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Modifications to original lectures:   
-    How to determine σ (p. 107) 
-  Plotting Pulls and Impact of NPs  (p.200-p.225) 
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What is the statistical challenge in HEP? 
�  High Energy Physicists (HEP) have an hypothesis:  

The Standard Model. 
�  This model relies on the existence of the 2012 discovery of  

the Higgs Boson  
�  The minimal content of the Standard Model 

includes the Higgs Boson , but extensions 
of the Model include other particles 
which are yet to be discovered 

�  The challenge of HEP is to generate tons of 
 data and to develop powerful analyses to  
tell if the data indeed contains evidence for the new 
 particle, and confirm if it is the expected Higgs Boson  
(Mass, Spin, CP) or a member of a family of Scalar Bosons 
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The Large Hadron Collider (LHC) 
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The LHC is a very powerful accelerator which managed  
 to hunt a Higgs with a 10-12 production probability  
 
This is statistics of rare events! 
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Higgs Hunter’s Independence Day 
July 4th 2012 
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Now you 
have found 

me 

I was looking 
for you for 

over 20 years 
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The Charge of the Lectures 
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The Brazil Plot, what does it mean? 
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Expected Limit 

Bands 

Observed Limit 

3/9/2015 



What the ---- CLs? 
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What is exclusion 
at the 95% CL? 
 
99% CL? 
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The p0 discovery plot, how to read it? 
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Local p0 

p-value 

Expected p0 

Observed local p0 

Global p0 and the Look Elsewhere Effect 
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The cyan band plot, what is it? 
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What is mu hat? 
 µ̂
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Towards a measurement 
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Likelihoods Scans 
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Towards a measurement 
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Measurements & 
Systematics vs  
Stat errors 
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Towards a measurement 
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2-D Likelihoods 
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The Asimov Data Set 
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References in the Discovery Papers 
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ATLAS 

CMS 

PL 

PL 

LEE 

LEE 

CLs 

CLs 

CCGV 

CCGV 

CLs 

RooStats 
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More Refs  (taken from CMS legacy Run 1 Paper) 
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Feldman-Cousins 

Wilks Approximation 
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Wald Approximation 
 

Wald Approximation 
 



The Statistical Challenge of HEP 
The DATA: Billions of Proton-Proton 
collisions 
which could be visualized with 
histograms 

The searched particle mass is 
unknown (for the sake of this lecture) 

In this TOY example, we ask if the 
expected background (e.g. the 
Standard Model WITHOUT the Higgs 
Boson) contains a Higgs Boson, which 
would manifest itself as a peak in the 
distribution 
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mass 

WE NEED TO KNOW WHAT WE SEARCH 
FOR….. 
We need  to have a model	

We need to have two hypotheses if we want a 
powerful test	
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The Statistical Challenge of HEP 
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mass 

So the statistical challenge is obvious: 

To tell in the most powerful way, and 
to the best of our current scientific 
knowledge, if there is new physics, 
beyond what is already known, in our 
data 

The complexity of the apparatus and 
the background physics suffer from 
large systematic errors that should be 
treated in an appropriate way.  
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What is the statistical challenge? 
�  The black line represents 

the Standard Model (SM) 
 expectation 
(Background only),  

�  How compatible is the data (blue) 
with the SM expectation (black)? 

�  Is there a signal hidden in this data? 
�  What is its statistical significance? 
�  What is the most powerful  

test statistic that can tell the SM (black) 
 from an hypothesized signal (red)? 
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The Model 
�  The Higgs hypothesis is that of signal s(mH) 
                  
For simplicity unless otherwise noted  
�  In a counting experiment 

� μ is the strength of the signal (with respect to the expected 
Standard Model one 

�  The hypotheses are therefore denoted by Hμ 

�  H1 is the SM with a Higgs, H0 is the background only model  
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s(mH ) = L ⋅σ SM (mH )

n = µ ⋅ s(mH ) + b

µ =
L ⋅σ (mH )
L ⋅σ SM (mH )

=
σ (mH )
σ SM (mH )

s(mH ) = L ⋅σ SM (mH ) ⋅A ⋅eff
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A Frequentist Tale of Two Hypotheses 

�  Test the Null hypothesis and try to reject it 
�  Fail to reject it OR reject it in favor of the Alternate hypothesis 
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NULL ALTERNATE 
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The Null Hypothesis 
�  The Standard Model without the Higgs is an hypothesis, 

 (BG only hypothesis) many times referred to as the null hypothesis 
and is denoted by H0 
 (remember that it is the null hypothesis ONLY if we aim at a 
discovery) 

 
�  In the absence of an alternate hypothesis, one would like to test the 

compatibility of the data with H0 
�  This is actually a goodness of fit test, 
    NOT an hypothesis test 
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A Tale of Two Hypotheses 

�  Test the Null hypothesis and try to reject it 
�  Fail to reject it OR reject it in favor of the Alternate hypothesis 
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NULL ALTERNATE 
H0- SM w/o  Higgs H1- SM with Higgs 
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The Alternate Hypothesis? 
�  Let’s zoom on 

 
 
 
 

�  Higgs with a specific mass mH  
     OR 

�  Higgs anywhere in a specific mass-range  
� The look elsewhere effect 
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H1- SM with Higgs 
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A Tale of Two Hypotheses 

 
 
�  Reject H0 in favor of H1 – A DISCOVERY 
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NULL ALTERNATE 
H0- SM w/o  Higgs H1- SM with Higgs 
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Swapping Hypothesesàexclusion 

 
 
�  Reject H1 in favor of H0 
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NULL ALTERNATE 
H0- SM w/o  Higgs H1- SM with Higgs 

Excluding H1 (mH)àExcluding the Higgs with a mass mH 
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Testing an Hypothesis (wikipedia…) 
�  The first step in any hypothesis testing is to state the relevant 

null,  H0     and alternative hypotheses, say, H1 
�  The next step is to define a test statistic, q,  under the null 

hypothesis 
�  Compute from the observations the observed value qobs of the test 

statistic q. 
�  Decide (based on qobs ) to either  

fail to reject the null hypothesis or  
reject it in favor of an alternative hypothesis 
 

�  next: How to construct a test statistic, how to decide? 
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Test statistic and p-value 
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PDF of a test statistic 
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f (q | b) f (q | s(mH ) + b)

s+b like 
q         
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BG like 

Reject BG Reject s+B 



Test statistic 
�  The pdf  f(q|b) or f(q|s+b) 

might be different 
depended on the chosen 
test statistic. 

�  Some might be powerful 
than others in distinguishing 
between the null and 
alternate hypothesis 
(s(mH)+b vs b) 
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f(qb|b)  

f(qb|s+b)  

s+b like 
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Reject BG 
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p-Value   
�  Discovery…. A deviation from the SM - 

from the background only hypothesis… 
 

�  When will one reject an hypothesis? 
 

�  p-value = probability  that result is  
as or less compatible with the background 
only hypothesis (->more signal like) 
 

�  Define a-priori a control region α 
�  For discovery it is a custom to choose 

α=2.87×10-7

�  If result falls within the critical region, i.e. 
 p< α  the BG only hypothesis is rejected 
àA discovery 
 

Critical region 
Of size α

�  The pdf of q…. 

f (q | b)
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p-value – testing the signal hypothesis 
�  When testing the signal hypothesis, 

the p-value is the probability that the 
observation is less compatible with 
the signal hypothesis (more 
background like) than the observed 
one 

�  We denote it by ps+b 

�  It is custom to say that if ps+b<5% 
the signal hypothesis is rejected 
at the 95% Confidence Level (CL)  
à Exclusion 
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f(qs+b|b)  

f(qs+b|s+b)  

ps+b 

qs+b,obs 
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From p-values to Gaussian significance 
It is a custom to express 
the p-value as the 
significance associated 
to it, had the pdf were 
Gaussians 

33 

Beware of 1 vs 2-sided definitions!	


3/9/2015 



34 Eilam Gross, WIS, Statistics for PP 

1 sided vs 2 sided 

34 

To determine a 1 sided 95% CL,  
we sometimes need to set the critical region to 10% 2 sided 
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Basic Definitions: type I-II errors 

�  The pdf of q…. 

0 0Pr ( | )ob reject H H
typeI error

α
α
=
=

typeII errorβ =

0 0

1 1

Pr ( | )
Pr ( | )
ob accept H H
ob reject H H

β =
=

1-β      α=significance 

H0	

H1	


�  By defining α you determine your tolerance 
towards mistakes… (accepted mistakes 
frequency) 

�  type-I error:  the probability to reject the 
tested (null) hypothesis (H0) when it is true 
 

�   
 
 
 

�  Type II: The probability to accept the null 
hypothesis when it is wrong  
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Basic Definitions: POWER 

�    
�  The POWER of an hypothesis test is the probability to reject the 

null hypothesis when the alternate analysis is true! 
 

�   
 
 
 
 
 
 

�  The power of a test increases as the rate of type II error decreases  

POWER = Prob(reject H0 | H1)
1 1

1 1

0 1

Pr ( | )
1 Pr ( | )
1 Pr ( | )

1

ob reject H H
ob accept H H
ob reject H H

POWER

β
β
β

β

= ⇒
− = ⇒
− = ⇒

= −

0 0Pr ( | )ob reject H Hα =
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Which Analysis is Better 

1-β=power α=p-value 

�  To find out which of two methods 
is better plot the p-value vs the 
power for each analysis method 
 

�  Given the p-value, the one with 
the higher power is better 

�  p-value~significance 
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1-β=power α=p-value 
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- 
The Neyman-Pearson Lemma 

�  Define a test statistic 
 

�  When performing a hypothesis test 
between two simple hypotheses, H0 
and H1, the Likelihood Ratio test, 
which rejects H0 in favor of H1,  
is the most powerful test  
of size αfor a threshold η 

�  Note: Likelihoods are functions of the 
data, 
even though we often not specify it 
explicitly 

λ =
L(H1)
L(H0 )

38 

η 
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Likelihood 
�  Likelihood is a function of the 

data 

�  Likelihood is not the probability 
of the hypothesis given the data 
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L(H ) = L(H | x) = f (x)
L(H | x) = P(x | H )

λ(x) =
L(H1 | x)
L(H0 | x)

  

P(H | x) = P(x | H ) ⋅P(H )
ΣH P(x | H )P(H )

P(H | x) ≈ P(x | H ) ⋅P(H )

Bayes Theorem 
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If the Universe is the answer, what is the question? 
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What is the Right Answer? 
�  The Question is:
�  Is there a Higgs Boson? 
�   Is there a God? 

 
 
 

�  In the book the author uses 
�  “divine factors” to estimate the  

P(Earth|God),  
�  a prior for God of 50%  

�  He “calculates” a 67% probability for  
God’s existence given earth…  

�  In Scientific American  
July 2004, playing a bit with the 
 “divine factors” the probability drops to 2%... 
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)(
)()|()|(

EarthP
GodPGodEarthPEarthGodP =
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�  Is there a Higgs Boson? What do you mean? 
Given the data , is there a Higgs Boson? 

�  Can you really answer that without any a priori knowledge of the Higgs Boson? 
Change your question: What is your degree of belief in the Higgs Boson given the 
data… Need a prior degree of belief regarding the Higgs Boson itself… 
 
 
 

�  Make sure that when you quote your answer you also quote your prior 
assumption! 

�  The most refined question is: 
�  Assuming there is a Higgs Boson with some mass mH, how well the data agrees with 

that? 
�  But even then the answer relies on the way you measured the data (i.e. measurement 

uncertainties), and that might include some pre-assumptions, priors! 

What is the Right Question 

P(Higgs |Data) = P(Datas |Higgs)P(Higgs)
P(Data)

= L(Higgs)π (Higgs)
L(Higgs)π (Higgs)d(Higgs)∫
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L(Higgs(mH )) = P(Data |Higgs)
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Priors 
�  A prior probability is interpreted as a description of what we believe about a 

parameter preceding  the current experiment 
�  Informative Priors: When you have some information about the parameter, the prior 

might be informative (Gaussian or Truncated Gaussians…) 
�  Most would say that subjective informative priors about the parameters of interest 

should be avoided (“….what's wrong with assuming that there is a Higgs in the mass 
range [115,140] with equal probability for each mass point?”) 

�  Subjective informative priors about the Nuisance parameters are more difficult to 
argue with 
�  These Priors can come from our assumed model (Pythia, Herwig etc…) 
�  These priors usually come from subsidiary measurements of the response of the detector to 

the photon energy, for example. 
�  One should try to get priors by subsidiary measurements  
�  Some priors come from subjective assumptions (theoretical, prejudice symmetries….) of 

our model 

∫ λθλπλθθ dddataLdataP )(),|(~)|(
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Priors – Uninformative Priors 
�  Uninformative Priors: All priors on the parameter of interest should be 

uninformative….  
IS THAT SO? 
Therefore flat uninformative priors are most common in HEP.  
�  When taking a uniform prior for the Higgs mass [115,250]… is it really uninformative? do 

uninformative priors exist? 
�  When constructing an uninformative prior you actually put some information in it…  

 
�  But a prior flat in the coupling g will not be flat in g2 

Depends on the metric! 
Moreover, flat priors are improper and lead to serious problems of undercoverage 
(when one deals with >1 channel, i.e. beyond counting, one should AVOID them 
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Frequentist vs Bayesian 
�  The Bayesian infers from the data using priors 

 
 

�  Priors is a science on its own. 
 Are they objective? Are they subjective? 

�  The Frequentist calculates the 
probability of an hypothesis to  
be inferred from the data based 
on a large set of hypothetical experiments 
Ideally, the frequentist does not need priors, or any 
degree of belief while the Baseian posterior based inference is a 
“Degree of Belief ”. 

�  However, NPs inject a Bayesian flavour to any Frequentist analysis 
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  P(H | x) ≈ P(x | H ) ⋅P(H )posterior 
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Confidence Interval and 
Confidence Level (CL) 
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CL & CI - Wikipedia	


 
 
�  A confidence interval (CI) is a particular kind of 

interval estimate of a population parameter.  
�  Instead of estimating the parameter by a single value, an interval 

likely to include the parameter is given.  
�  How likely the interval is to contain the parameter is determined by 

the confidence level or confidence coefficient. 
�   Increasing the desired confidence level will widen the confidence 

interval. 	


µ = 1.1± 0.3
µ = [0.8,1.4] @ 68% CL
          CI=[0.8,1.4]
what does it mean?
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Confidence Interval & Coverage 
�  Say you have a measurement μmeas of μ with μtrue being the 

unknown true value of μ 
�  Assume you know the probability distribution function  

p(μmeas|μ) 
�  Given the measurement you deduce somehow  

(based on your statistical model) 
 that there is a 95% Confidence interval [μ1,μ2]. 

   (it is 95% likely that the µtrue is in the quoted interval) 
The correct statement:  

�  In an ensemble of experiments 95% of the obtained confidence 
intervals will contain the true value of μ. 
 
 

48 Eilam Gross, WIS, Statistics for PP 3/9/2015 



 
Upper limit 
�  Given the measurement you deduce somehow (based on your 

statistical model) that there is a 95% Confidence interval [0,μup]. 
�  This means: In an ensemble of experiments 95% of the obtained 

confidence intervals will contain the true value of μ,  
including μ=0 (no Higgs) 

�  We therefore deduce that μ<μup at the 95% Confidence Level 
(CL) 

� μup is therefore an upper limit on μ 
�  If μup<1 à 
σ(mH)<σSM(mH)à 
a SM Higgs with a mass mH is excluded at the 95% CL 
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Confidence Interval & Coverage 
�  Confidence Level: A CL of (e.g.) 95% means that in an ensemble of 

experiments, each producing a confidence interval, 95% of the 
confidence intervals will contain the true value of μ 

�  Normally, we make one experiment and try to estimate from this one 
experiment the confidence interval at a specified CL 

�  If in an ensemble of (MC) experiments our estimated Confidence Interval 
fail to contain the true value of μ 95% of the cases (for every possible 
μ) we claim that our method undercover 

�  If in an ensemble of (MC) experiments our estimated Confidence Interval 
contains the true value of μ more than 95% of the cases (for every 
possible μ) we claim that our method overcover  (being conservative) 

�  If in an ensemble of (MC) experiments the true value of μ is covered 
within the estimated confidence interval , we claim a coverage 
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How to deduce a CI? 
�  One can show that if the data is 

distributed normal around the average 
i.e. P(data|μ )=normal 
 
 
 
then one can construct a 68% CI around 
the estimator of μto be 

    
 
However, not all distributions are normal, 
many distributions are even unknown and 
coverage might be a real issue 
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x̂ ±σ
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How to deduce a CI? 
�  One can show that if the data is 

distributed normal around the average 
i.e. P(data|μ )=normal 
 
 
 
then one can construct a 68% CI around 
the estimator of μto be 

    
 
However, not all distributions are normal, 
many distributions are even unknown and 
coverage might be a real issue 
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x̂ ±σ

�  One may construct many 68% 
intervals…. 
 
 

�  Which one has a full coverage? 
�  How can we guarantee a coverage 

�  The QUESTION is NOT how to 
construct a CI, it is 

�  HOW TO CONSTRUCT A CI 
WHICH HAS A COVERAGE 
@ THE 68% CL 

f (x | x̂)
µL

µU

∫ dx = 68%

CI = [µL ,µU ]
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The Frequentist Game a ’la 
Feldman & Cousins 

Or 
How to ensure a Coverage 
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Neyman Construction 

%68)|(2

1
1 =∫ m

m

s

s mtm dsssg
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[sl,su] 68% Confidence Interval 
In 68% of the experiments the derived C.I. contains the unknown true value of s 
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•  With Neyman Construction we guarantee a coverage via construction, i.e. 
for any value of the unknown true s, the Construction Confidence Interval 
will cover s with the correct rate. 

Need to specify where to start!
the integration….!
Which values of sm to include!
in the integration

A principle  should be specified!
F&C : Calculate LR and collect !
 the highest terms until integral=68%


Acceptance Interval
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The Flip Flop Way of an Experiment 
�  The most intuitive way to analyze the results of an experiment would be 

 
�  Construct a test statistics  

e.g.     Q(x)~ L(x|H1)/ L(x|H0)  
 

�  If the significance of the measured Q(xobs), is less than 3 sigma, derive an upper limit 
(just looking at tables), if the result is >5 sigma (and some minimum number of 
events is observed….), derive a discovery central confidence interval for the 
measured parameter (cross section, mass….) ….. 
 

�   This Flip Flopping policy leads to undercoverage:  
Is that really a problem for Physicists?  
Some physicists say, for each experiment quote always two results, an 
upper limit, and a (central?) discovery confidence interval 
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Frequentist Paradise – F&C Unified with Full Coverage 
�  Frequentist Paradise is certainly made up of an interpretation by constructing a 

confidence interval in brute force ensuring a coverage! 
�  This is the Neyman confidence interval adopted by F&C…. 

 
�  The motivation: 

�  Ensures Coverage 
�  Avoid Flip-Flopping – an ordering rule determines the nature of the interval  

(1-sided or 2-sided depending on your observed data) 
�  Ensures Physical Intervals 

 
�  Let the test statistics be  

 
 
where ŝ is the  
physically allowed mean s that maximizes L(ŝ+b) 
(protect a downward fluctuation of the background, nobs>b  ;     ŝ>0   )  
 

�  Order by taking the 68% highest Qs 
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Q = L(s + b)
L(ŝ + b)

= P(n | s + b)
P(n | ŝ + b)
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How to tell an Upper limit from a Measurement without Flip Flopping 

�  A measurement 
(2 sided) 
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xobs

C
I 
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How to tell an Upper limit from a Measurement without Flip Flopping 

�  An upper limit 
(1 sided) 
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xobs

C
I 
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How to tell an Upper limit from a Measurement without Flip Flopping 

�  Your observed 
result will tell 
you if it’s a 
measurement or 
an upper limit 

� But how to 
deal with 
systematics? 
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Search and Discovery Statistics in HEP  
Lecture 2: PL, Asymptotic Distributions  

Exclusion & CLs 
Eilam Gross, Weizmann Institute of Science!



This presentation would have not been possible without the tremendous help of


 the following people throughout many years




Louis Lyons, Alex Read, Glen Cowan ,Kyle Cranmer , 

Ofer Vitells & Bob Cousins !
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The Profile Likelihood 

The choice of the LHC for  
hypothesis inference in Higgs search 
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n = µs + b

qµ = −2 ln maxb L(µs + b)
maxµ ,b L(µs + b)

= −2ln
L(µs + ˆ̂bµ )
L(µ̂s + b̂)



The Profile Likelihood (“PL”) 
 For discovery we test the H0 
null hypothesis and try to 
reject it 
 
 
 

For  
 

For exclusion we test the signal 
hypothesis and try to reject it 
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qµ = −2ln L(µs+ b)

L(µ̂s+ b)

q0 = −2ln L(b)
L(µ̂s + b)

µ̂ ~ 0, q small
µ̂ ~ 1, q large

µ̂ ~ µ, q small
µ̂ ~ 0, q large

pdf of tested (null) hypothesis under null 

pdf of tested 
 hypothesis 
under alt 

Tested (null)  alternate 
3/9/2015 
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Wilks Theorem 

� Under a set of regularity 
conditions and for a 
sufficiently large data 
sample, Wilks’ theorem says 
that the pdf of the statistic        
under the null hypothesis  
approaches a chi-square PDF 
for one degree of freedom 

f (qµ | Hµ ) ~ χ1
2

q

f (q0 | H0 ) = χ1
2

pdf of tested (null) hypothesis under null 

Tested (null)  alternate 

f (qµ | Hµ ) = χ1
2
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Nuisance Parameters 

or Systematics 
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Nuisance Parameters (Systematics) 
�  There are two kinds of parameters: 

�  Parameters of interest (signal strength… cross section… µ) 
� Nuisance parameters (background (b), signal efficiency, resolution, 

energy scale,…) 

�  The nuisance parameters carry systematic uncertainties 
�  There are two related issues: 

� Classifying and estimating the systematic uncertainties 
�  Implementing them in the analysis 

�  The physicist must make the difference between cross checks and 
identifying the sources of the systematic uncertainty. 
�  Shifting cuts around and measure the effect on the observable… 

 Very often the observed variation is dominated by the statistical 
uncertainty in the measurement. 
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Implementation of Nuisance Parameters 
�  Implement by marginalizing (Bayesian) or profiling 

 (Frequentist) 
� One can also use a frequentist test statistics (PL) while treating the NPs 

via marginalization (Hybrid,  Cousins & Highland way) 

�  Marginalization (Integrating)) 
�    Integrate the Likelihood, L, over possible values of nuisance 

parameters (weighted by their prior belief functions -- 
Gaussian,gamma, others...) 

�    Consistent Bayesian interpretation of uncertainty on nuisance 
parameters 
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Integrating Out The Nuisance Parameters 
(Marginalization) 

�  Our degree of belief in µ is the sum of our degree of belief 
in µ given θ(nuisance parameter), over “all” possible values of θ

�  That’s a Bayesian way 

 
  
p(µ | x) = p(x |µ,θ )π (θ )dθ∫ = L(µ,θ )π (θ )dθ∫

  
0.95= p(µ | x)dµ

0

µup∫

Credible Interval   
CI = [0,µup ]

3/9/2015 



Nuisance Parameters (Systematisc) 

68 Eilam Gross, WIS, Statistics for PP 68 

�  Neyman Pearson (NP) Likelihood Ratio: 
 
 

�  Either Integrate  the Nuisance parameters 
 
 
 

�  Or profile them  

  
qNP = −2ln L(b(θ ))

L(s+ b(θ ))

qHybrid
NP=

L s + b(θ)( )π (θ)dθ∫
L b(θ)( )π (θ)dθ∫

  

qNP = −2ln
L b( ˆ̂θ0 )( )

L s+ b( ˆ̂θ1)( )

prior 

  

ˆ̂θ0 = MLEµ=0 of L(b(θ ))

ˆ̂θ1 = MLEµ=1 of L(s+ b(θ ))

3/9/2015 

Cousins & Highland 



Nuisance Parameters and Subsidiary Measurements 
�  Usually the nuisance parameters are auxiliary parameters and their 

values are constrained by auxiliary measurements 
�  Example 
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~ ( )Hn s m bµ + n s bµ= +

m bτ=

L µ ⋅ s + b(θ)( ) = Poisson n;µ ⋅ s + b(θ)( ) ⋅ Poisson m;τb(θ)( )

3/9/2015 



Mass shape as a discriminator 
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( ) ( ) ( )
1

( ) ; ( ) ; ( )
nbins

i i i i i
i

L s b Poisson n s b Poisson m bµ θ µ θ τ θ
=

⋅ + = ⋅ + ⋅∏
( )Hn s m bµ +: ~m bτ

70 

mH 
mH 
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Profile Likelihood with Nuisance Parameters 
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qµ = −2ln
L(µs + ˆ̂bµ )
L(µ̂s + b̂)

qµ = −2ln maxb L(µs + b)
maxµ ,b L(µs + b)

qµ = qµ (µ̂) = −2ln
L(µs + ˆ̂bµ )
L(µ̂s + b̂)

µ̂  MLE of µ

b̂ MLE of b

ˆ̂bµ  MLE of b fixing µ

ˆ̂θµ  MLE of θ  fixing µ

3/9/2015 



Wilks theorem in the presence of NPs 
�  Given n parameters of interest and any number of NPs, then 
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λ(α i ) =
L(α i , ˆ̂θ j )
L(α! i ,θ̂ j )

q(α i ) ≡ −2 logλ(α i ) ∼ χn
2

3/9/2015 



Understanding the Basic Concepts 

Tossing Toys  
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The Physics Model 
�  SM without Higgs Background 

No signal 
�    
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mass 

 n = b

3/9/2015 



The Physics Model 
�  SM without Higgs Background 

Only 
�    

�  SM with a Higgs Boson with a 
mass mH 
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( )Hn s m bµ= +

n b=
  n = s(mH )+ b

mass 

3/9/2015 



The Physics Model 
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0 1

ˆ
ˆ ˆ0 1
n s b MLE

under H under H
µ µ

µ µ
= +
= =

mass mass 
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The Profile Likelihood (“PL”) 
 For discovery we test the H0 
null hypothesis 
 
 

For 

 

 

 

In general: testing the Hµ 
hypothesis i.e., a SM with a 
signal of strength µ,  
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qµ = −2ln L(µ)

L(µ̂)

  
q0 = −2ln L(b)

L(µ̂s+ b)

The best signal  ˆ 0.3 1.27µ σ= →

  µ̂ ~ 0, q0 small

  µ̂ ~ 1, q0 large

  q0 = 1.6→ Z = 1.6 = 1.27

3/9/2015 

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.15 0.6µ σ= →

  q0 = 0.43→ Z = 0.66σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0µ =

  q0 = 0

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0µ =

  q0 = 0

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.6 2.6µ σ= →

  q0 = 6.76→ Z = 2.6σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.22 1.1µ σ= →

  q0 = 1.2→ Z = 1.1σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 

83 Eilam Gross, WIS, Statistics for PP 

ˆ 0.11 0.4µ σ= →

  q0 = 0.16→ Z = 0.4σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.31 1.35µ σ= →

  q0 = 1.8→ Z = 1.35σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.32 1.39µ σ= →

  q0 = 1.9→ Z = 1.39σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



PL: test t0 under BG only ; f(q0|H0) 
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ˆ 0.15 0.66µ σ= →

  q0 = 0.43→ Z = 0.66σ

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)

Zobs = q0,obs



Confirm Wilks Theorem 

For the test statistic 
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q0 = −2ln L(b)

L(µ̂s+ b)

  f (q0 | H0 ) = χ1
2

3/9/2015 

  
q0 = −2ln L(b)

L(µ̂s+ b)



The PDF of q0 under s+b experiments (H1) 
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q0 = −2ln L(b)

L(µ̂s+ b)
= −2ln

L(b | H1)
L(µ̂s+ b | H1) ˆ 1.04 4.3µ σ= →

  q0 = 18.5→ Z = 4.3σ

3/9/2015 
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ˆ 0.83 3.6µ σ= →

  q0 = 12.9→ Z = 3.6σ

  
q0 = −2ln L(b)

L(µ̂s+ b)
= −2ln

L(b | H1)
L(µ̂s+ b | H1)

The PDF of q0 under s+b experiments (H1) 

3/9/2015 
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ˆ 1.22 5.0µ σ= →

  q0 = 25→ Z = 5.0σ

  
q0 = −2ln L(b)

L(µ̂s+ b)
= −2ln

L(b | H1)
L(µ̂s+ b | H1)

The PDF of q0 under s+b experiments (H1) 

median = 4.06σ
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Median sensitivity in a Click (Asimov) 
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CCGV ref 



The Median Sensitivity (via ASIMOV) 
To estimate the median 
sensitivity of an 
experiment  
(before looking at 
the data),  
one can either perform 
lots of s+b experiments 
and estimate the median 
to,med or evaluate t0 with 
respect to a 
representative data set, 
the ASIMOV data set 
with µ=1, i.e. x=s+b 
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ˆ 1.00 4.15µ σ= →

  qA = 17.22→ ZA = 4.15

ASIMOV=4.15σ 

   
q

o,med
! q0 (µ̂ = µ

A
= 1) = −2ln

L(b | x = x
A
= s+ b)

L(µ̂s+ b | x = x
A
= s+ b)

= −2ln L(b)
L(1⋅s+ b)

3/9/2015 

Zexpected = q0,A



Asymptotic Distributions 
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Tossing Monte Carlos to get the 
test statistic distribution functions 
(PDF) is sometimes beyong the 
experiment technical capability. 

 

Knowing both PDF 

 

 

 

 

 

enables calculating both  the 
observed and expected  
significance (or exclusion) without 
a single toy…. 

 

f (qnull |Hnull )
f (qnull |Halternate )



Asymptotic Distributions 

CCGV 
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null alternate 

qnull
f (qnull |Hnull )
qobs ≡ qnull ,obs

p = f (qnull |Hnull )qobs

∞

∫ dqnull

f (qnull |Halt )

qA ≡ qnull ,A =
q |med{ f (qnull |Halt )}{ }
f (qnull |Hnull )qnull ,A

∞

∫ dqnull = 0.5
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null alternate 

qnull
f (qnull |Hnull )
qobs ≡ qnull ,obs

p = f (qnull |Hnull )qobs

∞

∫ dqnull

f (qnull |Halt )

qA ≡ qnull ,A =
q |med{ f (qnull |Halt )}{ }
f (qnull |Hnull )qnull ,A

∞

∫ dqnull = 0.5 qnull
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null alternate 

qnull
f (qnull |Hnull )
qobs ≡ qnull ,obs

p = f (qnull |Hnull )qobs

∞

∫ dqnull

f (qnull |Halt )

qA ≡ qnull ,A =
q |med{ f (qnull |Halt )}{ }
f (qnull |Hnull )qnull ,A

∞

∫ dqnull = 0.5

f (qnull |Halt )

f (qnull |Hnull )

qnull
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null alternate 

qnull
f (qnull |Hnull )
qobs ≡ qnull ,obs

p = f (qnull |Hnull )qobs

∞

∫ dqnull

f (qnull |Halt )

qA ≡ qnull ,A =
q |med{ f (qnull |Halt )}{ }
f (qnull |Hnull )qnull ,A

∞

∫ dqnull = 0.5

f (qnull |Halt )

f (qnull |Hnull )

qnullqobs
p
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qnull
f (qnull |Hnull )
qobs ≡ qnull ,obs

p = f (qnull |Hnull )qobs

∞

∫ dqnull

f (qnull |Halt )

qA ≡ qnull ,A =
q |med{ f (qnull |Halt )}{ }
f (qnull |Hnull )qnull ,A

∞

∫ dqnull = 0.5

null alternate 

f (qnull |Halt )

f (qnull |Hnull )

qnullqobs
p

qA ≡ qnull ,AZexpected = qnull ,A
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Test
Statistics

Purpose Experession LR

q0 discovery of positive signal q0 =
−2 lnλ(0)

0
µ̂ ≥ 0
µ̂ < 0

⎧
⎨
⎪

⎩⎪
λ(0) = L(0, ˆ̂θ0 )

L(µ̂,θ̂ )

tµ 2-sided measurement tµ = −2 lnλ(µ) λ(µ) =
L(µ, ˆ̂θµ )
L(µ̂,θ̂ )

!tµ avoid negative signal (FC) !tµ = −2 ln !λ(µ) !λ(µ) =

L(µ, ˆ̂θµ )
L(µ̂,θ̂ )

µ̂ ≥ 0

L(µ, ˆ̂θµ )

L(0, ˆ̂θ0 )
µ̂ < 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

qµ exclusion qµ =
−2 lnλ(µ)

0
µ̂ ≤ µ
µ̂ > µ

⎧
⎨
⎪

⎩⎪

!qµ exclusion of positive signal !qµ =
−2 lnλ"(µ)

0

µ̂ ≤ µ
µ̂ > µ

⎧
⎨
⎪

⎩⎪



Resolving f(qnull|Halt) 
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null alternate 

f (qnull |Halt )

f (qnull |Hnull )

qnullqobs
p

qA ≡ qnull ,A

q0 =
−2 lnλ(0)

0
µ̂ ≥ 0
µ̂ < 0

⎧
⎨
⎪

⎩⎪

 
f (q0 | 0) ∼

1
2
χ 2

 f (q0 | ′µ ) ∼ ?

n = µs + b(θ )



Wald Theorem 
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�  Consider a test of the strength parameter μ, which here can either 
be zero (for discovery) or nonzero (for an upper limit), and suppose 
the data are distributed according to a strength parameter μ′ 

�   The desired distribution                 can be found using a result due to 
Wald [1946], who showed that for the case of a single parameter of 
interest, 

f (qµ | ′µ )

µ̂ = ′µ
λ(µ) =

L(µ, ˆ̂θµ )
L(µ̂,θ̂ )



Wald Theorem 

3/9/2015 103 Eilam Gross, WIS, Statistics for PP 

�  Following the Wald Theorem we find that the 2-sided 
distributes like a non-central chi squared  

λ(µ) =
L(µ, ˆ̂θµ )
L(µ̂,θ̂ )

tµ = −2 lnλ(µ)

µ  is the tested hypothesis while µ̂ = ′µ

under Hµ , if ′µ = µ
we get Wilks theorem

Λ = (µ − ′µ )2

σ 2

The rediscovery Wald theorem helped us to find the asymptotic distributions of all PL test 
Statistics, including the Neyman Pearson one, calculate the CLs modified p-values 
 the expected sensitivity and save months if not years of computing 

2 sided CI 



null alternate 

f (qnull |Halt )

f (qnull |Hnull )

qnullqobs
p

qA ≡ qnull ,A

Asymptotic Distribution for Discovery 
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f (q0 | 0) ∼

1
2
χ 2

 f (q0 | ′µ ) ∼ ?

qA ≡ qnull ,A
1 sided CI 

Φ(Z ) = 1− 1
2πZ

∞

∫ e− x
2 /2dx



null alternate 

f (qnull |Halt )

f (qnull |Hnull )

qnullqobs
p

qA ≡ qnull ,A

Asymptotic Distribution for Exclusion  
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1 sided CI 

α = 1−CL



Asymptotic Distribution for FC  
Depends on the observation  
one  might get  1-sided or 2-sided CI 



How to determine σ 
�  To estimate the uncertainty σthere are a few possibilities 

� Given the asymptotic formulae, fit the distribution of  
 
                                                                      and extract σ 

�   Implement the Wald formula to the Asimov data set and find 

    where μis the tested (null) hypothesis and μ’ is the alt hypothesis. 
For discovery, μ=0 while for exclusion μ’=0. 
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!!f (qnull |Halt )= f (qµ | ′µ )

!!
σ A

2 = (µ − ′µ )2
qµ ,A



Exclusion 

Case Study: 

 Exclusion of a Higgs with mass mH 
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�  We test hypothesis Hμ 

�  We calculate the PL 
 (profile likelihood) ratio with 
the one observed data 

�    
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qµ,obs 

qµ,obs 
f(qµ|H0)  

f(qµ|Hµ)  

3/9/2015 



�  Find the p-value of the signal 
hypothesis Hμ 

�  In principle if pμ<5%,  
Hμ hypothesis is excluded at the 
95% CL 

�  Note that  Hμis for a given 
Higgs mass mH 
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qµ,obs 

pµ 

pµ = f (qµ | Hµ )dqµqµ ,obs

∞

∫
f(qµ|H0)  

f(qµ|Hµ)  
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CLs 
�  Suppose <nb>=100  

�  s(mH1)=30 
�  Suppose nobs=102 

�  s+b=130 

�  Prob(nobs≤102|130)<5%, mH1 is excluded at >95% CL 

�  Now suppose s(mH2)=1, can we exclude mH2? 

�  Suppose nobs=80, prob(nobs≤80|102)<5%, it looks like we can exclude mH2… 
 but this is dangerous, because what we exclude is (s(mH2)+b) and not s…… 

�  With this logic we could also exclude b (expected b=100) 

�  To protect we calculate a modified p-value 
�  We cannot exclude mH2 
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Prob(nobs ≤ 80 |101)
Prob(nobs ≤ 80 |100)

~1

P(n ≤ no | s + b)
P(n ≤ no | b)

= P(no ≤ ns+b nb ≤no, s + b)
3/9/2015 



CLs 

112 Eilam Gross, WIS, Statistics for PP 3/9/2015 



�  When performing a hypothesis test between two simple 
hypotheses, H0 and H1, the Likelihood Ratio test, which 
rejects H0 in favor of H1, is the most powerful test ….. 
 

�  Define a test statistic 
  

�  Then for a given  
the probability   
is the highest, i.e.  
The Likelihood Ratio 
is the most powerful test  

�  (The POWER of an hypothesis test is the probability to reject the 
null hypothesis when the alternate hypothesis  is true!)                        
NOTE:  

  
Q = −2ln

L(H0 )
L(H1)

 
The Neyman-Pearson Lemma (lite version) 
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0 0( | )Prob reject H Hα =
0 0 0 1( | ) ( | )Prob reject H H Prob reject H H=

  
Q = −2ln

L(H0 )
L(H1)

  Q = Q(µ̂)
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Example: 
 Simulating BG Only Experiments 

( )
)(
)(

)(
)()(
0

1

bL
bmsL

HL
HLmQ +==
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s+b like b-like 

Discriminator 

•  The likelihood ratio, -2lnQ(mH) tells us how much the outcome of an experiment 
is signal-like 

•  NOTE, here the s+b pdf is plotted to the left  
(it’s the null hypothesis)! 
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Example: 
 Simulating S(mH)+b Experiments 

s+b like b-like 

3/9/2015 



Example: 
 Simulating S(mH)+b Experiments 
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s+b like b-like 
Observed Likelihood 

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Likelihood
PD
F

CLs+b
1-CLb

H0
(b)

H1
(s+b)

 ps+b  ∼CLs+b pb  ∼1−CLb
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The Problem of Small Signal 

�  <Nobs>=s+b leads to the physical requirement that 
Nobs>b 
 

�  A very small expected s might lead to an anomaly when 
Nobs fluctuates far below the expected background, b. 
 

�  At one point DELPHI alone had CLs+b=0.03 for 
mH=116 GeV 

�  However, the cross section for 116 GeV Higgs at LEP 
was too small and Delphi actually had no sensitivity to 
observe it 
 

�  The frequntist would say: Suppose there is a 116 GeV 
Higgs…. 
 In 3% of the experiments the true signal would be 
rejected… (one would obtain a result incompatible or 
more so with m=116) 
i.e. a 116 GeV Higgs is excluded at the 97% CL….. 

-20 -15 -10 -5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PD
F

Likelihood

H1
(s+b)

H0
(b)

1-CLb

CLs+b

Observed Likelihood 

 ps+b  ∼CLs+b  pb  ∼1−CLb
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The  CLs Method for Upper Limits 

�  Inspired by Zech(Roe and Woodroofe)’s 
derivation for counting experiments 
 
 
 

�  A. Read suggested the CLs method 
with 
 
 
 

�  In the DELPHI example, 
CLs=0.03/0.13=0.26, i.e. a 
116 GeV could not be 
excluded at the 97% CL 
anymore…..  
(pb=1-CLb=0.87) 

)(
)()(

ob

obs
obobs nnP

nnPnnnnP
≤
≤=≤≤ +

+

b

bs

b

bs
s p

p
CL
CLCL

−
== ++

1
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 ps+b  ∼CLs+b  pb  ∼1−CLb
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Second Verse- Same as the First (PL) CLb 
�  CLb~1-pb is the compatibility of the 

background with the background 
hypothesis and might be very small due 
to downward fluctuations of the 
background in the absence of a signal 
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qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb 

Signal like                        background like 
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CLs 
�  A complication arises when 

 μs+b~b 
�  When the signal cross section is very 

small the s(mH)+b hypothesis can be 
rejected but at the same time the 
background hypothesis is almost rejected 
as well due to downward fluctuations of 
the background 

�  These downward fluctuations allow the 
exclusion of a signal the experiment is 
not sensitive to 
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qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb 
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�  Inspired by Zech derivation for 
counting experiments 
 
 
 

�  A. Read suggested the CLs method 
with 

 
�  This means that you will never be 

able to exclude a signal with a tiny 
cross section (to which you are 
not sensitive) 

121 Eilam Gross, WIS, Statistics for PP 

qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb 
b

bs

b

bs
s p

p
CL
CLCL

−
== ++

1

P(n ≤ no nb ≤no, s + b) =
P(n ≤ no | s + b)
P(n ≤ no | b)
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The Modified CLs with the PL test statistic 
�  The CLs method means that the signal hypothesis p-value 
 pμ is modified to 
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pµ → p 'µ =
pµ

1− pb

qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb 
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�  Find the p-value of the signal 
hypothesis Hμ 

�  In principle if pμ<5%,  
Hμ hypothesis is excluded at the 
95% CL 

�  Note that  Hμis for a given 
Higgs mass mH 
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qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

pµ 

pµ = f (qµ | Hµ )dqµqµ ,obs

∞

∫
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�  Find the p-value of the signal 
hypothesis Hμ 

�  Find the modified p-value 

� To tell if s is excluded, set μ=1 
and find  
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pµ = f (qµ | Hµ )dqµqµ ,obs

∞

∫

qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb p 'µ (mH ) =
pµ

1− pb

p '1(mH ) =
pµ

1− pb
≡ CLs(mH )

3/9/2015 



Understanding the CLs plot 
�  Here, for each 

Higgs mass mH, 
one finds the 
observed p’s 
value, i.e. 
p’μ,μ=1 

�  This modified  
p-value, p’s, is by 
definition CLs 
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The smaller CLs, the deeper is the exclusion, 
Exclusion CL=1-CLs=1-p’s 
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Understanding the CLs plot 
�  CLs is the 

compatibility of 
the data with the 
signal hypothesis 

�  The smaller the 
CLs, the less 
compatible the 
data with the 
prospective signal 
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�  Find the p-value of the signal hypothesis 
Hμ 

�  Find the modified p-value 

� Option2: Iterate and find μ for which 
p’μ(mH)=5%àμ=μupà  
If μup<1, mH is excluded at the 95% 
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pµ = f (qµ | Hµ )dqµqµ ,obs

∞

∫

p 'µ (mH ) =
pµ

1− pb For a given data set, 
 in the absence of a signal,  
the bigger the tested μ is 

the exclusion is deeper 
i.e. p’ μ is smaller 

3/9/2015 



Exclusion a Higgs with a mass mH 
�  First we fix the hypothesized mass to mH 

�  We then test the Hμ [μs(mH)+b] hypothesis 
�  We find μup, for which p’μup=5%-> the Hμup hypothesis is 

rejected at the 95% CL  
�  This means that the Confidence Interval of μisμ∊[0,μup] 
�  If μup=σ(mH)/σSM(mH)<1, we claim that a SM Higgs with a 

mass mH is excluded at the 95% CL 
�  A Higgs with a mass mH, such that μ(mH)<1 is excluded at the 

95% CL 
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Upper Limit – µup(mH) 
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Sensitivity 
�  The sensitivity of an experiment to 

exclude a Higgs with a mass mH is the 
median upper limit 

�    

�  The 68% (green) and 95% (yellow) 
are the  
1 and 2 σ bands   

�  The median and the bands can be 
derived with the Asimov background 
only dataset n=b 
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Distribution of the upper limit with 
background only experiments 

The Asimov data set is n=b  
-> median upper limit 

µup
med = med{µup | H0}
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CCGV Useful Formulae – The Bands 
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Distribution of the upper limit with 
background only experiments 

The Asimov data set is n=b  
-> median upper limit 

µup
med = σ Φ−1(1− 0.5α ) = σ Φ−1(0.975)

σ µup+N
2 =

µup+N
2

qµup+N ,A

µup+N = Nσ 0 +σ µup+N
(Φ−1(1−αΦ(N ))

α = 0.05

σ µ̂
2 = Var[µ̂]
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The Asimov data set 
�  The median of f(qμ|H0)  
Can be found by plugging in the 

unique Asimov data set 
representing the H0 hypothesis, 
background only 

n=b 
�  The sensitivity of the 

experiment for searching the 
Higgs at mass mH with a signal 
strength μ, is given by p’μ 
evaluated at qμ,A 
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qµ,obs 

f(qµ|H0)  

f(qµ|Hµ)  

Pµ~CLs 

1-pb~CLb 

med{f(qµ|H0)}=qµ,A  
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Useful Formulae 
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′pµ95 =
1− Φ( qµ95 )

Φ( qµ95 ,A − qµ95 )
= 0.05

 Φ is the cumulative distribution of the 
standard (zero mean, unit variance) 
Gaussian. 

qµ95 ,A Is evaluated with the  
Asimov data set (background only) 
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Exclusion – 
 Illustrated 

134 

The profile LR of s+b experiments ( µ = 1)
under the hypothesis of  s + b (H1 )

f (q1 | µ = 1)

The observed profile LR

q1,obs = −2log
L(s + ˆ̂b | data)
L(µ̂ ⋅ s + b̂ | data)

p1 is the level of compatibility between the data and the Higgs hypothesis 
If p1 is smaller  than 0.05 we claim an exclusion at the 95% CL   

1

ˆ̂( | )( 1) , 2 log ( 1)ˆˆ( | )
L s b data q
L s b data

λ µ λ µ
µ

+= = = − =
⋅ +

The profile LR of b-only experiments  ( µ = 0 )
under the hypothesis of  s + b (H1 )

f (q1 | µ = 0)

1
1 1 1,

( |1)
q obs

p f q dq
∞

= ∫
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Understanding the Brazil Plot 

�  μup=σ(mH)/σSM(mH)<1à 
σ(mH)<σSM(mH)àSM mH excluded 

�  The line μup=1 corresponds to  
CLs=5% (p’s=5%) 

�  If μup<1 the exclusion of a SM Higgs is  
deeperàp’s<5%,  
p’s=CLsàCL=1-p’s>95%  
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HàƔƔ 
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Search and Discovery Statistics in HEP  
Lecture 3: p0, Discovery and the LEE, 
Multidimensional PL & Measurements 

Eilam Gross, Weizmann Institute of Science!



This presentation would have not been possible without the tremendous help of

 the following people throughout many years




Louis Lyons, Alex Read, Glen Cowan ,Kyle Cranmer , Yonatan Shlomi


Ofer Vitells & Bob Cousins !
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Case Study: 
Higgs Discovery 

DISCOVERY 

138 3/9/2015 



Basic Definition: Signal Strength 
�  We normally relate the signal strength to its expected Standard 

Model value, i.e.  
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µ(mH ) =
σ (mH )
σ SM (mH )

⌢µ(mH ) = MLE of µ

3/9/2015 



Introducing the Heartbeat 
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µ(mH ) =
σ (mH )
σ SM (mH )

⌢µ(mH ) = MLE of µ
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Reminder: The test statistic 
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�  Downward fluctuations of the background 
do not serve as an evidence against the 
background 

�  Upward fluctuations of the signal do not 
serve as an evidence against the signal 

3/9/2015 

qµ =
−2 lnλ(µ)

0
µ̂ ≤ µ
µ̂ > µ

⎧
⎨
⎪

⎩⎪



p0 
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Significance & p-value 
�  Calculate the test statistic 

based on the observed 
experimental result (after 
taking tons of data), qobs 

�  Calculate the probability  
that the observation is  
as or less compatible with 
the background only 
hypothesis (p-value) 
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If p-value< 2.8·10-7 , we claim a 5σ discovery 

   f (q0 | H0 ) ∼ χ1
2

qobs 

p = f (q0 | H0 )dttobs

∞

∫

p = f (q0 | H0 )dtqobs

∞

∫

3/9/2015 

A significance of Z=1.64 corresponds to p=5% 
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qµ = −2ln L(µs + b)
L(µ̂s + b)Zobs = q0 = q0 (µ̂)

s = 5000

1 

4 

16 

25 

s = 3000
9 
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Discovery  
- Illustrated 
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The profile LR of bg-onlyexperiments (µ = 0)
under the hypothesis of BG only (H0 )

f (q0 | µ = 0)

The observed profile LR

q0,obs = −2log
L(0 ⋅ s + b | data)
L(µ̂ ⋅ s + b | data)

p0 is the level of compatibility between the data and the no-Higgs hypothesis 
If p0 is smaller  than ~2.8·10-7  we claim a 5s discovery  

The profile LR of S+B experiments  ( µ = 1)
under the hypothesis of BG only (H0 )

f (q0 | µ = 1)

0
(0 | )( 0) , 2log ( 0)
ˆ( | )

L s b data q
L s b data

λ µ λ µ
µ
⋅ += = = − =
⋅ +
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Median Sensitivity 

�  To estimate the median 
sensitivity of an experiment  
(before looking at the data),  
one can either perform lots of 
s+b experiments and 
estimate the median q0,med or 
evaluate q0 with respect to a 
representative data set, the 
ASIMOV data set with µ=1, 
i.e. n=s+b 

  

Zmed = −2lnλA(0) = q0,A

λA(0) = L(µ = 0 | ASIMOV data = s+ b)
L(µ̂A = 1| ASIMOV data = s+ b)
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qµ = −2ln L(µs + b)
L(µ̂s + b)Zobs = q0 = q0 (µ̂)

s = 5000

1 

4 

16 

25 

s = 3000
9 



The New s/√b 
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The new s/√b   

ZA = q0,A

 
ZA = q0,A

s/b≪1⎯ →⎯⎯ s
b
+O(s /b)



The New s/√b 
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s/√b ? 
 
 
 
The new s/√b   
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Taking Background Systematics into Account	

�  The intuitive explanation of s/√b is that it compares the signal,s, to 

the standard deviation of n assuming no signal, √b. 
�  Now suppose the value of b is uncertain, characterized by a 

standard deviation σb. 
�  A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

Δ
⎯⎯ →⎯Δ+⇒ ∞→ bsbbsbs L /)1(// 2

s / b
Δ

≥ 5→ s / b ≥ 0.5 forΔ ~ 10%

( ) ( )
2 2 2 2

bb b b b b bσ±Δ⋅ ⇒ = + Δ⋅ = +Δ

If s/b<0.5 we will never be able to make a discovery 

3/9/2015 

But even that formula can be omproved using the Asimov formalism 



Significance with systematics 
�  We find (G. Cowan) 

 
Expanding the Asimov formula in powers of s/b and 
σb

2/b gives  
 
 

�  So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated with 

the Asimov data set. 
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Significance with systematics 
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p0 and the expected p0 
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p0 is the probability to observe a less BG 
like result (more signal like) than the 
 observed one 
Small p0 leads to an observation 
A tiny p0 leads to a discovery 
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Distribution of q0 (discovery) 

�  We find 

�  q0 distribute as half a delta function at zero and half a chi 
squared. q0,obs = q0,obs (mH)->p0=p0(mH) 
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Example: HàƔƔ 
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HàƔƔ 
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HàƔƔ 
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The Look Elsewhere Effect	
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Look Elsewhere Effect 
•  To establish a discovery we try to reject the background only hypothesis H0 

against the alternate hypothesis H1 

•  H1 could be 
•  A Higgs Boson with a specified mass mH  

•  A Higgs Boson at some mass mH in the search mass range 

•  The look elsewhere effect deals with the floating mass case 

Let the Higgs mass, mH, and the 
signal strength µ  
be 2 parameters of interest ˆ̂( , , )( , ) ˆˆ ˆ( , , )

H
H

H

L m bm
L m b
µλ µ
µ

=

166 

The problem is that mH is not defined under the null H0 hypothesis 
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Look Elsewhere Effect 
Is there a signal 
here? 
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Look Elsewhere Effect 
Obviously 
@ m=30 

What is its 
significance? 

 What is your test 
statistic? 
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q
fix ,obs = −2ln L(b)

L(µ̂s(m = 30) + b)
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Look Elsewhere Effect 
Test statistic 
 
 

What is the p-value? 

 generate the PDF 
 
 
and find the p-value 
Wilks theorem: 
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q
fix ,obs = −2ln L(b)

L(µ̂s(m = 30) + b)

f (q
fix
| H0 )

f (qfix | H0 ) ~ χ1
2
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Look Elsewhere Effect 
Would you ignore 
this signal, had you 
seen it? 
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Look Elsewhere Effect 
Or this? 
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Look Elsewhere Effect 
Or this? 
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Look Elsewhere Effect 
Or this? 

 

Obviously NOT! 

 

ALL THESE 
“SIGNALS” ARE 
BG 
FLUCTUATIONS 
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Look Elsewhere Effect 
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q
fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m) + b)

�  Having no idea 
where the signal 
might be there 
are two options 

�  OPTION I: 
scan the mass 
range in pre-
defined steps and 
test any 
disturbing 
fluctuations  
 

�  Perform a fixed 
mass analysis at 
each point 
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Look Elsewhere Effect 

�  Having no idea 
where the signal 
might be there 
are two options 

�  OPTION I: 
scan the mass 
range in pre-
defined steps and 
test any 
disturbing 
fluctuations  
 

�  Perform a fixed 
mass analysis at 
each point 
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q
fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m) + b)
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Look Elsewhere Effect 

The scan resolution must be less 
than the signal mass resolution 

 

Assuming the signal can be only at 
one place, pick the one with the 
smallest p-value (maximum 
significance) 
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q
fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m) + b)
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Look Elsewhere Effect 
The scan resolution must be less 
than the signal mass resolution 

 

Assuming the signal can be only at 
one place, pick the one with the 
smallest p-value (maximum 
significance) 
 

This is equivalent to OPTION II: 

leave the mass floating 
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q
fix ,obs (µ̂) = −2ln L(b)

L(µ̂s(m) + b)

  
q float ,obs (µ̂) = q̂(µ̂) = maxm −2ln

L(b)
L(µ̂s(m)+ b)

⎧
⎨
⎩

⎫
⎬
⎭
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The Thumb Rule 
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trial factor=
? range
resolution

=
Γm
σm

trial factor =
p float
p fix

This turned out to be wrong,  
  that was a big surprise 

trial factor ∝ range
resolution

Zlocal ∝
Γm
σm

Zlocal
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The profile-likelihood test statistic 

�  Consider the test statistic: 
 
 
 

�  For some fixed θ, q0(θ) has (asymptotically) a chi2 distribution with one 
degree of freedom by Wilks’ theorem. 

�  q0(θ) is a chi2 random field over the space of θ (a random variable indexed by a 
continuous parameter(s) ). we are interested in 
 
 
 

�  For which we want to know what is the p-value 
 
 

0
( 0)( ) 2log
ˆ( , )

q µθ
µ θ
== − L

L

0p-value=P(max[ ( )] )q u
θ

θ ≥

0 : 0H µ =

1 : 0H µ >

q̂0 ≡ q0 (θ̂) = −2ln L(µ = 0)
L(µ̂,θ̂)

= max
θ
[q0 (θ)]

µ=“signal strength” 

     is the global 
maximum point  
θ̂

Let θ be a nuisance parameter undefined under the 
null hypothesis, e.g. θ=m 
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with a nuisance parameter that is not defined under the  
Null hypothesis, such as the mass 
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A small modification 
�  Usually we only look for ‘positive’ signals 

 
 
 
 
 
 
The p-value just get divided by 1/2 

�  Or equivalently consider      as a gaussian field 
 
 
 since                            
                           
 

0

( 0)2log
ˆ( , )( )

0
q

µ
µ θθ
=⎧−⎪= ⎨

⎪⎩

L
L

ˆ 0µ >

ˆ 0µ ≤

2

0
ˆ ( )( )q µ θθ
σ

⎛ ⎞= ⎜ ⎟⎝ ⎠

q0(θ) is ‘half chi2’ 

[H. Chernoff, Ann. Math. Stat. 
25, 573578 (1954)] 

µ̂
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�  In 1 dimension: points where the field values become larger then u are 

called upcrossings. 

 
 
 
 
 
 

�  The probability that the global maximum is above the level u is called 
exceedance probability. (p-value of                                        ) 

0P(max[ ( )] )q u
θ

θ ≥

upcrossings 
0max[ ( )]q

θ
θ

  
q̂0 ≡ q0(θ̂ ) = max

θ
[q0(θ )]

Random fields  (1D) 
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The 1-dimensional case 
For a chi2 random field, 
the expected number of 
upcrossings of a level u is given 
by: [Davies,1987] 

/2
1[ ] u

uE N e−=N

To have the global maximum above a level u: 

- Either have at least one upcrossing (Nu>0)  or have q0>u at the origin (q0(0)>u) : 

0 20 40 60 80 100 120
0

10

20

30

40

50

Ev
en

ts
 / 

un
it 
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as

s

0 20 40 60 80 100 120
0

5

m

q(
m

)

0 ( )q m

u

0q̂

0 0ˆ( ) ( 0) ( (0) )uP q u P N P q u> ≤ > + >

0[ ] ( (0) )uE N P q u≤ + > Becomes an equality for 
large u 

[R.B. Davies, Hypothesis testing when a nuisance parameter is  
present only under the alternative. Biometrika 74, 33–43 (1987)] 
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The 1-dimensional case 

0 0P( ) [ ] P( (0) )uq u E N q u> ≤ + >

= N 1e
−u / 2 + 1

2
P(χ1

2 > u) = E[Nu0 ]e
(u0 −u) / 2 + 1

2
P(χ1

2 > u)

pglobal = E[Nu0 ]e
(u0 −u) / 2 + plocal

The only unknown is       
which can be estimated from 
the average number of 
upcrossings at some low 
reference level  

N 1
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0 ( )q m
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0q̂

/2
1[ ] u

uE N e−=N
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E[Nu ] = N1e
−u /2

E[Nu0
] = N1e

−u0 /2

N1 = E[Nu0
]eu0 /2

E[Nu ] = E[Nu0
]e(u0 −u )/2
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1-D example: resonance search 

In this example we find 
 
 
[from 100 random background 
simualtions] 

1 5.58 0.14= ±N

/2 2
1 1

1 ( )
2

ue P uχ− + >N

P-value 

0 20 40 60 80 100 120
0
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20
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50

Eve
nts 

/ un
it m

ass

The model is a gaussian signal (with 
unknown location m) on top of a continuous 
background (Rayleigh distribution) 

( | ( ) )i i i
i

Poiss n s m bµ β= +∏L

0max ( )
m
q m

0.5( ) 4.34 0.11N u = = ±

Excellent 
approximation 
already from ~2σ 
(p-value≈5x10-2) 

[(E. Gross and O. Vitells, Eur. Phys. J. C, 70, 1-2, (2010) , 
arXiv:1005.1891] 



A real life example 
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P(q0 > u) ≤ E[Nu ]+ P(q0 (0) > u)

P(q0 > u) = N 1e
−u / 2 + 1

2
P(χ1

2 > u)

0

0

/2
1

u
uN e≅N

/2
1[ ] u

uE N e−=N

pglobal = N 1e
−u / 2 + plocal

pglobal = Nu0 e
u0 −u
2 + plocal

Nu0 =0
= 9 ± 3

pglobal = 9 ⋅ e
−25 /2 +O(10−7 ) = 3.3 ⋅10−5

5σ → 4σ trial#~100
3/9/2015 



Measurements 

Case studies: ATLAS and CMS 
mass and coupling combinations 
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PL in obtaining the mass 
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tα = −2lnΛ(α )

Scan the test statistic tα = t(α )
find α̂
t(α̂ ± Nσα̂ ) = N 2



Obtaining the Syst Error 
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σ syst = σ tot
2 −σ stat

2

2σ  CI

1σ  CI



PL in obtaining the mass 
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tα = −2lnΛ(α )

2nd verse same as the first 



A case of 2 poi 
�  In order to address the values of the signal strength and mass of a 

potential signal that are simultaneously consistent with the data, the 
following profile likelihood ratio is used: 

�  In the presence of a signal, this test statistic will produce closed 
contours about the best fit point  (            );  

�  The 2D LR behaves asymptotically as a Chis squared with 2 DOF 
(Wilks’ theorem) so the derivation of 68% and 95% CL cintours is 
easy, but care must be taken; The projection of 2D CI are not 1D CI! 
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Measuring the signal strength and 
mass, a 2D Scan 

q(µ,mH ) = −2lnλ(µ,mH ) = −2ln
L(µ,mH , ˆ̂b)
L(µ̂,m̂H , b̂)

191 

2 parameters of interest: the signal strength µ and the Higgs mass mH 

mH mH 

3/9/2015 
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PL in obtaining the Couplings 
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68% CI is a tricky issue 
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Is the WW a better measurement than the combination? 



68% CI is a tricky issue 
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When constraining to positive couplings, the WW gains the full CI 



68% CI is a tricky issue 
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Is the WW a better measurement than the combination? 

1D CI 
Is not 
2D CI 



1D vs 2D Confidence Interval 
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Δχ 2 = 1
Δχ 2 = 2.3  (68% CL)



Application of Cls and qNP test statistic 
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BDT output
-1 -0.5 0 0.5 1

En
tri

es
 / 

0.
2

0

5

10

15

20

25 ATLAS

4lAZZ*AH

-1Ldt = 4.6 fb0=7 TeV  s
-1Ldt = 20.7 fb0=8 TeV  s

Data
Background ZZ*

tBackground Z+jets, t
+ = 0PJ
- = 0PJ

Data
Background ZZ*

tBackground Z+jets, t
+ = 0PJ
- = 0PJ

Can you tell 
O+ from 0-? qNP = −2 ln L(H0 )

L(H1)
= −2 ln Li (0

+ )
Li (0

− )bins∑

Li (0
+ ) = Pois(ni;ni

0+ ) =
ni
0+( )ni e−ni0+
ni !



Test Spin 0 parity 
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pH1 = Prob(moreH1-like |H1)
pH1 (exp |H0 ) = 0.37%,
pH1 (obs) = 1.5%
pH0 (obs) = 31%

pH1
CLs (obs) = 2.2%

H0 = 0
+

H1 = 0
−

Which means 
Jp=0- is excluded at the 
97.8% CL in favour of Jp=0+ 

qNP = −2 ln L(H0 )
L(H1)

H1like H0like

pH1
CLs =

pH1
1− pH0

= 1.5%
1− 0.31

= 2.2%



Eilam Gross, WIS, Statistics for PP 200 

Multidimensional PL 
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A toy case with 2 poi 
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A toy case with 1-3 poi 
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L(µ, ", A) =
(µ"As+ b)n

n!
e�(µ"As+b) 1

�"

p
2⇡

e�("meas�")2/2�2
"

1

�b

p
2⇡

e�(bmeas�b)2/2�2
b

1

�A

p
2⇡

e�(Ameas�A)2/2�2
A

 

n = µεAs + b
L = L(µ,ε,A,b)

!! 

3!cases!studied
1poi :µ !!!!!!!!!!while!ε,A,b!profiled
2poi :µ ,ε!!!!!!!profile!A!and!b
3poi:!µ ,ε,A!!!profile!!b



A toy case with 3 poi 
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L(µ, ", A) =
(µ"As+ b)n

n!
e�(µ"As+b) 1

�"

p
2⇡

e�("meas�")2/2�2
"

1

�b

p
2⇡

e�(bmeas�b)2/2�2
b

1

�A

p
2⇡

e�(Ameas�A)2/2�2
A

χ3
2

2 4 6 8 10 12 14
q(1)

0.005

0.010

0.050

0.100

0.500

1

f(q(1)|μ=1)

χ2(ndof=3) χ2(ndof=2)

χ2(ndof=1)



A toy case with 2 poi 
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L(µ, ", A) =
(µ"As+ b)n

n!
e�(µ"As+b) 1

�"

p
2⇡

e�("meas�")2/2�2
"

1

�b

p
2⇡

e�(bmeas�b)2/2�2
b

1

�A

p
2⇡

e�(Ameas�A)2/2�2
A

χ2
2

2 4 6 8 10 12 14
q(1)

0.005

0.010

0.050

0.100

0.500

1

f(q(1)|μ=1)

χ2(ndof=3) χ2(ndof=2)

χ2(ndof=1)



A toy case with 1 poi 
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L(µ, ", A) =
(µ"As+ b)n

n!
e�(µ"As+b) 1

�"

p
2⇡

e�("meas�")2/2�2
"

1

�b

p
2⇡

e�(bmeas�b)2/2�2
b

1

�A

p
2⇡

e�(Ameas�A)2/2�2
A

χ1
2

2 4 6 8 10 12 14
q(1)

0.005

0.010

0.050

0.100

0.500

1

f(q(1)|μ=1)

χ2(ndof=3) χ2(ndof=2)

χ2(ndof=1)



Significance 
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Asimov Data Set 

Random Data Set 

Zobs = 1.8

ZA = 4.5

For the fixed data set 
The Nuisance Parameters 
Are fixed to their nominal values. 
The likelihood are more parabolic,  
yet, never symmetric 
The asymptotocs hold! 
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Asimov Data Set 

background = 100 
signal = 90 
ε = 0.5 
A=0.7 

= 0.05
= 10 

= 0.2
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Random Data Set (with signal) 

background = 100 
signal = 90 
ε = 0.5 
A=0.7 

= 0.05 
= 10 

= 0.2 
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Random Data Set (with signal) 

background = 100 
signal = 90 
ε = 0.5 
A=0.7 

= 0.05 
= 10 

= 0.2 



Pulls and Ranking of NPs 
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The pull of θi  is given by 
θ̂i −θ0,i

σ 0

without constraint     σ
θ̂i −θ0,i

σ 0

⎛

⎝⎜
⎞

⎠⎟
= 1   

θ̂i −θ0,i

σ 0

= 0

It’s a good habit to look at the pulls of the NPs and make sure that 
Nothing irregular is seen 
 
In particular one would like to guarantee that the fits do not over constrain 
A NP in a non sensible way 
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Asimov 
bmeas = 100 
εmeas = 0.5 
Ameas =0.7 
µmeas = 1 
nmeas=µsεA+b=131.5 

= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 

! 

To!get!the!pulls:
−scan!q(ε)!
−Find!ε̂
−Find!σ

ε

+ !and!σ
ε

− !i.e.!the!poitive!and!negative!error!bar!substituting!q(ε)=1

With the Asimov data sets we find perfect pulls for the profiled scans 
But not for the fix scans! 
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= 0.05 
= 10 

= 0.2 

σ
0 reminder: 

b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 

Random Data Set 

! 

To!get!the!pulls:
−scan!q(ε)!
−Find!ε̂
−Find!σ

ε

+ !and!σ
ε

− !i.e.!the!poitive!and!negative!error!bar!substituting!q(ε)=1

With the random data sets we find perfect pulls for the profiled scans 
But not for the fix scans! 
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Back to Asimov: Find the Impact of a NP 
bmeas = 100 
εmeas = 0.5 
Ameas =0.7 
µmeas = 1 
nmeas=µsεA+b=131.5 

= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 

To get the impact of a Nuisance Parameter 
in order to rank them: 

! 

Say!we!want!the!impact!of!ε
−Scan!q(ε),!profiling!all!other!NPs
−Find!ε̂   
−(note!that!µ̂

ε̂
= µ̂)

−Find!µ̂
ε̂±σ ε

± = ˆ̂µ
ε̂±σ ε

±

−The!impact!is!given!by!Δµ± = ˆ̂µ
ε̂±σ ε

± − µ̂
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= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 

Random Data Set: Find the Impact of NP 

To get the impact of a Nuisance Parameter 
in order to rank them: 

! 

Say!we!want!the!impact!of!ε
−Scan!q(ε),!profiling!all!other!NPs
−Find!ε̂   
−(note!that!µ̂

ε̂
= µ̂)

−Find!µ̂
ε̂±σ ε

± = ˆ̂µ
ε̂±σ ε

±

−The!impact!is!given!by!Δµ± = ˆ̂µ
ε̂±σ ε

± − µ̂
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Asimov: SUMMARY of Pulls and Impact 
bmeas = 100 
εmeas = 0.5 
Ameas =0.7 
µmeas = 1 
nmeas=µsεA+b=131.5 

= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 
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Random Data Set: SUMMARY of Pulls and Impact 

= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 



Pulls and Impacts: 
More examples 
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= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 
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= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 
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= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 



221 

= 0.05 
= 10 

= 0.2 

σ
0 

reminder: 
b0 = 100 
ε0 = 0.5 
A0 =0.7 
µ0 = 1 
n0=131.5 
signal =90 



Real Examples 
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Pulls and Ranking of NPs 
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Ranking  θi  by its effect 
in the NP 

Δµ± = ˆ̂µ
ε̂±σ ε

± − µ̂

By ranking we can tell  
which NPs are the important  
ones and which can be pruned 



The Higgs Mass Paper 
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Bloggers  
Spot 

A combination 
 on a back of  
an envelope 
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An exercise in combining experiments (or channels)  

�  We assume two channels and ignore correlated systematics 

�   We have 

�   It follows that 

�  Variance of      is is given by   
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An exercise in combining experiments (or channels)  
�  The combined limit at CL 1-αis given by 

�   The combined discovery p-value is given by 

�  Median upper limit 

�  Which gives 
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An exercise in combining experiments (or channels)  

�  This combination takes onto account fluctuations of the observed 
limit  
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Implications in Astro-Particle Physics 
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The lack of events in spite of an expected background allows us to set 
a better limit than the expected 
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