

Andrea Wulzer

UNIVERSITÀ DEGLI STUDI DI PADOVA

European Research Council

DaMeSyFla

Plan of the lecture

- 1. **The SUSY Higgs**
- 2. **Sparticles Searches** ("Naturally" ordered)
- 3. **Top Partners**
- 4. **Heavy Vector Triplets** (I wish I had time, but I don't)

In SUSY, fields are promoted to **SuperFields.** One would thus naively expect:

 $\Phi \in \bf{2}_{1/2}$

Instead, we need two: $\,\, \Phi_{\mathrm{u}} \in \mathbf{2}_{\mathbf{1/2}}, \,\, \Phi_{\mathrm{d}} \in \mathbf{2}_{\mathbf{-1/2}}$

In SM we can freely use conjugate $H: H^c = i\sigma_2 H^*$

$$
\mathcal{L}_{Y}^{u} = y_{u}q_{L}H u_{R}^{c}
$$
\n
$$
2_{1/6} \otimes 2_{1/2} \otimes 1_{-2/3} \supset 1_{0}
$$
\n
$$
\mathcal{L}_{Y}^{d} = y_{d}q_{L}H^{c} d_{R}^{c}
$$
\n
$$
2_{1/6} \otimes 2_{-1/2} \otimes 1_{1/3} \supset 1_{0}
$$

In SUSY, fields are promoted to **SuperFields.** One would thus naively expect:

SM Higgs field SUSY Higgs SF $\Phi \in \bf{2}_{1/2}$

Instead, we need two: $\,\, \Phi_{\mathrm{u}} \in \mathbf{2}_{\mathbf{1/2}}, \,\, \Phi_{\mathrm{d}} \in \mathbf{2}_{\mathbf{-1/2}}$

In SM we can freely use conjugate $H: H^c = i\sigma_2 H^*$ $\mathcal{L}_{\mathbf{Y}}^{\mathbf{u}} = y_{\mathbf{u}} q_L H u_R^c$ $\mathcal{L}_{\mathbf{Y}}^{\mathbf{d}}$ $\frac{\mathrm{d}}{\mathrm{d} \mathrm{y}} = y_\mathrm{d} q_L H^c d^c_R$ In SUSY instead we use Superpotential $W[\Phi, \Phi^*]$ $W_{\rm Y}^{\rm u} = y_{\rm u} \Phi_{q_L} \Phi_{\rm u} \Phi_{u_R^c}$ $W_{\rm Y}^{\rm d} = y_{\rm d} \Phi_{q_L} \Phi_{\rm d} \Phi_{d_R^c}$ $\mathcal{L}_{\rm Y}^{\rm u} = y_{\rm u} q_L H_{\rm u} u_F^c$ $\mathcal{L}_{\text{Y}}^{\text{d}} = y_{\text{d}} q_L H_{\text{d}} d_R^c$

The SUSY Higgs**es** scalar potential:

Particular case of generic 2 Higgs doublet model

Four implications of the SUSY Higgs sector structure. Implication #0: (actually 5 impl.) vacuum is **viable** (no e.m., color, L and B breaking)

Four implications of the SUSY Higgs sector structure. Implication #1: both Higgses take VEV

$$
\langle |H_{\rm u}|^2 \rangle = \frac{v_{\rm u}^2}{2} \qquad \langle |H_{\rm d}|^2 \rangle = \frac{v_{\rm d}^2}{2}
$$

\n2 sources of EWSB
\n
$$
v_{\rm u}^2 + v_{\rm d}^2 = v^2 = (246 \text{GeV})^2
$$

\ndefine: $v_{\rm u}/v_{\rm d} = \tan \beta$
\nBoth Higgses **must** take VEV, for u and d-type masses:
\n
$$
\mathcal{L}_{\rm Y}^{\rm u} = y_{\rm u}q_LH_{\rm u}u_R^c
$$
\n
$$
\mathcal{L}_{\rm Y}^{\rm d} = y_{\rm d}q_LH_{\rm d}d_R^c
$$
\n
$$
\mathcal{L}_{\rm Y}^{\rm d} = y_{\rm d}q_LH_{\rm d}d_R^c
$$
\n
$$
\begin{cases}\nm_{\rm u} = y_{\rm u}v_{\rm u}/\sqrt{2} \\
m_{\rm d} = y_{\rm d}v_{\rm d}/\sqrt{2}\n\end{cases}
$$
\nFor $y_{\rm u,d} < 4\pi$ (perturbative): $0.08 \simeq \frac{y_{\rm top}^{\rm SM}}{4\pi} \lesssim t_\beta \lesssim \frac{4\pi}{y_{\rm bot}^{\rm SM}} \simeq 500$

Four implications of the SUSY Higgs sector structure. Implication #2: **many scalars** around

 $H_{\rm d}$ = $\sqrt{\frac{v_{\rm d}}{v_{\rm d}}}$ $\frac{1}{\sqrt{2}}$ $+h_{\rm d}$ 2 0 $\overline{1}$ $+$ $\sqrt{ }$ s_{β} ⁱA 2 $s_{\beta}H_{-}$ $\overline{1}$ In Unitary Gauge $H_{+}=(H_{-})^*$: one charged scalar **:** one **neutral** pseudo-scalar (CP-odd) *A* $H_{\rm u}$ = $\begin{bmatrix} 0 \end{bmatrix}$ $v_{\rm u}$ $\frac{1}{2}$ $+h_{\rm u}$ 2 $\overline{1}$ $+$ $\sqrt{ }$ $c_\beta H_+$ c_{β} $\frac{iA}{\sqrt{2}}$ 2 $\overline{1}$

 : two **neutral** scalars *h*u*,*^d

$$
\begin{bmatrix} h_{\mathrm{u}} \\ h_{\mathrm{d}} \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} h \\ H \end{bmatrix} \xrightarrow{\begin{array}{c} m_h = 125 \mathrm{GeV} \\ \text{The Other Higgs} \\ \text{(maybe heavier)} \end{array}}
$$

 \parallel The Higgs we saw \parallel

Four implications of the SUSY Higgs sector structure. Implication #3: **modified Higgs couplings**

$$
\kappa_{\rm u} = \frac{g_{h \rm uu}}{g_{h \rm uu}^{\rm SM}} = \frac{\sin(\alpha + \pi/2)}{\sin \beta}
$$
\nThe form of the potential allows us to express α in terms of β and of the pseudo-scalar A mass:
\n
$$
\kappa_{\rm V} = \frac{g_{h \rm U}}{g_{h \rm V}^{\rm SM}} = \sin(\beta - \alpha)
$$
\n
$$
\kappa_{\rm V} = \frac{g_{h \rm VV}}{g_{h \rm VV}^{\rm SM}} = \sin(\beta - \alpha)
$$
\n
$$
\kappa_{\rm V} = \frac{g_{h \rm VV}}{g_{h \rm VV}^{\rm SM}} = \sin(\beta - \alpha)
$$

Four implications of the SUSY Higgs sector structure. Implication #3: **modified Higgs couplings**

ATLAS arXiv:1509.00672

Direct scalar searches play an important role in this plane.

Four implications of the SUSY Higgs sector structure. Implication #3: **modified Higgs couplings**

$$
\kappa_{\rm u} = \frac{g_{h \rm uu}}{g_{h \rm uu}^{\rm SM}} = \frac{\sin(\alpha + \pi/2)}{\sin \beta}
$$
\nThe form of the potential allows us
\n
$$
\kappa_{\rm d} = \frac{g_{h \rm dd}}{g_{h \rm dd}^{\rm SM}} = \frac{\cos(\alpha + \pi/2)}{\cos \beta}
$$
\nThe form of the potential allows us
\nto express α in terms of β and of
\nthe pseudo-scalar A mass:
\n
$$
\kappa_{\rm V} = \frac{g_{hVV}}{g_{hVV}^{\rm SM}} = \sin(\beta - \alpha)
$$
\n
$$
\begin{array}{c}\n\text{the pseudo-scalar } A \text{ mass:} \\
\tan \alpha = \frac{(m_A^2 + m_Z^2)t_\beta}{m_h^2(1 + t_\beta^2) - m_Z^2 - m_A^2 t_\beta^2}\n\end{array}
$$
\n**Decoupling limit:**\n
$$
m_A^2 = m_d^2 + \dots \to \infty \implies \tan \alpha \simeq -\frac{1}{t_\beta} \implies \alpha \simeq \beta - \pi/2 \implies \text{SM Higgs}
$$
\nIn the limit we also have:
$$
\sin 2\beta = \frac{2B}{m_A^2} \implies t_\beta \simeq \frac{m_A^2}{B} \to \infty
$$

Four implications of the SUSY Higgs sector structure. Implication #3: **modified Higgs couplings**

Four implications of the SUSY Higgs sector structure. Implication #4: **wrong Higgs mass !!**

In the decoupling limit, H_d can be **ignored** (set to zero)

 $V[H_{\rm u}, H_{\rm d}] \rightarrow V_{\rm SM} = \mu_{\rm SM}^2 |H_{\rm u}|^2 + \lambda |H_{\rm u}|^4$ μ_S^2 Habitual SM formula gives: $m_H = \sqrt{2\lambda}v = \sqrt{g^2 + g'^2}v/2 = m_Z$

$$
\mu_{\rm SM}^2 = \mu^2 + m_{\rm u}^2
$$

$$
\lambda = \frac{g^2 + g^2}{8}
$$

Beyond decoupling limit: $m_H \leq |\cos 2\beta| m_Z$. Even worse

Problem: λ is too small. **Solution:** increase λ .

$$
\lambda \to \lambda + \delta \lambda \qquad \delta \lambda = \frac{m_H^2 - m_Z^2}{2v^2} \simeq 0.06
$$

Two ways to increase λ :

First way: **rely on large loop corrections** (only way in MSSM)

 $M_{\widetilde{t}} \sim m_t e$ $8\pi^2\delta\lambda$ $\frac{3y_t^2}{\sim} \sim 1.3 \text{ TeV}$ Need **exponentially heavy stops ...** (use $y_t \simeq 0.94$)

… which is **exponentially bad for tuning:**

$$
\Delta \ge \left(\frac{M_{\text{soft}}}{500 \text{ GeV}}\right)^2 \log(\Lambda_{\text{SUSY}}/M_{\text{EW}})
$$

low $\Lambda_{\text{SUSY}} = 10 \text{ TeV}$

from arXiv:1112.2703

Second way to make m_H right: **Add an extra singlet SF. (NMSSM or** λ **SUSY)**

$$
W_S = \lambda_S \Phi_S \Phi_u \Phi_d \qquad \qquad V_S = \lambda_S^2 |H_u H_d|^2
$$

Mechanism works at **moderate** t_β (H_d is involved)

No (obvious) **decoupling limit.**

Interesting to study **Higgs couplings** and **extra scalars** in this framework.

Caveat: needed values of $\lambda_S \sim 1$ give ~10 TeV cutoff.

Direct searches: look for sparticles production and decay.

Results:

presented as a pointless higher-excluded-mass race.

Let's try to put some order in this mess.

"Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus for theoretical signal cross section uncertainty.

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

Working again in the decoupling limit, we saw that

$$
\mu^2 + m_u^2 = \mu_{\rm SM}^2 = m_H^2 / 2 \simeq (88 \text{ GeV})^2
$$

Naturalness argument associates to μ a tuning of

$$
\Delta = 2 \frac{\mu^2}{m_H^2} \simeq \left(\frac{\mu}{100 \text{ GeV}}\right)^2
$$

Higgsinos (of mass $\sim \mu$) are the most "expensive" sparticles. Because **contribute at tree-level.**

 $W = \mu \Phi_{\rm u} \Phi_{\rm d}$ **remember:** $\partial^2 W$ $|{}_\phi\psi\psi=\mu\psi_\mathrm{u}\psi_\mathrm{d}$

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

Working again in the decoupling limit, we saw that

$$
\mu^2 + m_u^2 = \mu_{\rm SM}^2 = m_H^2/2 \simeq (88 \text{ GeV})^2
$$

Next come the stops, that contribute to m_u^2 at one loop:

$$
\Delta = \left(\frac{M_{\widetilde{t}}}{500~{\rm GeV}}\right)^2 \log(\Lambda_{\rm SUSY}/M_{\rm EW})
$$

Then $\bold{gauginos:}$ one loop but proportional to g^2_W ...

… and **gluinos:** two loops through stops coupling. Squarks and sleptons are the cheapest: small H coupling

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

final state state is stated to carry angular momentum but the state needs to angular momentum but the stops have no spin. This leads to angular momentum but the stop \mathcal{S}

sparticles searches ranging from 10pb -1fb at 8 TeV for gluinos between 400 and 1300 GeV. characterization. Note that the decay of the gluino are prompt. If the decay of the gluino are prompt. In the g intermediate such are such as such as such as $\frac{1}{2}$ **18 8 Summary**

Gluinos: QCD pair produced (huge rate) and decaying in: First, we can consider "pure" gluino limits, under the assumption that squarks are Gluinos: QCD pair produced (nuge rate) and decaying in:

Composite Higgs: Direct resonance searches

Back to the **Partial Compositeness** formula:

$$
\mathcal{L}_{int}^{f} = \lambda_R \overline{T}_R^I \mathcal{O}_L^I + \lambda_L \overline{Q}_L^I \mathcal{O}_R^I
$$

after confinement, operators produce particles …

 $\langle 0|O|TP \rangle \neq 0$ $O \leftrightarrow TP$

… with the same quantum numbers of the operator.

Therefore the Top Partners (TP) are:

- 1. Dirac Fermions, with mass $M_{\rm TP} \! \sim \! m_*$ (like other resonances)
- 2. **QCD colour triplets** (like quarks)
- 3. **EW-charged**, in multiplets dictated by the representation of \mathcal{O} . *O*

But other multiplets might appear. (e.g. triplets) 25

From \mathbf{QCD} pair-production, current mass limits $\sim 700 \text{ GeV}$

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

 m_*

- = Confinement scale
- $=$ typical **CS mass**

Different, but related: $g_*=$ $\frac{m_{*}}{m_{*}}$ *f*

 $SO(5) \stackrel{f}{\rightarrow} SO(4)$ = Spont. breaking scale

= typical **CS coupling** (expected **large**, even $=4\pi$)

$$
\mathcal{L} \sim \frac{m_\ast^4}{g_\ast^2} \widehat{\mathcal{L}} \left[\frac{\partial}{m_\ast} , \frac{g_\ast \Pi}{m_\ast} , \frac{g_\ast \Psi}{m_\ast^{3/2}} \right]_{27}
$$

Concrete rule: $\sqrt{ }$ applies to all CS fields. Including Higgs and Top Partners. Only difference is energy dim. of fields (1 for bosons, 3/2 for fermions)

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

= Confinement scale $=$ typical **CS mass** $SO(5) \stackrel{f}{\rightarrow} SO(4)$ m_* = Spont. breaking scale Different, but related: $g_*=$ $\frac{m_{*}}{m_{*}}$ *f* Concrete rule: $\qquad \qquad \longrightarrow$ same as II/*f* factors in U. $L \sim$ m_\ast^4 ⇤ g^2_* ⇤ *L* b $\begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$ m_{*} *,* $g_* \Pi$ m_{*} *,* $g_*\Psi$ *m* 3*/*2 ⇤ $\overline{1}$ = typical **CS coupling** (expected **large**, even $=4\pi$) 28

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

= Confinement scale $=$ typical **CS mass** $SO(5) \stackrel{f}{\rightarrow} SO(4)$ m_* = Spont. breaking scale Different, but related: $g_*=$ $\frac{m_{*}}{m_{*}}$ *f* Concrete rule: example: \sim 1 g^2_* ⇤ g^3_* $\frac{3}{*} = g_*$ *h* TP TP $L \sim$ m_\ast^4 ⇤ g^2_* ⇤ *L* b $\begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$ m_{*} *,* $g_* \Pi$ m_{*} *,* $g_*\Psi$ *m* 3*/*2 ⇤ $\overline{1}$ = typical **CS coupling** (expected **large**, even $=4\pi$) 29

Elementary fields are not part of the CS. Thus they have their own **(smaller)** couplings. For instance:

$$
\mathcal{L}_{int}^{f} = \lambda_R \overline{t}_R \mathcal{O}_L + \lambda_L \overline{q}_L \mathcal{O}_R
$$

General rule: $\mathcal{L} \sim \frac{m_*^4}{g_*^2} \widehat{\mathcal{L}} \left[\frac{\partial}{m_*}, \frac{g_* \Pi}{m_*}, \frac{g_* \Psi}{m_*^3/2}, \frac{\lambda_R t_R}{m_*^{3/2}}, \frac{\lambda_L q_L}{m_*^{3/2}} \right]$

example: fermion-fermion partner **mixing**

$$
m_*\frac{\lambda_R}{g_*}\overline{t}_RT_L+m_*\frac{\lambda_L}{g_*}\overline{q}_LQ_R
$$

diagonalising the mass matrix (~ m_* mass term for TP) m_{*}

$$
|q_L\rangle = \cos \phi_L |q_L^{\text{elem.}}\rangle + \sin \phi_L |Q_L^{\text{comp.}}\rangle \sin \phi_{L,R} \simeq \frac{\lambda_{L,R}}{g_*} \ll 1
$$

$$
|t_R\rangle = \cos \phi_R |t_R^{\text{elem.}}\rangle + \sin \phi_R |T_R^{\text{comp.}}\rangle \sin \phi_{L,R} \simeq \frac{\lambda_{L,R}}{g_*} \ll 1
$$

 $|t_R\rangle = \cos \phi_R |t_R^{\text{elem.}}\rangle + \sin \phi_R |T_R^{\text{comp.}}\rangle$ $|q_L\rangle = \cos \phi_L |q_L^{\text{elem.}}\rangle + \sin \phi_L |Q_L^{\text{comp.}}\rangle$ $\begin{array}{c} L \\ \text{comp.} \end{array}$ sin $\phi_{L,R}$ \simeq $\lambda_{L,R}$ g_{*} \ll 1

Partial Compositeness generates Yukawa couplings

$$
y = \sin \phi_L \sin \phi_R g_* \simeq \frac{y_L y_R}{g_*}
$$

Top quark is **slightly composite**, has large Yukawa

Light quarks and leptons have **small compositeness fraction.**

They couple less strongly with the CS resonances.

 $|t_R\rangle = \cos \phi_R |t_R^{\text{elem.}}\rangle + \sin \phi_R |T_R^{\text{comp.}}\rangle$ $|q_L\rangle = \cos \phi_L |q_L^{\text{elem.}}\rangle + \sin \phi_L |Q_L^{\text{comp.}}\rangle$ $\begin{array}{c} L \\ \text{comp.} \end{array}$ sin $\phi_{L,R}$ \simeq $\lambda_{L,R}$ g_{*} \ll 1

Partial Compositeness also generates Higgs potential. Top-Top Partner loops dominate (large compositeness)

Top Partners have to be light in order to get m_H right without fine-tuning. Somewhat like the stops in SUSY

Light Top Partners for a light Composite Higgs

A pragmatic illustration:

Light Top Partners for a light Composite Higgs

A pragmatic illustration:

Typically large $V - TP -$ third family quarks coupling.

Top Partners production mechanisms

QCD **pair prod**. model indep., relevant at low mass

single prod. with **t** model dep. coupling pdf-favoured at high mass

<u>x single prod. with **b**</u> favoured by small b mass \overline{b} **dominant** when allowed

Top Partners production mechanisms

Challenge for run-2: **reach 2 TeV**, i.e. $\xi \sim 0.05$. 37

Final Thoughts

After the Higgs discovery, no no-loose theorem is left. No new guaranteed discovery in any research field.

BSM is not (must not be) a collection of models. It a set of questions and possible answers about fundamental physics, to be checked with data.

Naturalness is one of those questions, not the only one.

Experimentalists should not **blindly trust** theorists. They should **critically listen** to theorists. And get convinced (or not). Nobody has the truth.

Final Thoughts

