

Andrea Wulzer

Università degli Studi di Padova

European Research Council

DaMeSyFla

Plan of the lecture

- 1. The SUSY Higgs
- 2. Sparticles Searches ("Naturally" ordered)
- 3. Top Partners
- 4. Heavy Vector Triplets (I wish I had time, but I don't)

In SUSY, fields are promoted to **SuperFields.** One would thus naively expect:

Instead, we need two: $\Phi_u \in \mathbf{2_{1/2}}$, $\Phi_d \in \mathbf{2_{-1/2}}$

In **SM** we can freely use **conjugate** H: $H^c = i\sigma_2 H^*$

In SUSY, fields are promoted to **SuperFields.** One would thus naively expect:

Instead, we need two: $\Phi_u \in \mathbf{2_{1/2}}$, $\Phi_d \in \mathbf{2_{-1/2}}$

In SM we can freely use conjugate H: $H^{c} = i\sigma_{2}H^{*}$ $\mathcal{L}_{Y}^{u} = y_{u}q_{L}Hu_{R}^{c}$ $\mathcal{L}_{Y}^{d} = y_{d}q_{L}H^{c}d_{R}^{c}$ In SUSY instead we use Superpotential $W[\Phi, \Phi^{*}]$ $W_{Y}^{u} = y_{u}\Phi_{q_{L}}\Phi_{u}\Phi_{u_{R}^{c}}$ $W_{Y}^{d} = y_{d}\Phi_{q_{L}}\Phi_{d}\Phi_{d_{R}^{c}}$ $\mathcal{L}_{Y}^{u} = y_{u}q_{L}H_{u}u_{R}^{c}$ $\mathcal{L}_{Y}^{d} = y_{d}q_{L}H_{d}d_{R}^{c}$

The SUSY Higgses scalar potential:

Particular case of generic 2 Higgs doublet model

Four implications of the SUSY Higgs sector structure. Implication #0: (actually 5 impl.) vacuum is viable (no e.m., color, L and B breaking)

Four implications of the SUSY Higgs sector structure. Implication #1: both Higgses take VEV

$$\langle |H_{\rm u}|^2 \rangle = \frac{v_{\rm u}^2}{2} \qquad \langle |H_{\rm d}|^2 \rangle = \frac{v_{\rm d}^2}{2}$$
2 sources of EWSB $v_{\rm u}^2 + v_{\rm d}^2 = v^2 = (246 \,{\rm GeV})^2$
define: $v_{\rm u}/v_{\rm d} = \tan \beta$ $\langle v_{\rm u} = v \sin \beta \\ v_{\rm d} = v \cos \beta \\ v_{\rm d} = v \cos \beta \\ c_{\beta} = \cos \beta \\ t_{\beta} = \frac{s_{\beta}}{c_{\beta}}$
Both Higgses must take VEV, for u and d-type masses:
$$\mathcal{L}_{\rm Y}^{\rm u} = y_{\rm u}q_LH_{\rm u}u_R^c \\ \mathcal{L}_{\rm Y}^{\rm d} = y_{\rm d}q_LH_{\rm d}d_R^c \qquad \left\{ \begin{array}{c} m_{\rm u} = y_{\rm u}v_{\rm u}/\sqrt{2} \\ m_{\rm d} = y_{\rm d}v_{\rm d}/\sqrt{2} \end{array} \right.$$
For $y_{\rm u,d} < 4\pi$ (perturbative): $0.08 \simeq \frac{y_{\rm top}^{\rm SM}}{4\pi} \lesssim t_{\beta} \lesssim \frac{4\pi}{y_{\rm bot}^{\rm SM}} \simeq 500$

Four implications of the SUSY Higgs sector structure. Implication #2: **many scalars** around

In Unitary Gauge $H_{\rm u} = \begin{vmatrix} 0 \\ \frac{v_{\rm u} + h_{\rm u}}{\sqrt{2}} \end{vmatrix} + \begin{vmatrix} c_{\beta} H_{+} \\ c_{\beta} \frac{iA}{\sqrt{2}} \end{vmatrix} \qquad \qquad H_{\rm d} = \begin{vmatrix} \frac{v_{\rm d} + h_{\rm d}}{\sqrt{2}} \\ 0 \end{vmatrix} + \begin{vmatrix} s_{\beta} \frac{iA}{\sqrt{2}} \\ s_{\beta} H_{-} \end{vmatrix}$ $H_+=(H_-)^*$: one **charged** scalar A : one **neutral** pseudo-scalar (CP-odd) $h_{u,d}$: two **neutral** scalars The Higgs we saw $m_h = 125 \text{GeV}$ $\begin{bmatrix} h_{\rm u} \\ h_{\rm d} \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} h \\ H \end{bmatrix}$ The Other Higgs (maybe heavier)

Four implications of the SUSY Higgs sector structure. Implication #3: modified Higgs couplings

$$\kappa_{\rm u} = \frac{g_{h\rm uu}}{g_{h\rm uu}^{\rm SM}} = \frac{\sin(\alpha + \pi/2)}{\sin\beta}$$

$$\kappa_{\rm d} = \frac{g_{h\rm dd}}{g_{h\rm dd}^{\rm SM}} = \frac{\cos(\alpha + \pi/2)}{\cos\beta}$$

$$\kappa_{V} = \frac{g_{hVV}}{g_{hVV}^{\rm SM}} = \sin(\beta - \alpha)$$
The form of the potential allows us to express α in terms of β and of the pseudo-scalar A mass:

$$\tan \alpha = \frac{(m_{A}^{2} + m_{Z}^{2})t_{\beta}}{m_{h}^{2}(1 + t_{\beta}^{2}) - m_{Z}^{2} - m_{A}^{2}t_{\beta}^{2}}$$

Four implications of the SUSY Higgs sector structure. Implication #3: modified Higgs couplings

ATLAS arXiv:1509.00672

Direct scalar searches play an important role in this plane.

Four implications of the SUSY Higgs sector structure. Implication #3: modified Higgs couplings

$$\kappa_{\mathrm{u}} = \frac{g_{h\mathrm{uu}}}{g_{h\mathrm{uu}}^{\mathrm{SM}}} = \frac{\sin(\alpha + \pi/2)}{\sin\beta}$$

$$\kappa_{\mathrm{d}} = \frac{g_{h\mathrm{dd}}}{g_{h\mathrm{dd}}^{\mathrm{SM}}} = \frac{\cos(\alpha + \pi/2)}{\cos\beta}$$

$$\kappa_{V} = \frac{g_{hVV}}{g_{hVV}^{\mathrm{SM}}} = \sin(\beta - \alpha)$$
The form of the potential allows us to express α in terms of β and of the pseudo-scalar A mass:

$$\tan \alpha = \frac{(m_{A}^{2} + m_{Z}^{2})t_{\beta}}{m_{h}^{2}(1 + t_{\beta}^{2}) - m_{Z}^{2} - m_{A}^{2}t_{\beta}^{2}}$$
Decoupling limit: $m_{\mathrm{d}}^{2} \to \infty$ (technically natural)
 $m_{A}^{2} = m_{\mathrm{d}}^{2} + \ldots \to \infty \Longrightarrow \tan \alpha \simeq -\frac{1}{t_{\beta}} \Longrightarrow \alpha \simeq \beta - \pi/2 \Longrightarrow$ SM Higgs
In the limit we also have: $\sin 2\beta = \frac{2B}{m_{A}^{2}} \Rightarrow t_{\beta} \simeq \frac{m_{A}^{2}}{B} \to \infty$

Four implications of the SUSY Higgs sector structure. Implication #3: modified Higgs couplings

Four implications of the SUSY Higgs sector structure. Implication #4: wrong Higgs mass !!

In the decoupling limit, H_d can be **ignored** (set to zero)

 $V[H_{\rm u}, H_{\rm d}] \rightarrow V_{\rm SM} = \mu_{\rm SM}^2 |H_{\rm u}|^2 + \lambda |H_{\rm u}|^4$ Habitual SM formula gives: $m_H = \sqrt{2\lambda}v = \sqrt{g^2 + g'^2}v/2 = m_Z$

$$\mu_{\rm SM}^2 = \mu^2 + m_{\rm u}^2$$
$$\lambda = \frac{g^2 + g'^2}{8}$$

Beyond decoupling limit: $m_H \leq |\cos 2\beta| m_Z$. Even worse

Problem: λ is too small. **Solution:** increase λ .

$$\lambda \to \lambda + \delta \lambda$$
 $\delta \lambda = \frac{m_H^2 - m_Z^2}{2v^2} \simeq 0.06$

Two ways to increase λ :

First way: rely on large loop corrections (only way in MSSM)

Need exponentially heavy stops ... (use $y_t \simeq 0.94$) $M_{\tilde{t}} \sim m_t e^{\frac{8\pi^2 \delta \lambda}{3y_t^2}} \sim 1.3 \text{ TeV}$

... which is exponentially bad for tuning:

$$\Delta \geq \left(\frac{M_{\text{soft}}}{500 \text{ GeV}}\right)^2 \log(\Lambda_{\text{SUSY}}/M_{\text{EW}})$$

$$\downarrow \log(\Lambda_{\text{SUSY}} = 10 \text{ TeV}$$

$$\downarrow_{\text{I4}} \sim 7$$

Second way to make m_H right: Add an extra singlet SF. (NMSSM or λ SUSY)

$$W_S = \lambda_S \Phi_S \Phi_u \Phi_d \quad \longrightarrow \quad V_S = \lambda_S^2 |H_u H_d|^2$$

Mechanism works at moderate t_{β} (H_{d} is involved)

No (obvious) decoupling limit.

Interesting to study **Higgs couplings** and **extra scalars** in this framework.

Caveat: needed values of $\lambda_S \sim 1$ give ~10 TeV cutoff.

Direct searches: look for sparticles production and decay.

Results:

presented as a pointless higher-excluded-mass race.

Let's try to put some order in this mess.

Model	e, μ, τ	γ Je	ets /	E_T^{miss} .	∫£ dr[fb*	1 Mass limit 🗾	/s = 7 TeV	$\sqrt{r} = 0 \text{ TeV}$	Reference
NSUGRAICM 谷市・中中日 10 日本中日 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccc} \text{ISSM} & 0.3 \ e, \mu \ 11.2 \\ 0 \\ \text{ompressed} & \text{mono-j} \\ r_1' v \ k_1^0 & 2 \ e, \mu \ (of \\ r_1' v \ k_1^0 & 0 \ 1 \ e_{i,1} \\ (r_1' v \ k_1^0 & 0 \ 1 \ e_{i,1} \\ (r_1' v \ k_1^0 & 1 \ e_{i,2} \\ \text{SP} & 1.2 \ r \ + 0 \\ \text{ISP} & 1.2 \ r \ + 0 \\ \text{ISP} & 2 \ y \\ \text{sobino NLSP} & \gamma \\ \text{sobino NLSP} & 2 \ e_{i,2} \ (of \\ r & 0 \\ \text{SP} & 0 \\ $	r 2:10) 2:6 et 1:3 1:2) 2 2:6 2:26 2:26 2:26 2:17 0:2 117 0:2 117 0:2 117 0:2 117 0:2 117 0:2 117 0:2 117 0:2 117 0:2 117 0:2 10 0 11-3 11-3 11-3 11-3 11-3 11-3 11-3	jets/3 b 6 jats 3 jets 6 jats 6 jats 6 jets 3 jets 2 jets - 1 b 1 jets i jets mo-jet		20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	100-440 GeV 100-440 GeV 780 GeV 2 2 1 2 2 3 3 3 3 3 4 3 4 3 5 5 6 5 4 7 5 5 6 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	1.33 TeV 1.26 TeV 1.32 TeV 1.32 TeV 1.3 TeV 1.3 TeV 1.25 TeV	$\label{eq:response} \begin{array}{ c c c c c c } \textbf{s}(i_1^{(c)}) = 0 \ \text{GeV}, \ m(i^{(c)} \ \text{gen.} \ \text{q}) = m(2^{(c)} \ \text{gen.} \ \text{q}) \\ m(i_1^{(c)}) = 0 \ \text{GeV} \\ \textbf{m}(i_1^{(c)}) = 0 \ \text{GeV} \\ m(i_1^{(c)}) = 1.8 \times 10^{-4} \ \text{eV}, \ m(i_1^{(c)}) = 1.5 \ \text{TeV} \\ \end{array}$	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
28. 8→1610 38. 8→1610 38. 8→1010 38. 8→1010 38. 8→1010	0 0-1 e.) 0-1 e.)	7-11 2 2 2 3	3 b 10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	1.1	.25 TeV TeV 1.34 TeV 1.3 TeV	m(F1)=400 GeV m(F1)=320 GeV m(F1)=400 GeV m(F1)=300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
$\begin{array}{c} b_1b_1, b_1 {\rightarrow} b_1^{-1}\\ b_1b_1, b_1 {\rightarrow} b_1^{-1}\\ i_1b_1, b_1 {\rightarrow} b_1^{-1}\\ i_1b_1, b_1 {\rightarrow} b_1^{-1}\\ i_1b_1, i_1 {\rightarrow} b_1^{-1}\\ i_1b_1, i_1 {\rightarrow} b_1^{-1}\\ i_1b_1, i_1 {\rightarrow} b_1^{-1}\\ i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}\\ i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}\\ i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}, i_1b_1^{-1}\\ i_1b_1^{-1}, i_1b_1^{-$	0 2 c, µ (5 5 - 2 c, 1 or tř ⁰ 0 - 2 c, µ (5 0 - 2 c, µ (5))	5) 0- 2 1- 2 0-2 jet mono- 7) 1 7) 1	2 b -3 b -2 b (16)1-2 b -jet(c-tag 1 b 1 b	Yes Yes 4. Yes 4. Yes Yes Yes	20.1 20.3 7/20.3 20.3 20.3 20.3 20.3 20.3	100-620 GeV 275-440 GeV 110-167 GeV 230-460 GeV 210-700 GeV 90-191 GeV 100-240 GeV 150-580 GeV 290-600 GeV		m(i ² ₁)-30 GeV m(i ² ₁)-2 m(i ² ₁) m(i ² ₁)=2 m(i ² ₁), m(i ² ₁)=55 GeV m(i ² ₁)=1 GeV m(i ² ₁)=85 GeV m(i ² ₁)=55 GeV m(i ² ₁)=55 GeV m(i ² ₁)=55 GeV	1308:2631 1404:2500 1209:2102,1407:0583 1506:0616 1407:0608 1409:5222 1400:5222
$\begin{array}{c} \tilde{t}_{1,\mathbf{N}}\tilde{t}_{1,\mathbf{N}},\tilde{t}_{-1},\tilde{t}_{-1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-},\tilde{x}_{1}^{+}\rightarrow \tilde{t}_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-},\tilde{x}_{1}^{+}\rightarrow \tilde{t}_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{-},\tilde{x}_{1}^{-}\rightarrow \tilde{t}_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\rightarrow \tilde{w}_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{2}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{2}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{2}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{2}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\phi \rightarrow \tilde{w}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{+}x_{1}\\ \tilde{x}_{1}^{+}\tilde{x}_{1}^{+}\tilde{x}_{1}^{$	\hat{t}_{1}^{0} 2 e, μ ($t\hat{v}$) 2 r, μ ($t\hat{v}$) 2 r ($t\hat{v}$), $t\hat{s}\hat{t}_{L}t(\hat{v}v)$ 3 e, μ \hat{t}_{1}^{0} 2 $\cdot 3 e, \mu$ $\hat{t}_{1}^{0}, h \rightarrow b\bar{b}/WW/\pi\pi/\gamma\gamma$ $e, \mu\gamma$ wf 4 e, μ LSP) weak prod. 1 $e, \mu +$	0-2 0-2 7	0 2 jets 0 2 jets	Yas Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV 140-465 GeV 100-350 GeV 700 GeV 1-1 1-1 1-2 1-2 1-2 1-2 1-2 1-2		$\begin{split} & m(\tilde{r}_1^2) \!=\! 0 \text{ GeV} \\ & m(\tilde{r}_1^2) \!=\! 0 \text{ GeV}, m(\tilde{r}, \tilde{r}) \!=\! 0.5(m(\tilde{r}_1^2) \!+\! m(\tilde{r}_1^2)) \\ & m(\tilde{r}_1^2) \!=\! 0 \text{ GeV}, m(\tilde{r}, \tilde{r}) \!=\! 0.5(m(\tilde{r}_1^2) \!+\! m(\tilde{r}_1^2)) \\ & m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \\ & m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \!=\! m(\tilde{r}_1^2) \\ & m(\tilde{r}_1^2) \!=\! m(\tilde{r}_2^2) \!=\! m(\tilde{r}_1^2) \!=\! 0.5(m(\tilde{r}_2^2) \!=\! m(\tilde{r}_1^2)) \\ & m(\tilde{r}_1^2) \!=\! m(\tilde{r}_2^2) \!=\! m(\tilde{r}_1^2) \!=\! 0.5(m(\tilde{r}_2^2) \!=\! m(\tilde{r}_1^2)) \\ & cr <\! 1 mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.6086 1507.05493
Direct \$1,51 p Direct \$1,51 p Stable, stopp GMSB, stable GMSB, \$1-en Bit T-mer/u GGM \$2,51	rod., long-lived \hat{x}_1^+ Disapp. rod., long-lived \hat{x}_1^- dEldx t ed \hat{x} R-hadron 0 dran th $\hat{x}, \hat{x}_1^0 \rightarrow \hat{t}(\hat{c}, \hat{\mu}) + \hat{\tau}(c, \mu)$ 1-2 μ $\hat{G}, long-lived \hat{x}_1^0 2 \gamma\gamma \nu/\mu\nu displ. \kappa/\epsilon\delta Z_0^0 displ. \sqrt{\kappa}$	trik 1 rik 1-5 ri/japa - ječa	i jet 5 jets -	Yes Yes Yes Yes	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	270 GeV 482 GeV 832 GeV 537 GeV 435 GeV 1.0 Tel 1.0 Tel 1.0 Tel	1.27 TeV	$\begin{split} &m(\tilde{r}_1^+),m(\tilde{r}_1^+)=100\ MeV,\ \pi(\tilde{r}_1^+)=0.2\ ms\\ &m(\tilde{r}_1^+)=100\ GeV,\ 10\ \mu s<\pi(\tilde{r}_1^+)<15\ ns\\ &m(\tilde{r}_1^+)=100\ GeV,\ 10\ \mu s<\pi(\tilde{r}_1)<15\ ns\\ &10<\tan\beta<50\\ &2<\pi(\tilde{r}_1^+)<0\ ns,\ SP50\ model\\ &7<\pi(\tilde{r}_1^+)<740\ mm,\ m(\tilde{g})=1.3\ TeV\\ &6<\pi(\tilde{r}_1^+)<400\ mm,\ m(\tilde{g})=1.1\ TeV \end{split}$	1010.0675 1506.05332 1310.8584 1411.6795 1409.0542 1504.05142 1504.05162
$\begin{array}{c} {\sf U}^{\sf V} p p {\to} \hat{v}_{1}, \\ {\sf Dilinear} {\sf RPV} \\ \tilde{{\sf X}}_{1}^{+} \tilde{{\sf X}}_{1}^{-}, \tilde{{\sf X}}_{1}^{+} {\to} {\sf W} \\ \tilde{{\sf X}}_{1}^{+} \tilde{{\sf X}}_{1}^{-}, \tilde{{\sf X}}_{1}^{+} {\to} {\sf W} \\ \tilde{{\sf X}}_{2}^{\pm} \tilde{{\sf X}}_{2}^{-} {\to} {\sf Q} \tilde{{\sf Q}}_{1}^{\pm}, \\ \tilde{{\sf X}}_{2}^{\pm} \tilde{{\sf X}}_{2}^{-} {\to} {\sf Q} \tilde{{\sf X}}_{1}^{\pm}, \\ \tilde{{\sf X}}_{2}^{\pm} \tilde{{\sf X}}_{2}^{-} {\to} {\sf Q} \tilde{{\sf X}}_{1}^{\pm}, \\ \tilde{{\sf X}}_{1}^{\pm} \tilde{{\sf X}}_{1}^{\pm} {\to} {\sf M} \\ \tilde{{\sf X}}_{1}^{\pm} \tilde{{\sf X}}_{1}^{\pm} {\to} {\sf M} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	r S) 0- 7 6-7 S) 0- 2 jets 2	-3 h -3 h - 7 jets 7 jets -3 h -3 h -3 h -3 h 2 h	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	. 2 750 GeV 450 GeV 917 GeV 870 GeV 850 GeV 850 GeV 0.4-1.0 TeV 0.4-1.0 TeV	1.3 1.35 TeV	$\begin{array}{l} \textbf{TeV} & \mathcal{X}_{112}^{\prime} = 0.11, \ \mathcal{A}_{112(101214)} = 0.07 \\ & m(\tilde{g}) = m(\tilde{g}), \ c_{112} \neq <1 \ mm \\ & m(\tilde{f}_{1}^{\prime}) > 0.2 \times m(\tilde{f}_{1}^{\prime}), \ \mathcal{A}_{111} \neq 0 \\ & m(\tilde{f}_{1}^{\prime}) > 0.2 \times m(\tilde{f}_{1}^{\prime}), \ \mathcal{A}_{111} \neq 0 \\ & \text{BR}(\ell) = \text{BR}(\ell) = \text{BR}(\ell) = \text{BR}(\ell) = 0\% \\ & m(\tilde{f}_{1}^{\prime}) = 0.00 \ \text{GeV} \\ & \text{BR}(\ell) = 0.00 \ \text{GeV} \\ \end{array}$	1503.04430 1404.2500 1405.0086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-085 ATLAS-CONF-2015-085
Other Scalar charm	$\dot{\epsilon} \rightarrow c \tilde{t}_{1}^{0} = 0$	2	2 c	Yes	20.3	490 GeV		m(\$ ⁰ ₁)<200 GeV	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus for theoretical signal cross section uncertainty.

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

Working again in the decoupling limit, we saw that

$$\mu^2 + m_{\rm u}^2 = \mu_{\rm SM}^2 = m_H^2/2 \simeq (88 \text{ GeV})^2$$

Naturalness argument associates to μ a tuning of

$$\Delta = 2 \frac{\mu^2}{m_H^2} \simeq \left(\frac{\mu}{100 \text{ GeV}}\right)^2$$

Higgsinos (of mass ~ μ) are the most "expensive" sparticles. Because **contribute at tree-level.** remember: $W = \mu \Phi_{u} \Phi_{d}$ $\frac{\partial^{2} W}{\partial \Phi \partial \Phi}|_{\phi} \psi \psi = \mu \psi_{u} \psi_{d}$

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

Working again in the decoupling limit, we saw that

$$\mu^2 + m_{\rm u}^2 = \mu_{\rm SM}^2 = m_H^2/2 \simeq (88 \text{ GeV})^2$$

Next come the **stops**, that contribute to m_u^2 at one loop:

$$\Delta = \left(\frac{M_{\tilde{t}}}{500 \text{ GeV}}\right)^2 \log(\Lambda_{\text{SUSY}}/M_{\text{EW}})$$

Then **gauginos:** one loop but proportional to g_W^2 ...

... and **gluinos:** two loops through stops coupling. Squarks and sleptons are the cheapest: small H coupling

Direct searches: look for sparticles production and decay.

We can order sparticles by their "Naturalness Cost": the price in terms of Naturalness of not finding them light.

Gluinos: QCD pair produced (huge rate) and decaying in:

Composite Higgs: Direct resonance searches

Back to the **Partial Compositeness** formula:

$$\mathcal{L}_{\rm int}^f = \lambda_R \overline{T}_R^I \mathcal{O}_L^I + \lambda_L \overline{Q}_L^I \mathcal{O}_R^I$$

after confinement, operators produce particles ... $\langle 0|\mathcal{O}|\mathrm{TP}\rangle \neq 0 \qquad \mathcal{O} \leftrightarrow \mathrm{TP}$

... with the same quantum numbers of the operator.

Therefore the **Top Partners** (TP) are:

- 1. Dirac Fermions, with mass $M_{\rm TP} \sim m_*$ (like other resonances)
- 2. QCD colour triplets (like quarks)
- 3. **EW-charged**, in multiplets dictated by the representation of \mathcal{O} .

But other multiplets might appear. (e.g. triplets)

From QCD pair-production, current mass limits $\sim 700~{\rm GeV}$

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

 \mathcal{m}_*

- = Confinement scale
- = typical **CS mass**

 \mathcal{M}_* Different, but related: $q_* = \frac{1}{c}$

= Spont. breaking scale $SO(5) \xrightarrow{f} SO(4)$

= typical **CS** coupling (expected large, even = 4π)

Concrete rule:

$$\mathcal{L} \sim \frac{m_*^4}{g_*^2} \widehat{\mathcal{L}} \left[\frac{\partial}{m_*}, \frac{g_* \Pi}{m_*}, \frac{g_* \Psi}{m_*^3} \right]_{m_*^{3/2}}$$

applies to all CS fields. Including Higgs and Top Partners. Only difference is energy dim. of fields (1 for bosons, 3/2 for fermions)

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

 m_* = Spont. breaking scale = Confinement scale $SO(5) \xrightarrow{f} SO(4)$ = typical **CS mass** Different, but related: $g_* = \frac{m_*}{f}$ = typical **CS coupling** (expected large, even = 4π) Concrete rule: same as Π / f factors in U. $\mathcal{L} \sim \frac{m_*^4}{q_*^2} \widehat{\mathcal{L}} \left[\frac{\partial}{m_*}, \frac{g_* \Pi}{m_*}, \frac{g_* \Psi}{m_*} \right]$

The strength of TP couplings can be estimated (specific numbers in specific models) as follows:

We introduced **two scales** to characterise the CS

 m_* = Spont. breaking scale = Confinement scale $SO(5) \xrightarrow{f} SO(4)$ = typical **CS mass** Different, but related: $g_* = \frac{m_*}{f}$ = typical **CS coupling** (expected large, even = 4π) Concrete rule: example: $\mathcal{L} \sim \frac{m_*^4}{q_*^2} \widehat{\mathcal{L}} \left| \frac{\partial}{m_*}, \frac{g_* \Pi}{m_*}, \frac{g_* \Psi}{m_*} \right|$ $\frac{h}{g_*^2} \sim \frac{1}{g_*^2} g_*^3 = g_*$

Elementary fields are not part of the CS. Thus they have their own **(smaller)** couplings. For instance:

$$\mathcal{L}_{\text{int}}^{f} = \lambda_{R} \overline{t}_{R} \mathcal{O}_{L} + \lambda_{L} \overline{q}_{L} \mathcal{O}_{R}$$

General rule: $\mathcal{L} \sim \frac{m_{*}^{4}}{g_{*}^{2}} \widehat{\mathcal{L}} \left[\frac{\partial}{m_{*}}, \frac{g_{*}\Pi}{m_{*}}, \frac{g_{*}\Psi}{m_{*}^{3/2}}, \frac{\lambda_{R} t_{R}}{m_{*}^{3/2}}, \frac{\lambda_{L} q_{L}}{m_{*}^{3/2}} \right]$

example: fermion-fermion partner mixing

$$m_* \frac{\lambda_R}{g_*} \overline{t}_R T_L + m_* \frac{\lambda_L}{g_*} \overline{q}_L Q_R$$

diagonalising the mass matrix (~ m_* mass term for TP)

$$\begin{aligned} |q_L\rangle &= \cos\phi_L |q_L^{\text{elem.}}\rangle + \sin\phi_L |Q_L^{\text{comp.}}\rangle \\ |t_R\rangle &= \cos\phi_R |t_R^{\text{elem.}}\rangle + \sin\phi_R |T_R^{\text{comp.}}\rangle \end{aligned} \quad \sin\phi_{L,R} \simeq \frac{\lambda_{L,R}}{g_*} \ll 1 \end{aligned}$$

 $\begin{aligned} |q_L\rangle &= \cos\phi_L |q_L^{\text{elem.}}\rangle + \sin\phi_L |Q_L^{\text{comp.}}\rangle \\ |t_R\rangle &= \cos\phi_R |t_R^{\text{elem.}}\rangle + \sin\phi_R |T_R^{\text{comp.}}\rangle \end{aligned} \quad \sin\phi_{L,R} \simeq \frac{\lambda_{L,R}}{g_*} \ll 1 \end{aligned}$

Partial Compositeness generates Yukawa couplings

Top quark is slightly composite, has large Yukawa

Light quarks and leptons have **small compositeness fraction.**

They couple less strongly with the CS resonances.

 $|q_L\rangle = \cos \phi_L |q_L^{\text{elem.}}\rangle + \sin \phi_L |Q_L^{\text{comp.}}\rangle \\ |t_R\rangle = \cos \phi_R |t_R^{\text{elem.}}\rangle + \sin \phi_R |T_R^{\text{comp.}}\rangle \quad \sin \phi_{L,R} \simeq \frac{\lambda_{L,R}}{g_*} \ll 1$

Partial Compositeness also generates Higgs potential. Top-Top Partner loops dominate (large compositeness)

Top Partners have to be light in order to get m_H right without fine-tuning. Somewhat like the stops in SUSY

Light Top Partners for a light Composite Higgs

A pragmatic illustration:

Light Top Partners for a light Composite Higgs

A pragmatic illustration:

Typically large V - TP - third family quarks coupling.

Top Partners production mechanisms

QCD **pair prod**. model indep., relevant at low mass

single prod. with **t** model dep. coupling pdf-favoured at high mass

single prod. with b
favoured by small b mass
dominant when allowed

Top Partners production mechanisms

Challenge for run-2: reach 2 TeV, i.e. $\xi \sim 0.05$.

Final Thoughts

After the Higgs discovery, no no-loose theorem is left. No new guaranteed discovery in any research field.

BSM is not (must not be) a collection of models. It a set of questions and possible answers about fundamental physics, to be checked with data.

Naturalness is one of those questions, not the only one.

Experimentalists should not **blindly trust** theorists. They should **critically listen** to theorists. And get convinced (or not). Nobody has the truth.

Final Thoughts

