B}/N_{\gamma} = 10^{-10}$ (far larger than SM)

The Horn Antenna Bell Telephone Laboratory

MIOKAND

- Observational evidences for New Physics
 - Neutrino oscillations, i.e. $m_v \neq 0$ (0 in SM)
 - Dark matter (no SM candidate)
 - $-N_{\rm B}/N_{\gamma} = 10^{-10}$ (far larger than SM)

The Horn Antenna Bell Telephone Laboratory

However, no experimental indication on the energy scale for New Physics, i.e. it can be anywhere!
 ⇒ planning of future options interesting/difficult

- New physics could be:
 - open at energy scales not very far from the electroweak energy scale, with particles "strongly" couple to the SM particles: resulting in very rich phenomenology at that energy scales (SUSY, composite Higgs, etc. etc.)
 ⇒ If new physics were discovered we would be singing and dancing and busy working! ☺

- New physics could be:
 - open at energy scales not very far from the electroweak energy scale, with particles "strongly" couple to the SM particles: resulting in very rich phenomenology at that energy scales (SUSY, composite Higgs, etc. etc.)
 ⇒ If new physics were discovered we would be singing and dancing and busy working! ☺

or

2. active at only very high energy scales, GUT or even Plank, possibly with a few low mass new particles couple very weakly to the SM particles (vMSM, ...)
⇒ If new physics were discovered, it would not be clear how to proceeds from there on. ⁽²⁾

- Multi-prong approach is mandatory
 - Search for new particles at the highest energy:
 - Which kind, e^+e^- , $\mu^+\mu^-$, ep, pp, $\gamma\gamma$, ...?
 - At which energies?

- Multi-prong approach is mandatory
 - Search for new particles at the highest energy:
 - Which kind, e^+e^- , $\mu^+\mu^-$, ep, pp, $\gamma\gamma$, ...?
 - At which energies?
 - Precision measurements to look for deviation from the Standard Model predictions in electroweak, and quark and lepton flavour physics, including very weakly interacting particles:
 - accelerator beams
 - reactor beams
 - cosmic rays

- Multi-prong approach is mandatory
 - Search for new particles at the highest energy:
 - Which kind, e^+e^- , $\mu^+\mu^-$, ep, pp, $\gamma\gamma$, ...?
 - At which energies?
 - Precision measurements to look for deviation from the Standard Model predictions in electroweak, and quark and lepton flavour physics, including very weakly interacting particles:
 - accelerator beams
 - reactor beams
 - cosmic rays
 - Astronomy/cosmology and astroparticle
 - ground based
 - space based

Let us elaborate

• As an example, let us take a costly facility, i.e. colliders particularly at high energies, for a thought process...

Colliders in 2006

• The first European strategy for particle physics was adopted in June 2006: Colliders at the moment were:

– HERA @ DESY	ep	DE
– DAFNE @ LNF	e+e-	Ι
- LHC @ CERN under construction	pp	CH
– CESR-C @ Cornell	e+e-	US
– Tevatron @ FNAL	pp	US
– RICH @ BNL	$(p,d,Cu,Au,U)^2$	US
– PEP II @ SLAC	e+e-	US
– KEKB @ KEK	e+e-	JP
- BEPC-II @ IHEP under construction	e+e-	CN
– VEPP4M @ BINP	e+e-	RU
- VEPP2000 @ BINP under construction	e+e-	RU

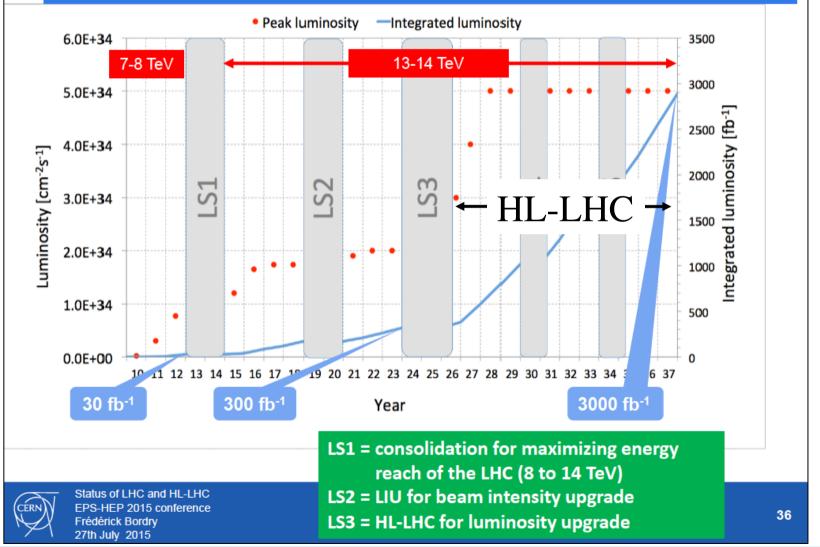
Then...

• The first European strategy for particle physics was adopted in June 2006: Colliders at the moment were:

– HERA @ DESY	ep	<u> </u>
– DAFNE @ LNF	e+e ⁻	Ι
- LHC @ CERN under construction	рр	CH
– CESR-C @ Cornell	<u>e</u> +e ⁻	<u>US</u>
– Tevatron @ FNAL		US
– RICH @ BNL	$(p,d,Cu,Au,U)^2$	US
– PEP II @ SLAC	<u>e+e</u> -	<u>US</u>
– KEKB @ KEK	<u>e</u> +e ⁻	JP
- BEPC-II @ IHEP under construction	e+e-	CN
– VEPP4M @ BINP	e+e ⁻	RU
 VEPP2000 @ BINP under construction 	e+e-	RU

Some have been stopped...

And now

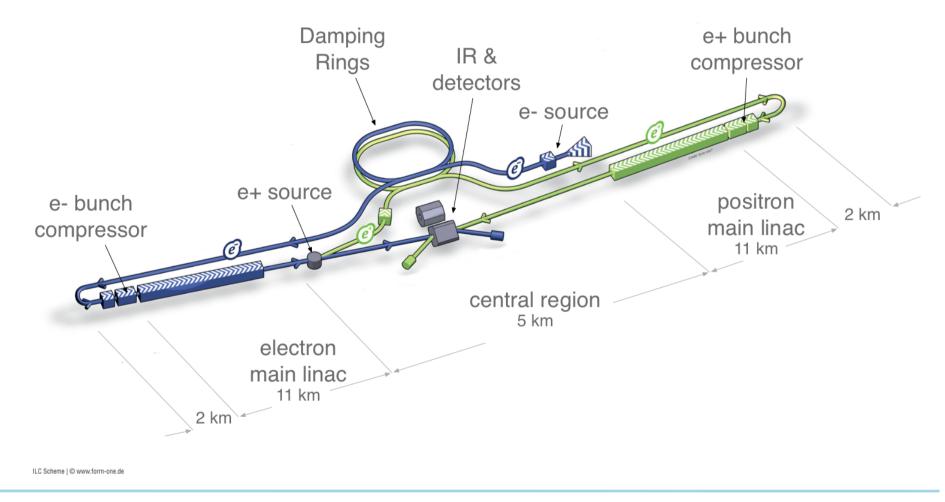

• The last European strategy for particle physics was adopted in May 2013: Existing colliders were:

– DAFNE @ LNF	e+e-	Ι
– LHC @ CERN	pp	CH
– RICH @ BNL	$(p,d,Cu,Au,U)^2$	US
- SuperKEKB @ KEK under construction		e+e-
	JP	
– BEPC-II @ IHEP	e+e-	CN
– VEPP4M @ BINP	e+e-	RU
– VEPP2000 @ BINP	e+e-	RU

Five closed down and only one has been approved...

For sure to happen at high energies

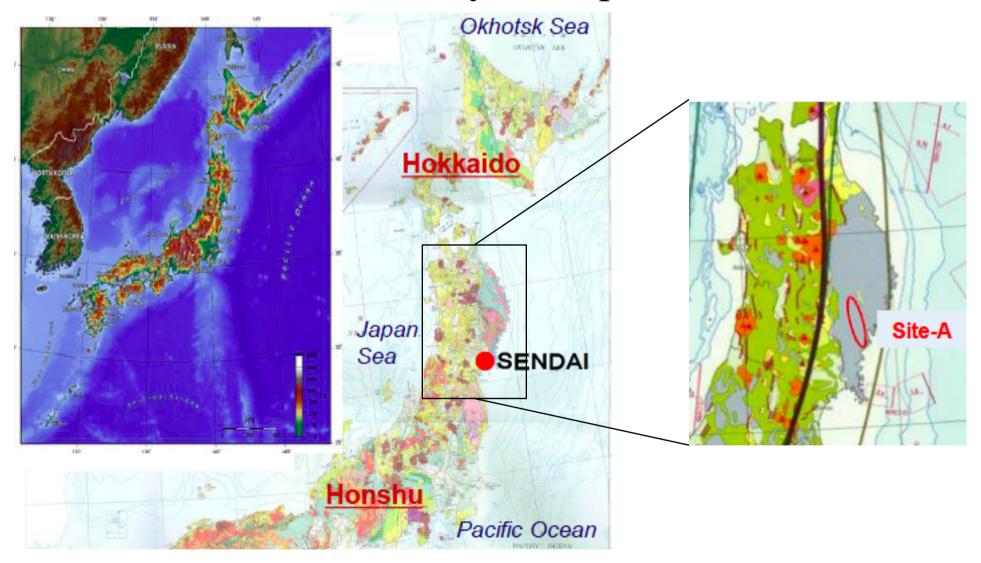
LHC roadmap: Integrated luminosity



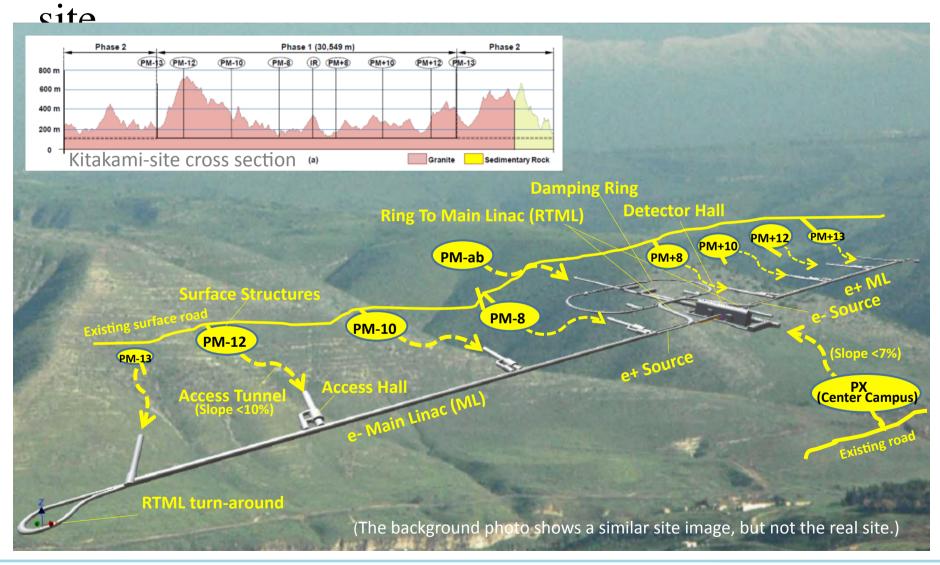
But many ideas are around (I)

- e⁺e⁻ Linear Collider
 - ILC: superconductive cavities, up to 500 GeV-1 TeV, ~10³⁴cm⁻²s⁻¹ technically ready to start as construction project
 - CLIC: double beam acceleration, up to ~3 TeV, ~10³⁴cm⁻²s⁻¹ still R&D required to be ready for construction

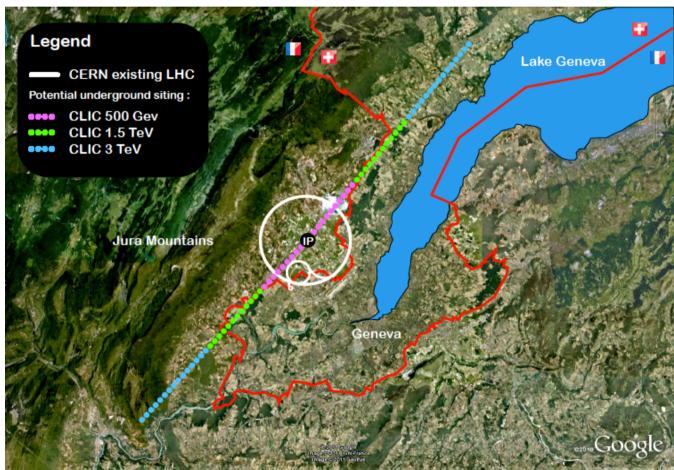
ILC


 TDR Generic design for 500 GeV, ~10³⁴cm⁻²s⁻¹: ~30km

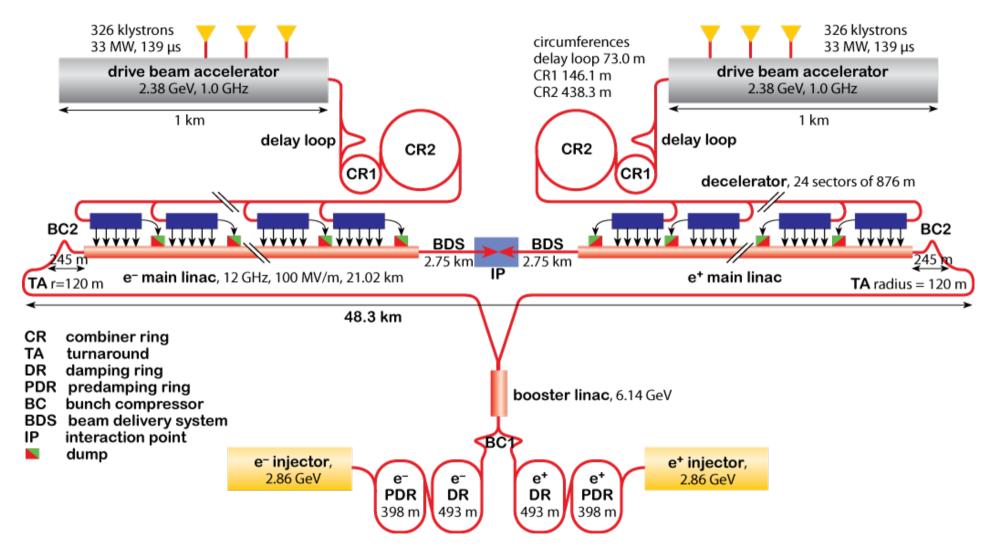
ILC


- Long lasting worldwide effort e.g. ECFA study group since early 2000
- Technology is mature, many R&D works have been done including the industrialisation of SCRF, with "module 0", i.e. European XFEL @ Hamburg
- Cover a wide energy range: from 250 GeV, can be boosted to ~1 TeV
- Require a rather long tunnel (30km for 500 GeV)
- A solution to accommodate multiple detectors (pushpull), which may not be very practical

ILC Japanese site candidateKitakami site selected by the Japanese scientists

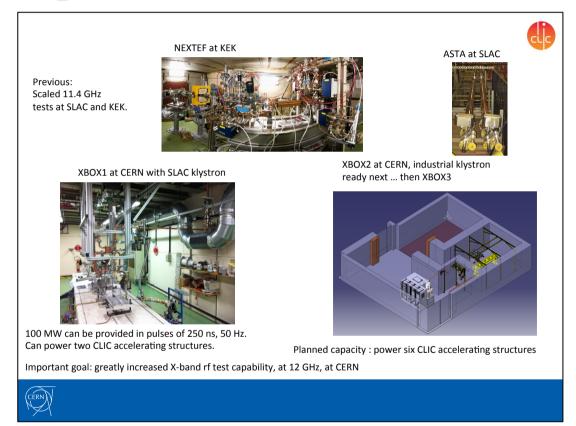

ILC

• The design being adjusted for the Japanese Kitakami



CLIC

• R&D effort started at CERN quite sometime ago, aiming at a higher acceleration gradient with two beam technology, go beyond 1 TeV, up to ~3 TeV

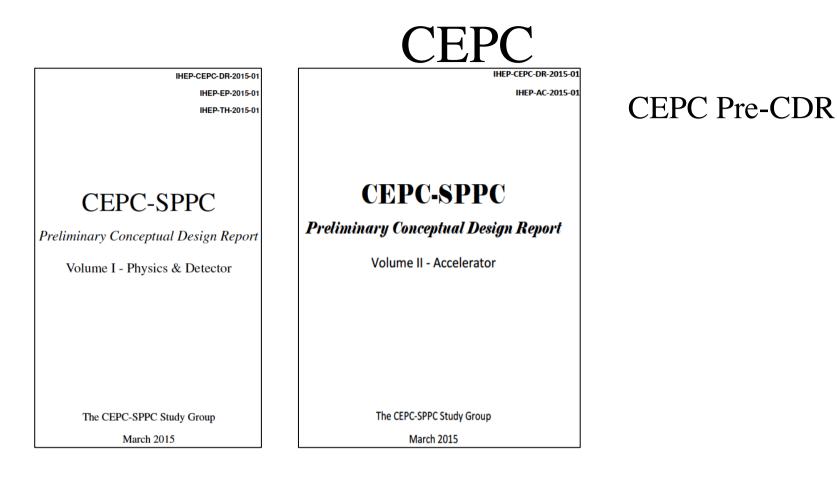


CLIC

CLIC

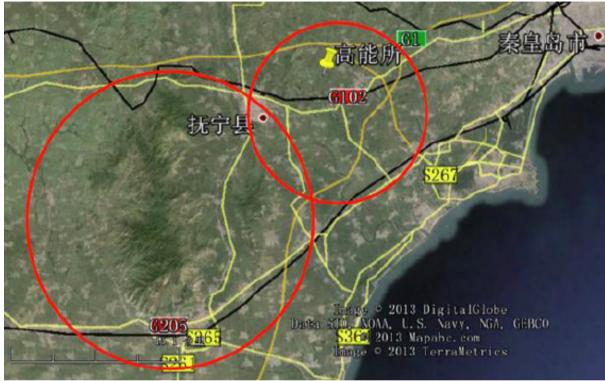
• Many R&D effort by an international collaboration, a la HEP experiment

• Still more R&D needed to reach the TDR level. Collaboration with ILC.


But many ideas are around (I)

- e⁺e⁻ Linear Collider
 - ILC: superconductive cavities, up to 500 GeV-1 TeV, ~10³⁴cm⁻²s⁻¹ technically ready to start as construction project
 - CLIC: double beam acceleration, up to ~3 TeV, ~10³⁴cm⁻²s⁻¹ still R&D required to be ready for construction

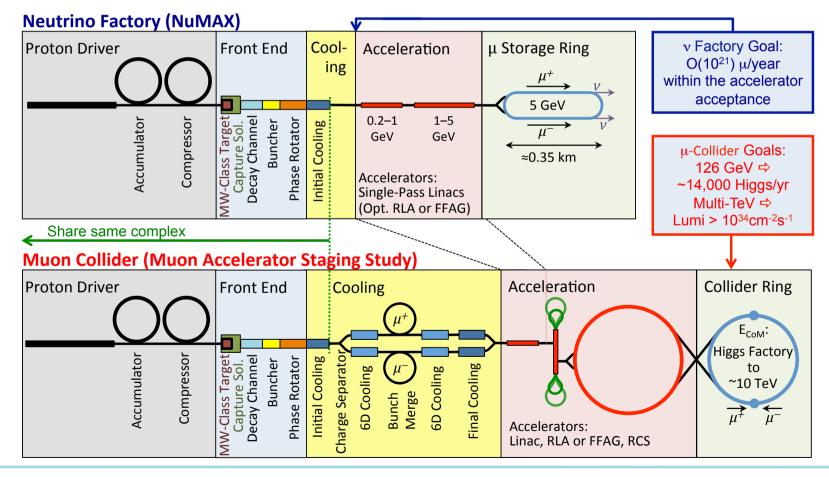
But many ideas are around (I)


- e⁺e⁻ Linear Collider
 - ILC: superconductive cavities, up to 500 GeV-1 TeV, ~10³⁴cm⁻²s⁻¹ technically ready to start as construction project
 - CLIC: double beam acceleration, up to ~3 TeV, ~10³⁴cm⁻²s⁻¹ still R&D required to be ready for construction
- e⁺e⁻ Circular Collider
 - LEP 3: with the existing LEP/LHC tunnel, up to 240 GeV
 - TLEP: new 80 to 100km tunnel, up to 350 GeV \rightarrow see FCC later
 - Other similar ideas are IHEP (Beijing) Circular Electro Positron Collider, SuperTRISTAN (KEK) with ≥ 50km new tunnel

mature technology, easy to accommodate several experiments

R&D funding requested to Chinese Government for 2016-2020 →Aim to follow this by construction 2021-2027 (and construction for pp option 2035-2042) e⁺e⁻ @ 240 GeV/c (pp @ 50 ~ 100 TeV)

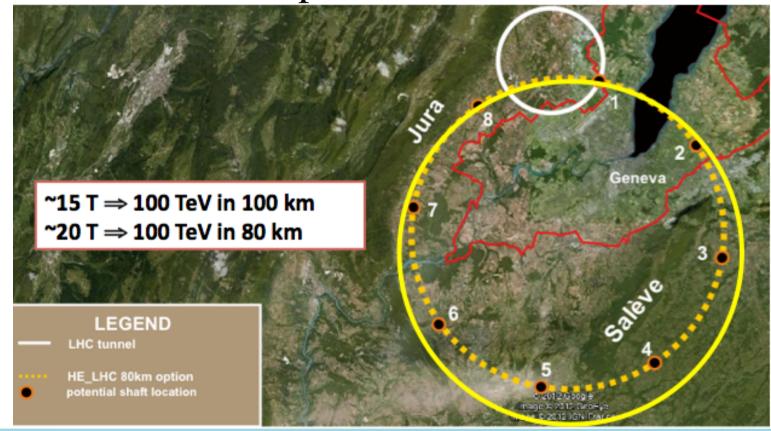
CEPC


Circumference 50 ~ 100 km single ring $L \approx 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} @ 240 \text{ GeV}/c, \approx 10^{6} \text{ Higgs/y (y = 10^{7} \text{ s})}$

But many ideas are around (I)

- e⁺e⁻ Linear Collider
 - ILC: superconductive cavities, up to 500 GeV-1 TeV, ~10³⁴cm⁻²s⁻¹ technically ready to start as construction project
 - CLIC: double beam acceleration, up to ~3 TeV, ~10³⁴cm⁻²s⁻¹ still R&D required to be ready for construction
- e⁺e⁻ Circular Collider
 - LEP 3: with the existing LEP/LHC tunnel, up to 240 GeV
 - TLEP: new 80 to 100km tunnel, up to 350 GeV \rightarrow see FCC later
 - Other similar ideas are IHEP (Beijing) Circular Electro Positron Collider, SuperTRISTAN (KEK) with ≥ 50km new tunnel mature technology, easy to accommodate several experiments
- $\mu^+\mu^-$ Circular Collider
 - ~10 TeV or above with a similar size as Tevatron/LHC, synergy with neutrino factory, quite some R&D needed for a conceptual design

Muon collider


• Some R&D, such as target and cooling, are in progress by international collaborations in view of a neutrino factory.

But many ideas are around (II)

- pp Circular Collider
 - HL-LHC: luminosity upgrade of the exiting LHC, 5×10^{34} cm⁻²s⁻¹ 10 times more $\int L dt$, basically approved upgrade step for LHC
 - HE-LHC: in the LHC tunnel, up to ~33 TeV
 20T dipole required for 33 TeV
 - VHE-LHC: with 80 to 100km tunnel, up to ~100 TeV same tunnel with TLEP, 15T dipole for 100 km → FCC
- ep(ion) Collider
 - LHeC: p(ion) of LHC against e from a 60 GeV linac
 - eRICH: p(ion) of RICH against e from a 5-30 GeV linac
 - ep option for FCC

Study effort initiated by CERN, based on 80~100 km tunnel, with a primary goal for 100 TeV pp collider. The tunnel could accommodate 350 GeV e⁺e⁻ machine, and ep collider.

T. Nakada (EPFL), HEP Outlook

- Kick-off workshop by in Geneva in February 2014, 2nd workshop in Washington in March 2015:
- worldwide interest and establish global working groups for technical aspects and physics potential -

FCC pp collider Circumference 100 km \sqrt{s} 100 TeV L $5 \rightarrow 25 \ 10^{34} \ cm^{-2} \ s^{-1}$ Bunch spacing 25 or 5 nsec

Aiming $\int L dt = 20 \text{ ab}^{-1}$ over ~25 years of data taking

- Kick-off workshop by in Geneva in February 2014, 2nd workshop in Washington in March 2015:
- worldwide interest and establish global working groups for technical aspects and physics potential -

FCC e⁺e⁻ option \sqrt{s} 90 to 350 GeV (Z⁰, W⁺W⁻, Z⁰H and tt) L 21~280×10³⁴ cm⁻² s⁻¹ for Z⁰ 5~11×10³⁴ cm⁻² s⁻¹ for Z⁰H 1.5~2.6×10³⁴ cm⁻² s⁻¹ for tt

Aiming at O(10) more luminosities than LC for H

- Kick-off workshop by in Geneva in February 2014, 2nd workshop in Washington in March 2015:
- worldwide interest and establish global working groups for technical aspects and physics potential -

Technical challenges Very high field superconductive magnet ≈16 T Protection against large stored energy Civil engineering, i.e. tunnel around the Geneva area

But many ideas are around (II)

- pp Circular Collider
 - HL-LHC: luminosity upgrade of the exiting LHC, 5×10^{34} cm⁻²s⁻¹ 10 times more $\int L dt$, basically approved upgrade step for LHC
 - HE-LHC: in the LHC tunnel, up to 33 TeV 20T dipole required for 33 TeV
 - FCC: with 80 to 100km tunnel, up to 100 TeV 16T dipole for 100 km
- ep(ion) Collider
 - LHeC: p(ion) of LHC against e from a 60 GeV linac
 - eRICH: p(ion) of RICH against e from a 5-30 GeV linac
 - ep option for FCC

But many ideas are around (II)

- pp Circular Collider
 - HL-LHC: luminosity upgrade of the exiting LHC, 5×10^{34} cm⁻²s⁻¹ 10 times more $\int L dt$, basically approved upgrade step for LHC
 - HE-LHC: in the LHC tunnel, up to 33 TeV 20T dipole required for 33 TeV
 - FCC: with 80 to 100km tunnel, up to 100 TeV 16T dipole for 100 km
- ep(ion) Collider
 - LHeC: p(ion) of LHC against e from a 60 GeV linac
 - eRICH: p(ion) of RICH against e from a 5-30 GeV linac
 - ep option for FCC
- $\gamma\gamma$ Collider as a Higgs factory (inverse of $H \rightarrow \gamma\gamma$)
 - 80 GeV e⁻ linacs is sufficient, i.e. no e⁺ needed
 - laser part requires many R&D

Issues for making-up our mind

- Scientific requirements
- Technological maturity
- Cost
- Sociology/international politics
- Funding availability

Issues for making-up our mind

- Scientific requirements
- Technological maturity
- Cost
- Sociology/international politics
- Funding availability

They all change with time

Unfortunately, the last three issues cannot be ignored

e⁺e⁻ collider case

• e⁺e⁻ colliders have unique advantages over a hadron machine: able to measure Higgs absolute branching fractions and couplings to more states:

at ~250 GeV: with $e^+e^- \rightarrow HZ$, clean studies of H decays by tagging Z

- i.e. can access to decays into $\overline{c}c$, invisible, ... $\sigma(e^+e^- \rightarrow HX)$ [fb] 10² 10 1
- at ~500 GeV: with $e^+e^- \rightarrow Ht\bar{t}$. coupling to tt
- for H self-coupling, >1 TeV needed
- At lower energies, Z and W factories

rightarrow L and \sqrt{s} both important

T. Nakada (EPFL), HEP Outlook

10⁻¹

10⁻²

 $Hv_e \overline{v}_e$

tŦΗ

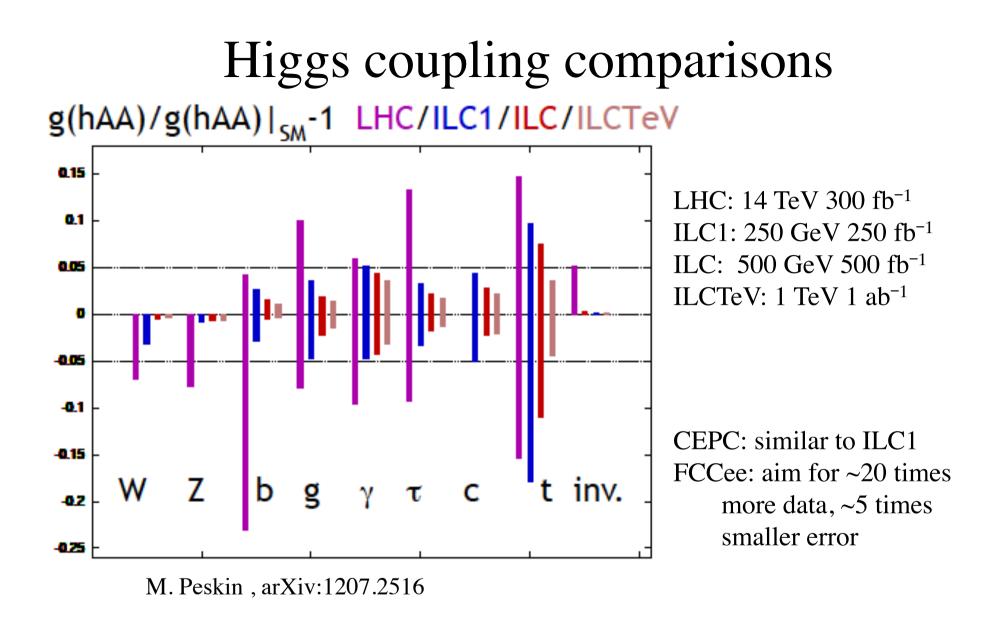
H e⁺e⁻

 $HHv_{P}\overline{v}_{P}$

1000

ΗZ

HHZ


3000

√s [GeV]

2000

Case for the e⁺e⁻ colliders

- e⁺e⁻ Higgs factory has already a clear physics goal
 - LC strategy: exploiting the full energy range up to 500 GeV ee \rightarrow ZH @ $L \approx 10^{34}$ cm⁻²s⁻² (~10⁶ H/year)
 - CC strategy: exploiting the high integrated luminosity at 250 GeV (with an extension to 100 TeV pp machine later a la LEP but an injection system for CC will not be cheap) ee \rightarrow ZH @ $L \approx 10^{35}$ cm⁻²s⁻²

Case for the e⁺e⁻ colliders

- e⁺e⁻ Higgs factory has already a clear physics goal
 - LC strategy: exploiting the full energy range up to 500 GeV ee \rightarrow ZH @ $L \approx 10^{34}$ cm⁻²s⁻²
 - CC strategy: exploiting the high integrated luminosity at 250 GeV (with an extension to 100 TeV pp machine later a la LEP but an injection system for CC will not be cheap) ee \rightarrow ZH @ $L \approx 10^{35}$ cm⁻²s⁻²
- Input from the 14 TeV LHC:
 - If no new physics < 1 TeV, difficult to motivate CLIC
 - If new particles were found > $250 \text{ GeV}/c^2$, motivation for ILC weakens, unless going up to 1 TeV.

Case for the e⁺e⁻ colliders

- e⁺e⁻ Higgs factory has already a clear physics goal
 - LC strategy: exploiting the full energy range up to 500 GeV ee \rightarrow ZH @ $L \approx 10^{34}$ cm⁻²s⁻²
 - CC strategy: exploiting the high integrated luminosity at 250 GeV (with an extension to 100 TeV pp machine later a la LEP but an injection system for CC will not be cheap) ee \rightarrow ZH @ $L \approx 10^{35}$ cm⁻²s⁻²
- Input from the 14 TeV LHC:
 - If no new physics < 1 TeV, difficult to motivate CLIC
 - If new particles were found > 250 GeV/ c^2 , motivation for ILC weakens, unless going up to 1 TeV.
 - If no new particles at all, what is the required L and \sqrt{s} to still probe $\gtrsim 10$ TeV scale from precision Higgs studies?

Case for pp colliders

- If new physics were found by 14 TeV LHC data
 - All pp colliders considered will explore the mass spectrum of particle associated to new physics.

Case for pp colliders

- If new physics were found by 14 TeV LHC data
 - All pp colliders considered will explore the mass spectrum of particle associated to new physics.
- If new physics were not found by 14 TeV LHC data:
 - For 100 TeV pp collider, energy scale for new physics could be ~10 TeV
 - For lower energy pp colliders, pushing the SM precision measurements further may result in deviations
 - \Rightarrow really difficult case for a large investment ...

Other colliders

- Muon Collider
 - *s*-channel Higgs production, very precise coupling to μ , and Higgs mass and width measurements
 - synergy with ν factory, and can aim for 10 TeV scale
 - real estate requirement is very modest, i.e. Higgs factory in the ISR tunnel, 10 TeV machine in the LHC tunnel...?
 - Intensive R&D needed, but should be focused in the goal and time, i.e. should not become perpetual!
 - Luminosity may not be sufficient ($\sim 10^{32}$ cm⁻²s⁻¹, $\sim 10^{4}$ H/year)

Other colliders

- Muon Collider
 - *s*-channel Higgs production, very precise coupling to μ , and Higgs mass and width measurements
 - synergy with v factory, and can aim for 10 TeV scale
 - real estate requirement is very modest, i.e. Higgs factory in the ISR tunnel, 10 TeV machine in the LHC tunnel...?
 - Intensive R&D needed, but should be focused in the goal and time, i.e. should not become perpetual!
 - Luminosity may not be sufficient ($\sim 10^{32}$ cm⁻²s⁻¹, $\sim 10^{4}$ H/year)
- $\gamma \gamma$ Collider ($\sqrt{s} \approx 125 \text{ GeV}$, $\sim 6 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, $\sim 10^{4} \text{H/y}$)

- s-channel Higgs production, via loop diagram

Other colliders

- Muon Collider
 - *s*-channel Higgs production, very precise coupling to μ , and Higgs mass and width measurements
 - synergy with ν factory, and can aim for 10 TeV scale
 - real estate requirement is very modest, i.e. Higgs factory in the ISR tunnel, 10 TeV machine in the LHC tunnel...?
 - Intensive R&D needed, but should be focused in the goal and time, i.e. should not become perpetual!
 - Luminosity may not be sufficient ($\sim 10^{32}$ cm⁻²s⁻¹, $\sim 10^{4}$ H/year)
- $\gamma \gamma$ Collider ($\sqrt{s} \approx 125 \text{ GeV}$, $\sim 6 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, $\sim 10^{4} \text{H/y}$)
 - *s*-channel Higgs production, via loop diagram
- LHeC or FCCeh (LHeC 7TeV \oplus 60GeV, ~10³³cm⁻²s⁻¹, ~10³H/y)
 - primary physics goal is the QCD studies: has its own physics merit Higgs production via electroweak interactions: Can get enough L?

• For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics

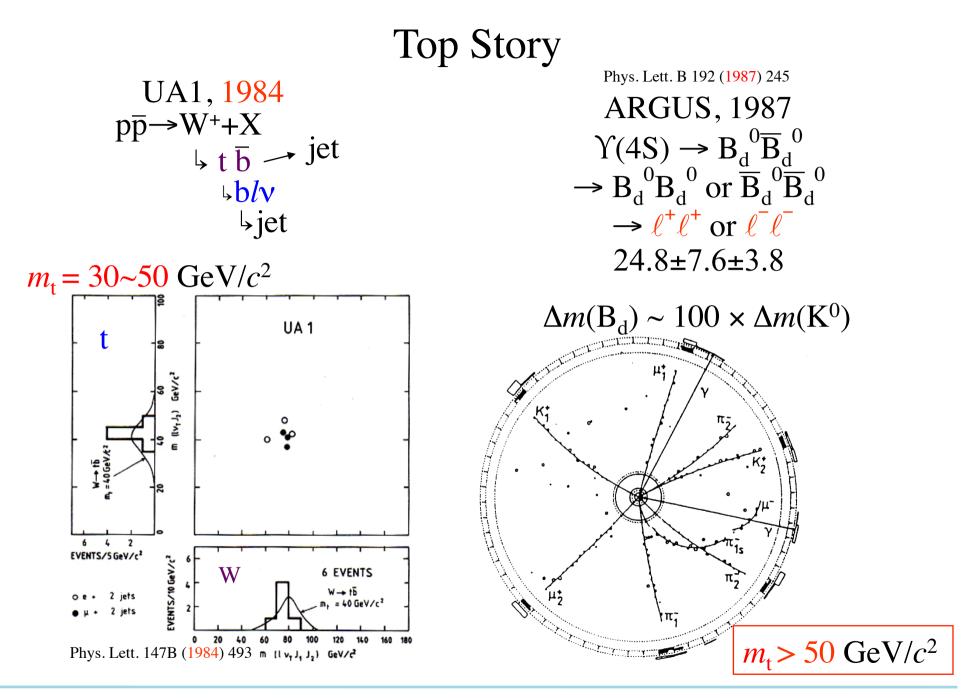
- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.

- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.
- For CLIC and Muon Collider, Higgs "factory" is a demonstrator, goal is for higher energies, ~1 TeV.

- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.
- For CLIC and Muon Collider, Higgs "factory" is a demonstrator, goal is for higher energies, ~1 TeV.
- e^+e^- circular colliders are technically safe way to prove $Z \rightarrow W \rightarrow H \rightarrow t$.

- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.
- For CLIC and Muon Collider, Higgs "factory" is a demonstrator, goal is for higher energies, ~1 TeV.
- e^+e^- circular colliders are technically safe way to prove $Z \rightarrow W \rightarrow H \rightarrow t$.
- 100km pp colliders are only the way currently know to access 10 TeV energy scale.

- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.
- For CLIC and Muon Collider, Higgs "factory" is a demonstrator, goal is for higher energies, ~1 TeV.
- e^+e^- circular colliders are technically safe way to prove $Z \rightarrow W \rightarrow H \rightarrow t$.
- 100km pp colliders are only the way currently know to access 10 TeV energy scale.→ Is it high enough?

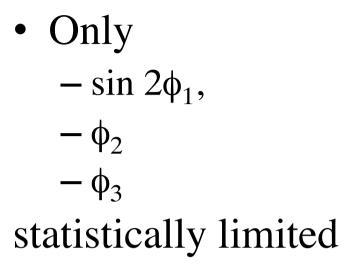

- For high energy lepton colliders, Higgs is a reference point: i.e. "guaranteed" physics
- LC principle demonstrated by the SLC, but long term stable operation at high luminosities not.
- For CLIC and Muon Collider, Higgs "factory" is a demonstrator, goal is for higher energies, ~1 TeV.
- e^+e^- circular colliders are technically safe way to prove $Z \rightarrow W \rightarrow H \rightarrow t$.
- 100km pp colliders are only the way currently know to access 10 TeV energy scale.→ Is it high enough?
- RF cavity <100 MeV/m (ILC 31 MeV/m, CLIC 72~100 MeV/m), Plasma wakefield ×100, at the moment SF but...

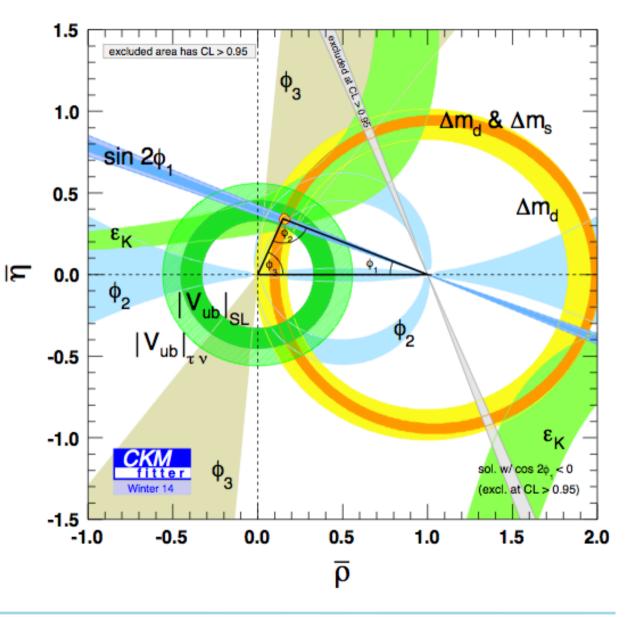
• Established track record to probe energy scales much higher than directly accessible:

- Established track record to probe energy scales much higher than directly accessible:
 - Δ*m*_K and Br(K_L→ $\mu^+\mu^-$) ⇒ *m*_c Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)

- Established track record to probe energy scales much higher than directly accessible:
 - Δ*m*_K and Br(K_L→ $\mu^+\mu^-$) ⇒ *m*_c Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
 - CP: 1964, J.H. Christenson et al., $Br(K_L^0 \rightarrow \pi^+\pi^-) \neq 0$ \Rightarrow Third family Kobayashi&Maskawa (1973)

- Established track record to probe energy scales much higher than directly accessible:
 - Δ*m*_K and Br(K_L→ $\mu^+\mu^-$) ⇒ *m*_c Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
 - CP: 1964, J.H. Christenson et al., $Br(K_L^0 \rightarrow \pi^+\pi^-) \neq 0$ \Rightarrow Third family Kobayashi&Maskawa (1973)
 - B^0 - \overline{B}^0 oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20< $m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm2.1$ GeV/c^2)


- Established track record to probe energy scales much higher than directly accessible:
 - Δ*m*_K and Br(K_L→ $\mu^+\mu^-$) ⇒ *m*_c Lee&Gaillard (1974) charm discovery Aubert et al., Augustin et al., 1974 (Niu et al. 1971?)
 - CP: 1964, J.H. Christenson et al., $Br(K_L^0 \rightarrow \pi^+\pi^-) \neq 0$ \Rightarrow Third family Kobayashi&Maskawa (1973)
 - B^0 - \overline{B}^0 oscillations (Δm_B): ARGUS (1987) $\Rightarrow m_t > 50 \text{ GeV}/c^2$ (NB: UA1 1984 20< $m_t < 50 \text{ GeV}/c^2$) top discovery by CDF and D0 in 1995 ($m_t = 171.2\pm2.1$ GeV/c^2)
- They were done before the direct discovery of c, b and t quarks


It is sensitive to coupling ∞ mass of new particle
 ⇒ Complementary with direct search

- It is sensitive to coupling ∞ mass of new particle
 ⇒ Complementary with direct search
- Sensitive to the new physics amplitude $A_{\rm NP}$ in
 - Absolute value: branching fractions
 - Phase: CP violation
 - Lorentz structure: decay products angular distribution remains sensitive even for MFV case

- It is sensitive to coupling ∞ mass of new particle
 ⇒ Complementary with direct search
- Sensitive to the new physics amplitude $A_{\rm NP}$ in
 - Absolute value: branching fractions
 - Phase: CP violation
 - Lorentz structure: decay products angular distribution remains sensitive even for MFV case
- Interpretation often limited by the theory predictions, i.e. SM soft QCD matrix element calculations: e.g. if Bf_B^2 is better known, Δm_d and CPV in $B_d \rightarrow J/\psi K_S$ will give a much more precise (ρ , η) than now

Even now

- Good prospects for the next 10~15 years:
 - LHCb: Superseded Tevatron in B_s and B factories in $B_{u,d}$. Errors will be reduced by two or more with the coming runs followed by upgrade for another 10 times more statistics
 - SuperKEKB collider will study two orders more B_{u,d}
 than BABAR and BELLE studied, with a better hermetic detectors including neutrals

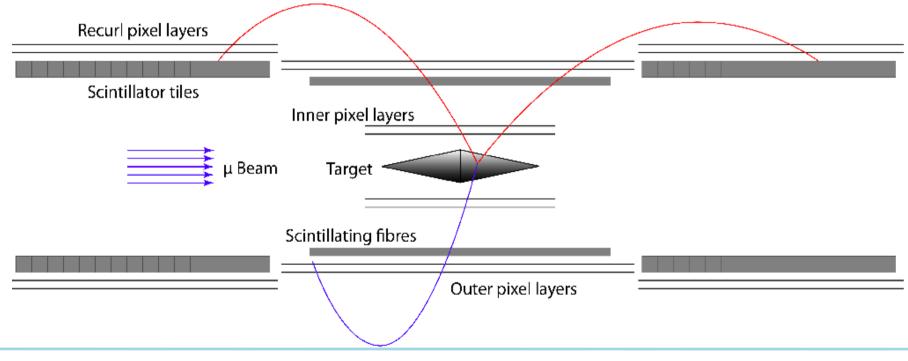
- Good prospects for the next 10~15 years:
 - LHCb: Superseded Tevatron in B_s and B factories in $B_{u,d}$. Errors will be reduced by two or more with the coming runs followed by upgrade for another 10 times more statistics
 - SuperKEKB collider will study two orders more B_{u, d} than BABAR and BELLE studied, with a better hermetic detectors including neutrals
 - $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62) at CERN and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO) at JPARC, proving flavour universality...

- Good prospects for the next 10~15 years:
 - LHCb: Superseded Tevatron in B_s and B factories in $B_{u,d}$. Errors will be reduced by two or more with the coming runs followed by upgrade for another 10 times more statistics
 - SuperKEKB collider will study two orders more B_{u, d} than BABAR and BELLE studied, with a better hermetic detectors including neutrals
 - $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62) at CERN and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO) at JPARC, proving flavour universality...
 - No tau-charm factory plan yet, but τ and c are also covered by LHCb and SuperKEKB

- Good prospects for the next 10~15 years:
 - LHCb: Superseded Tevatron in B_s and B factories in $B_{u,d}$. Errors will be reduced by two or more with the coming runs followed by upgrade for another 10 times more statistics
 - SuperKEKB collider will study two orders more B_{u, d} than BABAR and BELLE studied, with a better hermetic detectors including neutrals
 - $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62) at CERN and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO) at JPARC, proving flavour universality...
 - No tau-charm factory plan yet, but τ and c are also covered by LHCb and SuperKEKB
- Can theory catch up?

- Good prospects for the next 10~15 years:
 - LHCb: Superseded Tevatron in B_s and B factories in $B_{u,d}$. Errors will be reduced by two or more with the coming runs followed by upgrade for another 10 times more statistics
 - SuperKEKB collider will study two orders more B_{u, d} than BABAR and BELLE studied, with a better hermetic detectors including neutrals
 - $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (NA62) at CERN and $K_L \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO) at JPARC, proving flavour universality...
 - No tau-charm factory plan yet, but τ and c are also covered by LHCb and SuperKEKB
- Can theory catch up? And what will be after?

- Charged lepton flavour violation due to neutrino oscillations are negligible, e.g. $Br(\mu \rightarrow e\gamma) \approx 10^{-54}$
- Solution Most of the New Physics scenario (1 in page 17) generates charged lepton flavour violation.

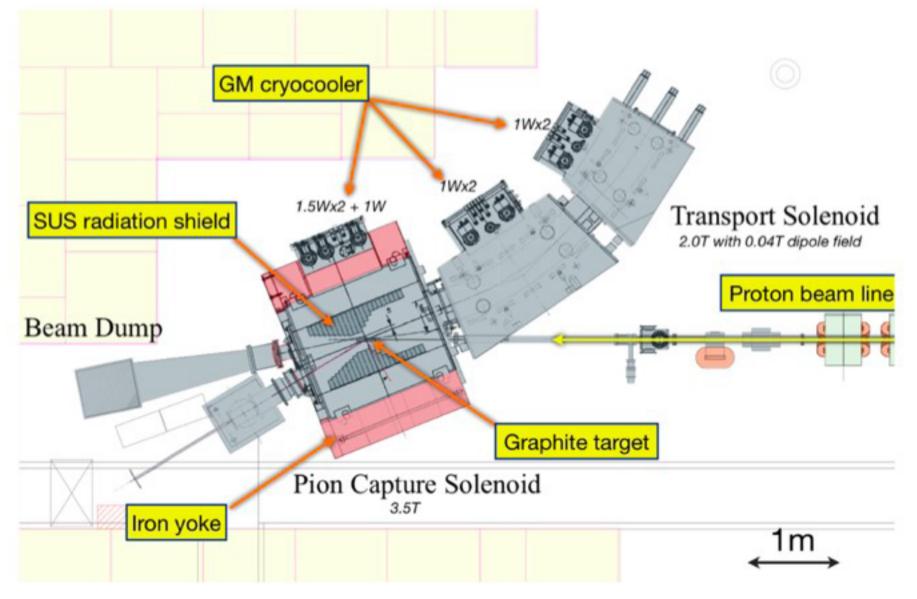

- Charged lepton flavour violation due to neutrino oscillations are negligible, e.g. $Br(\mu \rightarrow e\gamma) \approx 10^{-54}$
- Most of the New Physics scenario (1 in page 17) generates charged lepton flavour violation.
 However physics generates v oscillations are very different and not relate the charged leptons in general, i.e. v oscillations are not necessarily good reason to expect charged lepton flavour violation (2 in page 17), I think.

- Good prospects for the next $10 \sim 15$ years, thanks to
 - more powerful $\boldsymbol{\mu}$ beam lines with upgrade in view
 - development in new detector technology

• Original SINDRUM experiment with cylindrical MWPC

 \downarrow

Scintillating fibre tracker with SiPMT readout Si Pixel detector


T. Nakada (EPFL), HEP Outlook

- Good prospects for the next $10 \sim 15$ years, thanks to
 - more powerful $\boldsymbol{\mu}$ beam lines with upgrade in view
 - development in new detector technology
- Already in portfolio with >10 improvement
 - $-\mu \rightarrow e\gamma$ MEG (PSI) data taking and upgrade
 - − μ →e conversion Mu2e (FNAL), COMET (JPARC)
 - − μ→eee Mu3e (PSI)
 - τ decays at SuperKEKB and LHCb

- Good prospects for the next $10 \sim 15$ years, thanks to
 - more powerful $\boldsymbol{\mu}$ beam lines with upgrade in view
 - development in new detector technology
- Already in portfolio with >10 improvement
 - $-\mu \rightarrow e\gamma$ MEG (PSI) data taking and upgrade
 - μ →e conversion Mu2e (FNAL), COMET (JPARC)
 - − μ→eee Mu3e (PSI)
 - $-\tau$ decays at SuperKEKB and LHCb
- Their results are closely related to quark flavour physics and direct search

- Good prospects for the next $10 \sim 15$ years, thanks to
 - more powerful $\boldsymbol{\mu}$ beam lines with upgrade in view
 - development in new detector technology
- Already in portfolio with >10 improvement
 - $-\mu \rightarrow e\gamma$ MEG (PSI) data taking and upgrade
 - μ →e conversion Mu2e (FNAL), COMET (JPARC)
 - − μ→eee Mu3e (PSI)
 - $-\tau$ decays at SuperKEKB and LHCb
- Their results are closely related to quark flavour physics and direct search
- A further step (>10 years) with more efficient capture for the muon beam?

more efficient muon beam

• Progress in Neutrino physics is a little decoupled and can define its own programme relatively independent from the results in the other filed and will occupy for the next 10 to 20 years

- Progress in Neutrino physics is a little decoupled and can define its own programme relatively independent from the results in the other filed and will occupy for the next 10 to 20 years
 - -*** absolute mass scale, mass hierarchy, $0\nu\beta\beta$ decay
 - ** CP violation phase
 - * mixing angle measurements

- Progress in Neutrino physics is a little decoupled and can define its own programme relatively independent from the results in the other filed and will occupy for the next 10 to 20 years
 - -*** absolute mass scale, mass hierarchy, $0\nu\beta\beta$ decay
 - ** CP violation phase
 - * mixing angle measurements
- Whether we need a neutrino factory depends on the ** and * results

- Progress in Neutrino physics is a little decoupled and can define its own programme relatively independent from the results in the other filed and will occupy for the next 10 to 20 years
 - -*** absolute mass scale, mass hierarchy, $0\nu\beta\beta$ decay
 - ** CP violation phase
 - * mixing angle measurements
- Whether we need a neutrino factory depends on the ** and * results
- Existing neutrino anomalies must be sorted out:
 - LNSD/MinuBooNE, Reactor flux, Ga
 - short and very short baseline experiments in preparation

By the way, what would happen,

- if $0\nu\beta\beta$ were found?
- if neutral leptons, ~1 GeV, were found in a beam dump experiment?
- if LSND sterile neutrino were found?
- if CP violation were found in ν oscillations?
- if axion were found?

By the way, what would happen,

- if $0\nu\beta\beta$ were found?
- if neutral leptons, ~1 GeV, were found in a beam dump experiment?
- if LSND sterile neutrino were found?
- if CP violation were found in ν oscillations?
- if axion were found?
- They are all great breakthrough, but consequence to the other fields of particle physics is not so clear...

Before conclude

- I am sorry for not to mention:
 - direct dark matter search,
 - $-\mu(\gamma-2),$
 - EDM,
 - and all other things I should have mentioned

Before conclude

• And, I am sorry for having not much vision in this talk.

• Particle physics community has well established programme for the next 10 to 15 years, at high energy frontier (LHC), quark and lepton flavour physics, neutrino physics, and others.

- Particle physics community has well established programme for the next 10 to 15 years, at high energy frontier (LHC), quark and lepton flavour physics, neutrino physics, and others.
- However, if no sign of new physics emerges from LHC by ~2018,
 - Purely scientific decision on the next high energy frontier machine will become very difficult
 - One may need to increase effort on non energy frontier physics, e.g. high intensity beam-dump experiment,

- Particle physics community has well established programme for the next 10 to 15 years, at high energy frontier (LHC), quark and lepton flavour physics, neutrino physics, and others.
- However, if no sign of new physics emerges from LHC by ~2018,
 - Purely scientific decision on the next high energy frontier machine will become very difficult
 - One may need to increase effort on non energy frontier physics, e.g. high intensity beam-dump experiment,
 - Importance for R&D increases: high performance target, high field magnet, new acceleration technology, ...

- Particle physics community has well established programme for the next 10 to 15 years, at high energy frontier (LHC), quark and lepton flavour physics, neutrino physics, and others.
- However, if no sign of new physics emerges from LHC by ~2018,
 - Purely scientific decision on the next high energy frontier machine will become very difficult
 - One may need to increase effort on non energy frontier physics, e.g. high intensity beam-dump experiment,
 - Importance for R&D increases: high performance target, high field magnet, **new acceleration technology**, ...

New Physics must be searched at all fronts!

T. Nakada (EPFL), HEP Outlook

• And many thanks to the audience and organisers!!!