ESHEP SCHOOL, BANSKO (BULGARIA) - SEPT 2015

# COSMOLOGY LECTURE 3

## Andrea De Simone



## • LECTURE 1:

The Universe around us. Dynamics. Energy Budget.

The Standard Model of Cosmology: the 3 pillars (Expansion, Nucleosynthesis, CMB).

## • LECTURE 2:

Dark Energy. Dark Matter as a thermal relic. Searches for WIMPs.

## • LECTURE 3:

Shortcomings of Big Bang cosmology. Inflation. Baryogenesis

## • LECTURE 1:

The Universe around us. Dynamics. Energy Budget.

The Standard Model of Cosmology: the 3 pillars (Expansion, Nucleosynthesis, CMB).

## • LECTURE 2:

Dark Energy. Dark Matter as a thermal relic. Searches for WIMPs.

## • LECTURE 3:

Shortcomings of Big Bang cosmology. Inflation. Baryogenesis

### PROBLEMS

## **Shortcomings of Standard Big-Bang Theory**

- flatness problem
- entropy problem
- horizon problem
- monopole problem

(NB: they are not inconsistencies of the theory)

## **FLATNESS PROBLEM**



("**fine-tuning**" problem)

recall 
$$S = sa^3 = \text{const.}$$
  $S \sim T^3 a^3$ 

assuming adiabatic expansion:  $S_{\text{now}} \sim H_0^{-3} s_0 \sim H_0^{-3} T_0^3 \sim 10^{90}$ 

the entropy within the horizon is huge now, with respect to the early universe.

 $\Omega$  -1 is so close to 0 at early times because the total entropy of the Universe is so huge!

$$|\Omega - 1| \propto \frac{1}{a^2 H^2} \sim \frac{1}{a^2 T^4} \propto \frac{1}{T^2 S^{2/3}}$$

### HORIZON PROBLEM

Recall: particle horizon is the distance travelled by photons

let's take our current horizon  $d_0$  and track it back in time to the time of last-scattering (LS), when CMB formed  $T_{LS} \sim 0.2$  eV.  $T_0 \simeq 2.3 \times 10^{-4} \text{ eV}$ 

$$\lambda_H|_{\rm LS} = d_0 \frac{a_{\rm LS}}{a_0} = d_0 \frac{T_0}{T_{\rm LS}}$$

Hubble radius (~ the size of our observable universe) ~  $a^{-3/2} \propto T^{3/2}$  for MD.

$$\left(\frac{\lambda_H|_{LS}}{H_{LS}^{-1}}\right)^3 = \left(\frac{T_{LS}}{T_0}\right)^{3/2} \simeq 10^5$$

at LS there were 10<sup>5</sup> causally disconnected regions that now correspond to our horizon!

Why regions that were not in causal contact have the same temperature?

at LS, the length  $\lambda_H$  corresponding to our horizon today was much larger than the causally connected universe (at that time).



## **MONOPOLE PROBLEM**

magnetic monopoles produced at a phase transition at  $T=T_c$ , a generic prediction of GUT theories

1 monopole per correlation volume:

$$n_M \sim H(T_c)^3 \sim (T_c^2/M_P)^3$$

$$\rho_M(T_0) = m_M n_M(T_0) = m_M \frac{n_M(T_c)}{s(T_c)} s(T_0) \sim m_M \left(\frac{T_c}{M_P}\right)^3 T_0^3$$
$$\sim 10^{12} \left(\frac{m_M}{10^{16} \text{ GeV}}\right) \left(\frac{T_c}{10^{16} \text{ GeV}}\right)^3 \text{ GeV cm}^{-3}$$
$$\frac{\rho_M}{\rho_c} \simeq \frac{\rho_M}{10^{-5} \text{ GeV cm}^{-3}} \sim 10^{17} \left(\frac{m_M}{10^{16} \text{ GeV}}\right) \left(\frac{T_c}{10^{16} \text{ GeV}}\right)^3$$

we would see monopoles all around us!

## **IDEA OF INFLATION**

SUPPOSE the Universe had a period of (adiabatic) accelerated expansion  $\ddot{a} > 0$ 

recall

$$\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3}(
ho+3p)$$
 (A negligible

$$\ddot{a}>0 \Longleftrightarrow \rho+3p<0$$

accelerated expansion only if overall pressure is *negative!* (no MD or RD)

special case: de Sitter phase  $p = -\rho$ 

(constant energy density and Hubble rate)

$$H^{2} = \frac{8\pi G_{N}}{3}\rho_{\text{tot}} - \frac{k}{a^{2}}$$
$$\dot{\rho} + 3H(\rho + p) = 0$$

$$a(t) \propto e^{H_I t}$$

(exponential expansion)

## **INFLATION AND THE PROBLEMS**

- inflation delivers a flat universe

$$\frac{|\Omega - 1|_{\text{final}}}{|\Omega - 1|_{\text{initial}}} = \left(\frac{a_{\text{initial}}}{a_{\text{final}}}\right)^2 = e^{-H_I(t_f - t_i)}$$

if inflation is long enough, flatness is achieved exponentially.

- end of inflation (phase transition from inflation to RD era) produces huge entropy



## **MODELS FOR INFLATION**

simple scalar field (inflaton) with:

- energy density dominating the universe
- potential energy dominating over kinetic energy

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

energy-momentum tensor  

$$T^{\mu\nu} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu}\mathcal{L} \quad \text{neglect spatial gradients} \begin{cases} T^{00} = \rho_{\phi} = \frac{\dot{\phi}^2}{2} + V(\phi) \\ T^{ii} = p_{\phi} = \frac{\dot{\phi}^2}{2} - V(\phi) \end{cases}$$

IF 
$$V(\phi) \gg \dot{\phi}^2$$
  $\longrightarrow$   $p_{\phi} \simeq -\rho_{\phi}$  de Sitter phase!

Friedmann Eq.:

$$H^2 \simeq \frac{8\pi G_N}{3} V(\phi)$$

inflation driven by vacuum energy of the inflaton field

## SLOW ROLL

Eq. of motion:  $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$  $\langle (\phi) \rangle$  $V(\phi) \gg \dot{\phi}^2 \longrightarrow \frac{(V')^2}{V} \ll H^2$ Slow-roll  $\ddot{\phi} \ll 3H\dot{\phi} \implies V'' \ll H^2$ conditions field is slowly rolling down its [exercise: do explicit derivations] nearly-flat potential  $\epsilon \equiv \frac{1}{16\pi G_N} \left(\frac{V'}{V}\right)^2$  $\eta \equiv \frac{1}{8\pi G_N} \left(\frac{V''}{V}\right)$  $\epsilon \ll 1$  $|\eta| \ll 1$ slow-roll inflation if "slow-roll parameters"

arepsilon can also be written as (do it!):  $\epsilon = -\dot{H}/H^2$ 

so 
$$\frac{\ddot{a}}{a} = \dot{H} + H^2 = (1 - \epsilon)H^2 > 0 \iff \epsilon < 1$$

inflation if and only if  $\varepsilon < 1$ 

inflation ends when  $\varepsilon \sim 1$ .

## **INFLATION MODELS**



a few examples: Chaotic inflation, Hybrid inflation, DBI inflation, k-inflation, Ghost inflation, Natural inflation, Supernatural inflation, Trapped inflation, Brane inflation, Warm inflation, String-driven inflation, Racetrack inflation, D-term inflation, F-term inflation, Extended inflation, Topological inflation, Soft inflation, Hyperextended inflation, Thermal inflation, Hilltop inflation, Superhilltop inflation, Power law inflation ...



## SPECTRAL PARAMETERS

power spectrum of scalar perturbations  $(\delta\phi)_{\rm cl}\sim \phi H^{-1}$  $(\delta\phi)_{\rm vac} \sim H/(2\pi)$  $\mathcal{P}(k) \simeq \left[ (\delta\phi)_{\rm vac} / (\delta\phi)_{\rm cl} \right]^2 = \left. \left( \frac{H}{\dot{\phi}} \right)^2 \left( \frac{H}{2\pi} \right)^2 \right|_{k=aH} = \dots = \left. \frac{8G_N^2}{3} \frac{V}{\epsilon} \right|_{k=aH}$ Show:  $\frac{d}{d\ln k} = -\frac{1}{8\pi G_N} \frac{V'}{V} \frac{d}{d\phi}$ Hint:  $k = aH \Longrightarrow d\ln k = Hdt$  $n_s - 1 \equiv \frac{d\ln \mathcal{P}(k)}{d\ln k}$  $(\mathcal{P}(k) \propto k^{n_s - 1})$ Using above  $n_s = 1 - 6\epsilon + 4\eta$ relations, show that:  $d\epsilon/d\ln k = -2\epsilon\eta + 4\epsilon^2$ and  $n_{\rm s} \sim 1$  scale-independent spectrum of perturbations!!!  $\mathcal{P}_g = \left. \frac{128G_N^2}{3} V \right|_L$  $r = \frac{\mathcal{P}_g}{\mathcal{D}} = 16\epsilon \ll 1$ 

## **EVOLUTION OF PERTURBATIONS**



## **GENERATION OF LARGE SCALE STRUCTURES**

Quantum fluctuations of the inflaton are excited during inflation and stretched to cosmological scales



fluctuations are connected to the metric perturbations (gravity) via Einstein's equations.

Gravity acts a messanger.

Once a given wavelength re-enters horizon,

gravity communicates the perturbations to baryons and photons



## IMPACT ON CMB

perturbations of inflaton field reflect onto the CMB temperature fluctuations



## BARYON ASYMMETRY OF THE UNIVERSE

Our Universe has a matter-antimatter asymmetry  $\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \Big|_{0}$ ,

 $n_{\gamma} \sim T^3$ 

(95% CL)

AGREEMENT

2 main indipendent (and solid) evidences

## Big Bang Nucleosynthesis

primordial abundances fitted by 1 free parameter

$$5.1 \times 10^{-10} < \eta < 6.5 \times 10^{-10}$$

## **Cosmic Microwave Background**

analysis of CMB peaks constrains the baryon energy density

$$\eta = (6.23 \pm 0.17) \times 10^{-10} \checkmark$$

a globally (but not locally) symmetric Universe? **NO!** it would upset CMB

after inflation: Universe perfectly symmetric

## **NECESSARY CONDITIONS FOR BARYOGENESIS**

### 1. Baryon number violation

if B is conserved and  $B(t_0) = 0$  then  $B(t) \propto \int_{t_0}^{t} [B, H] dt' = 0 \quad \forall t$ 

**2. C/CP violation** if C is conserved  $i \to f$  &  $\overline{i} \to \overline{f}$  have the same rate. same amount of  $f, \overline{f}$ B is odd under C:  $B(\overline{f}) = -B(f)$  so B=0.

### 3. Departure from thermal equilibrium

CPT: particles & antiparticles same mass --> same number density --> B=0

(link to BSM flavour physics, electric dipole moments etc...)

## SAKHAROV CONDITIONS

### in the Standard Model?

### 1. Baryon number violation

baryon number symmetry is exact at classical level but broken by quantum effects (anomalous symmetry!)

## 2. C/CP violation

CP violation in the CKM matrix (too small)

### 3. Departure from thermal equilibrium

Electroweak phase transition is strong enough if  $m_{higgs} < 60 \text{ GeV}$ 

The Baryon Asymmetry of the Universe (BAU) needs physics Beyond the Standard Model!

## OUT-OF-EQUILIBRIUM DECAY

Suppose a heavy scalar X couples to SM and has B-violating decays



### **BARYOGENESIS VIA LEPTOGENESIS**

produce a lepton asymmetry in the early universe, then reprocessed into a baryon asymmetry at EW scale (by *sphalerons*).

see-saw (Type I) model:  $\mathcal{L} = \mathcal{L}_{SM} + i\bar{N}_j\partial N_j + \frac{M_i}{2}N_jN_j + \lambda_{j\alpha}N_j\ell_{\alpha}H + \text{ h.c.}$ (j = 1, 2, 3)(SM+ 3 right-handed Majorana neutrinos)  $(\alpha = e, \mu, \tau)$  $N_1$   $N_{2,3}$  $N_1$  $N_{2,3}$  $\epsilon_1 \equiv \frac{\Gamma(N_1 \to \ell_{\alpha} H) - \Gamma(N_1 \to \ell_{\alpha} H)}{\Gamma(N_1 \to \ell_{\alpha} H) + \Gamma(N_1 \to \overline{\ell_{\alpha}} \overline{H})} \neq 0 \quad \text{from interference of tree/loop amplitudes}$ 

Sakharov:

- B violation is provided by L-violation in N-decays and sphaleron reprocessing;  $\sqrt{}$
- CP violation is fulfilled provided that  $\epsilon_1 \neq 0$  🗸
- departure from equilibrium: N's decouple from the thermal bath at  $T \lesssim M_1$   $\checkmark$

#### **ELECTROWEAK BARYOGENESIS**



- Standard Big Bang cosmology has drawbacks
- the inflationary paradigm is a brilliant solution
- Baryon Asymmetry of the Universe is yet unexplained, calling for BSM physics
- the cosmology/particle physics interplay has been and currently is a very successful and fascinating "engagement"