Short recap

Last lecture (yesterday) we have learned that:

- (Effective) BSM models with TeV-scale new particles cannot have a generic flavor structure: NP flavor problem
- Effective Lagrangians that satisfy the Minimal Flavor violating hypothesis can satisfy experimental flavor constraints more easily
 - TeV scale NP is allowed
- MFV models are highly predictive (ex. $B_s \rightarrow \mu^+\mu^- / B_d \rightarrow \mu^+\mu^-$)

This lecture:

- (More) UV complete models: 2HDMs & SUSY
- Flavor physics at high energy: Higgs and top flavor violating decays
- Experimental prospects for the coming years
How to discover a new d.o.f.
High energy vs. high precision experiments

Producing new particles on shell at high energy experiments

Collision of protons/electrons at high energy producing directly new particles and observe their decay products

Testing new particles through flavor and CP transitions

Some examples from the past
- Measurement of the tiny branching ratio of the decay $K_L \rightarrow \mu^+\mu^-$
- Observation of CP violation in kaon anti-kaon oscillations
- Prediction of the charm quark (Glashow, Iliopoulos, Maiani, 1970)
- Prediction of the 3rd generation (Kobayashi, Maskawa, 1973)

Most recent examples from the past
- Tevatron at Fermilab (center of mass energy 1.96 TeV) discovery of the top quark 1995
- Large Hadron Collider at CERN (center of mass energy 8 TeV) discovery of the Higgs boson 2012

What is next?

S.Gori
1. A Two Higgs Doublet Model (2HDM)

Several extensions of the SM involve an extended Higgs sector, with more than one Higgs doublet.

Most studied example: SUSY

A two Higgs doublet: \(H_1 = (1,2,-1/2), H_2 = (1,2,1/2)\)

Most general Lagrangian

\[
V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + (bH_1 H_2 + \text{h.c}) + \frac{\lambda_1}{2} |H_1|^4 + \frac{\lambda_2}{2} |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2
\]

\[
+ \lambda_4 |H_1 H_2|^2 + \left[\frac{\lambda_5}{2} (H_1 H_2)^2 + \lambda_6 |H_1|^2 H_1 H_2 + \lambda_7 |H_2|^2 H_1 H_2 + \text{h.c} \right]
\]

These coefficients are generically complex.
Possible new sources of CP violation

1. A Two Higgs Doublet Model (2HDM)

Physical fields: \(h, H, A, H^\pm\)

\(\mathcal{H}^\text{gen}_y = \bar{Q}_L X_{d1} D_R H_1 + \bar{Q}_L X_{u1} U_R H^c_1 + \bar{Q}_L X_{d2} D_R H^c_2 + \bar{Q}_L X_{u2} U_R H_2\)

Each Higgs doublet can generically couple to up and down quarks.
FCNCs in 2HDMs

\[\mathcal{H}_{Y}^{\text{gen}} = \bar{Q}_L X_{d1} D_R H_1 + \bar{Q}_L X_{u1} U_R H_1^c + \bar{Q}_L X_{d2} D_R H_2^c + \bar{Q}_L X_{u2} U_R H_2 \]

We can rotate to the basis in which only one Higgs has a VEV

\[
\begin{pmatrix}
\Phi_v \\
\Phi_H
\end{pmatrix} =
\begin{pmatrix}
c_{\beta} & s_{\beta} \\
-s_{\beta} & c_{\beta}
\end{pmatrix}
\begin{pmatrix}
H_1 \\
H_2^c
\end{pmatrix}
\]

\[\langle \Phi_v^\dagger \Phi_v \rangle = v^2/2, \]
\[\langle \Phi_H^\dagger \Phi_H \rangle = 0 \]
\[\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle} \]

\[\mathcal{H}_{Y}^{\text{gen}} = \bar{Q}_L \left[\frac{\sqrt{2}}{v} M_d \Phi_v + Z_d \Phi_H \right] D_R \]

\[
\begin{cases}
Z_d = \cos \beta X_{d2} - \sin \beta X_{d1} \\
M_d = \frac{v}{\sqrt{2}} (\cos \beta X_{d1} + \sin \beta X_{d2})
\end{cases}
\]

(analogous in the up sector)

Generically not proportional to each other! It is not possible to diagonalize them simultaneously

Exercise: what are the conditions on \(X_{d1}\) and \(X_{d2}\) not to have FCNCs at tree level?

No loop suppression of the four fermion operators! BAD!
Minimal Flavor Violating 2HDMs

\[\mathcal{H}_Y^{\text{gen}} = \bar{Q}_L X_{d1} D_R H_1 + \bar{Q}_L X_{u1} U_R H_1^c + \bar{Q}_L X_{d2} D_R H_2^c + \bar{Q}_L X_{u2} U_R H_2 \]

\[
\begin{align*}
X_{d1} &= Y_d \\
X_{u1} &= \epsilon_u Y_u + \epsilon'_1 Y_u^\dagger Y_u Y_u + \epsilon'_2 Y_d^\dagger Y_d Y_u + \cdots \\
X_{d2} &= \epsilon_b Y_d + \epsilon_1 Y_d^\dagger Y_d Y_d + \epsilon_2 Y_u^\dagger Y_u Y_d + \cdots \\
X_{u2} &= Y_u
\end{align*}
\]

The \(\epsilon_i \) are in general complex coefficients.

Exercise: convince your-self that the several terms are invariant under

\[SU(3)_Q \times SU(3)_U \times SU(3)_D \]
The most studied 2HDMs are the so-called Type I, II, III, IV: these are models where up and down quarks only couple to one Higgs type.

Example: Type II: U_R only couple to H_2 and D_R only coupled to H_1 ($X_{u1} = X_{d2} = 0$)

All these models are a particular limit of a MFV 2HDM

Footnote: The MSSM can be approximated with a Type II 2HDM
Constraints from meson mixing observables

\[\text{Kaon} \sim \frac{A_0}{M_H^2} \tan^4 \beta m_s m_d [V_{ts}^* V_{td}]^2 \]

\[B_d \sim \frac{A_1}{M_H^2} \tan^4 \beta m_b m_d [V_{tb}^* V_{td}]^2 \]

\[B_s \sim \frac{A_2}{M_H^2} \tan^4 \beta m_b m_s [V_{tb}^* V_{ts}]^2 \]

\[A_i \] are combinations of the \(\epsilon_i \) of the previous slide

Sometimes possible NP in rare B-decays

\[\frac{\text{Br}(B_q \rightarrow \mu^+ \mu^-)}{\text{Br}(B_q \rightarrow \mu^+ \mu^-)_{SM}} = (|1 + R_q|^2 + |R_q|^2) \]

\[R_q \sim \frac{M_{B_q}^2 t_\beta^3}{M_H^2} \]

Interplay with direct searches

Altmannshofer et al. 1211.1976
2. SUSY models (intro). The MSSM

The Minimal Supersymmetric extension of the SM includes:

(i) scalar partners of the ordinary quarks and leptons;
(ii) spin-1/2 partners of the ordinary gauge bosons [gauginos];
(iii) Two Higgs doublets \([H_1, H_2]\) with their corresponding spin 1/2 partners

The SUSY version of \(L_{\text{gauge}}\) is completely determined by its symmetry properties.

The SUSY version of \(L_{\text{Yukawa}}\) (\(L_{\text{Y}}^{\text{MSSM}}\)) is also strongly constrained.

\[
L_{\text{Y}}^{\text{MSSM}} = \bar{Q}_L Y_D D_R H_1 + \bar{Q}_L Y_U U_R H_2 + \\
\bar{Q}_L^+ Y_D D_R \tilde{H}_1 + \bar{Q}_L^+ Y_U U_R \tilde{H}_2 + \ldots
\]
SUSY models & new sources of FCNCs

"Problems" arise when we consider SUSY breaking.
Large number of degrees of freedom!

Potential new sources of flavor symmetry breaking

For example, in the down-squark sector:

\[
\mathcal{L}_{\text{soft}} = (M_f)_{ij} \chi_i \chi_j + (M_s^2)_{ij} \phi_i \phi_j + A_{ijk} \phi_i \phi_i \phi_k
\]

gaugino/higgsino masses

squark/slepton masses

trilinear scalar couplings

If the off-diagonal entries in these mass matrices are not sufficiently small, the model is ruled out by flavor physics...
The SUSY flavor problem

Going back to our meson mixings...

If these mass parameters are of $O(1)$:

$$\mathcal{M} = M_\tilde{q} \begin{pmatrix} \mathcal{O}(1)_{3 \times 3} & \mathcal{O}(1)_{3 \times 3} \\ \mathcal{O}(1)_{3 \times 3} & \mathcal{O}(1)_{3 \times 3} \end{pmatrix}$$

squark masses have to be larger than $\sim 10^3$ TeV

Tension with the idea of TeV-scale SUSY \Rightarrow SUSY flavor problem

If we take a MFV SUSY scenario, the soft masses are highly non-generic:

$$M_{LL}^2 = \tilde{m}_Q^2 \left(I_{3 \times 3} + b_1 Y_u Y_u^\dagger + b_2 Y_d Y_d^\dagger + b_3 Y_d Y_d^\dagger Y_u Y_u^\dagger + b_3^* Y_u Y_u^\dagger Y_d Y_d^\dagger + \ldots \right)$$

$$M_{RR}^2 = \tilde{m}_D^2 \left(I_{3 \times 3} + b_5 Y_d Y_d^\dagger + \ldots \right)$$

\Rightarrow Squark masses as light as few hundred GeV are allowed!
Take home messages (for NP models)

- Complete NP models generically show a rich flavor structure too large breaking of the flavor symmetry of the SM gauge interactions.

- If we ask for MFV, it is easier to evade the constraints. At the same time it is possible to have deviations from the SM prediction of some flavor observables (example: $B_s \rightarrow \mu^+\mu^-$ vs. $B_d \rightarrow \mu^+\mu^-$).

- Complementarity with LHC direct searches of new physics particles (example: additional Higgs bosons, ...).
Some discrepancy. Hints for NP?

In the last ~30 years, there have been a tremendous experimental progress in testing the flavor structure of the SM

Overall, we have a good agreement

Nevertheless

There are some measurements of flavor observables that show some (small?) deviation with respect to the SM prediction

Some would be unambiguous NP signals
Except for theoretically cleanest modes, cross-checks needed to build a robust case for NP
Flavor at high energy?

1. Up to now we have learned about low energy flavor observables.

2. Can we say something using more massive particles? Can we test flavor transitions at high energy environments?

Low energy
- We have studied:
 - Meson transitions

High energy
- We will study:
 - Top & Higgs
Top flavor changing decays

- The top was discovered in 1995 at Tevatron. By now, we know its properties quite well BUT...

- Let us compare the top quark to the bottom quark

\[\frac{\Gamma_t}{m_t} \approx 1\% \]

\[\frac{\Gamma_{B_d}}{m_{B_d}} \approx 8.2 \times 10^{-13} \]

Some possible Rare decay

- for top quark

- for bottom quark
Top flavor changing decays

- The top was discovered in 1995 at Tevatron. By now, we know its properties quite well **BUT**...

- Let us compare the top quark to the bottom quark

<table>
<thead>
<tr>
<th>Top</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main decay mode</td>
<td>$BR(t \rightarrow c\gamma) \simeq 5 \times 10^{-14}$, $BR(t \rightarrow u\gamma) \simeq 4 \times 10^{-16}$</td>
</tr>
<tr>
<td></td>
<td>$BR(t \rightarrow cg) \simeq 5 \times 10^{-12}$, $BR(t \rightarrow ug) \simeq 4 \times 10^{-14}$</td>
</tr>
<tr>
<td></td>
<td>$BR(t \rightarrow cZ) \simeq 1 \times 10^{-14}$, $BR(t \rightarrow uZ) \simeq 8 \times 10^{-17}$</td>
</tr>
<tr>
<td>Rare decay</td>
<td>$BR(t \rightarrow ch) \simeq 3 \times 10^{-15}$, $BR(t \rightarrow uh) \simeq 2 \times 10^{-17}$</td>
</tr>
</tbody>
</table>

SM predictions:

\[
A_{t \rightarrow c\gamma} \propto \frac{e}{16\pi^2} \frac{G_F}{\sqrt{2}} \frac{m_b^2}{m_W^2} V_{tb} V_{cb}^* \\
A_{b \rightarrow s\gamma} \propto \frac{e}{16\pi^2} \frac{G_F}{\sqrt{2}} \frac{m_t^2}{m_W^2} V_{tb} V_{ts}^*
\]
Top flavor changing couplings at LHC

Flavor changing top interactions are not only probed by searches of rare top decays. Other probes include:

- **Higgs decay**
- **Single top production**
- **Single top+Higgs production**

<table>
<thead>
<tr>
<th>Process</th>
<th>Br Limit</th>
<th>Search</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow Zq$</td>
<td>5×10^{-4}</td>
<td>CMS $t \bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$</td>
<td>19.7 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow Zq$</td>
<td>7.3×10^{-3}</td>
<td>ATLAS $t \bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$</td>
<td>2.1 fb$^{-1}$, 7 TeV</td>
</tr>
<tr>
<td>$t \rightarrow gu$</td>
<td>3.1×10^{-5}</td>
<td>ATLAS $qg \rightarrow t \rightarrow Wb$</td>
<td>14.2 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow gc$</td>
<td>1.6×10^{-4}</td>
<td>ATLAS $qg \rightarrow t \rightarrow Wb$</td>
<td>14.2 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow \gamma u$</td>
<td>1.6×10^{-4}</td>
<td>CMS $qg \rightarrow t\gamma \rightarrow Wb\gamma$</td>
<td>19.1 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow \gamma c$</td>
<td>1.8×10^{-3}</td>
<td>CMS $qg \rightarrow t\gamma \rightarrow Wb\gamma$</td>
<td>19.1 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow hq$</td>
<td>7.9×10^{-3}</td>
<td>ATLAS $t \bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$</td>
<td>20 fb$^{-1}$, 8 TeV</td>
</tr>
<tr>
<td>$t \rightarrow hq$</td>
<td>5.6×10^{-3}</td>
<td>CMS $t \bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell qX$</td>
<td>19.5 fb$^{-1}$, 8 TeV</td>
</tr>
</tbody>
</table>

Bounds are much much larger than the SM prediction
NP models and top flavor changing decays

Several NP models can sizably enhance the BR for top flavor changing decays, while satisfying direct and "indirect" low energy constraints.

Some example:

<table>
<thead>
<tr>
<th>2HDM</th>
<th>MSSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \to cZ$</td>
<td>$\lesssim 10^{-6}$</td>
</tr>
<tr>
<td>$t \to c\gamma$</td>
<td>$\lesssim 10^{-7}$</td>
</tr>
<tr>
<td>$t \to cg$</td>
<td>$\lesssim 10^{-5}$</td>
</tr>
<tr>
<td>$t \to ch$</td>
<td>$\lesssim 10^{-2}$</td>
</tr>
</tbody>
</table>

Reminder for the SM:

- $B_s \to \mu^+\mu^-$
 - 10^{-14}
 - 5×10^{-14}
 - 3×10^{-15}
The Higgs flavor conserving couplings

- LHC will measure more and more precisely the couplings of the Higgs to the massive particles of the SM

LHC RunI tests for the relations

We do not know (yet) how the Higgs couples to light flavors (muons? electrons? charm quarks?)

We know, for example, that it couples non-universally with muons and taus but we do not know more than this...
The Higgs flavor violating couplings (1)

- We have seen that, in the SM, the Higgs does not have flavor changing couplings at the tree level

Still, these couplings are generated at one loop in perturbation theory:

- Some of these "effective" couplings are strongly constrained by low energy measurements:

Higgs

\[b \]

\[s \]

Heavier BRs are predicted by the SM

Harnik, Kopp, Zupan, 1209.1397
The Higgs flavor violating couplings (2)

- Some other coupling is instead much more weakly constrained by low energy measurements

Harnik, Kopp, Zupan, 1209.1397

- Some interesting ATLAS and CMS search...

- CMS, 1502.07400
 \[\text{BR}(h \rightarrow \mu\tau) < 1.51\%, \ 95\% \text{ C.L.} \]
 \[\text{BR}(h \rightarrow \mu\tau) = (0.84^{+0.39}_{-0.37})\% \]

- ATLAS, 1508.03372
 \[\text{BR}(h \rightarrow \mu\tau) < 1.85\%, \ 95\% \text{ C.L.} \]
 \[\text{BR}(h \rightarrow \mu\tau) = (0.77 \pm 0.62)\% \]
Take home messages

- The measurements of a few low energy flavor observables seem to show some (small) discrepancy, if compared to the SM prediction... Looking for a theory and experimentally clean observables not agreeing with the SM prediction!

 We want to repeat: 🐦

- Opportunity of testing flavor, performing high energy measurements: top and Higgs flavor changing couplings

- The Higgs is the ultimate source of flavor. Importance of testing its flavor structure (both flavor diagonal and off-diagonal couplings)
A rich flavor experimental program ahead

Observables fulfilling the criteria:
(i) sensitive to different NP,
(ii) measurements can improve by order(s) of magnitude,
(iii) not limited by hadronic uncertainties

Belle II and LHCb (some highlight)

- Difference of CP asymmetries $S_{\Psi Ks}$, $S_{\phi Ks}$, $S_{\Psi \Phi}$ etc.
- γ from CP asymmetries in tree-level decays (e.g. $B \rightarrow D K$)
- CP asymmetry in semileptonic B decays
- CP asymmetry in the radiative decay $S_{K_s \pi^0 \gamma}$
- B meson decay searches:
 $B_{s,d} \rightarrow \mu \mu$, $B_{s,d} \rightarrow \tau \tau$, $B^\pm \rightarrow \tau \nu$,
 $B \rightarrow K^{(*)} \ell^+ \ell^-$, $B_s \rightarrow \phi \gamma$, ...
- Search for CP violation in $D - \bar{D}$ mixing
- Search for charged lepton flavor violation

LHC (some highlight)
High energy measurements

- Top flavor changing couplings (in decay and in production)
- Couplings of the Higgs to light Generation quarks/leptons?
- Flavor changing Higgs couplings
Concluding remarks on flavor/CP

- We cannot (yet) predict the SM flavor/CP structure
 - from first principles (SM flavor puzzle)

- The SM is very well tested by low energy flavor measurements
 - Overall good consistency

- Great opportunity for testing NP using low and high energy flavor measurements

<table>
<thead>
<tr>
<th>Evidence for BSM?</th>
<th>FLAVOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Complementary info</td>
<td>Distinguish models</td>
</tr>
<tr>
<td>Tells us where to look next</td>
<td>Flavor is the best probe</td>
</tr>
</tbody>
</table>

Thank You!