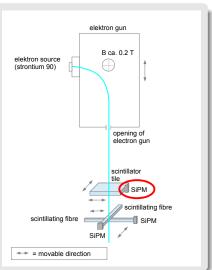
Gain and Breakdown Voltage Measurements


CLICdp: ECAL Lab Meeting (CERN)

Magdalena Munker

March 20, 2015

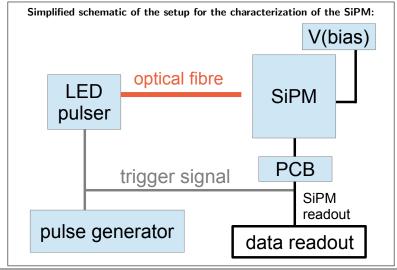
Setup for study of Scintillator tiles with SiPM Readout

 \circ Setup in cooled dark room (temperature about $20\,^{\circ}\mathrm{C})$:

Electron source strontium ⁹⁰Sr: \circ Sr \rightarrow Y (e₂⁻ + $\overline{\nu}_{e}$) + e₁⁻ + $\overline{\nu}_{e}$ \hookrightarrow Selectable electron energy \leftarrow Opening: $(\Delta X, \Delta Y) = (1.2 \text{ mm}, 1.2 \text{ mm})$ Scintillators covered by reflecting foil: • Trigger fibres: $1 \text{ mm} \times 1 \text{ mm} \times 20 \text{ mm}$ Scintillator tile: 15 mm x 15 mm x 1 mm SiPMs from Hamamatsu: \circ area of 1 mm, 400 pixel (50 μ m) direct coupling to the scintillator

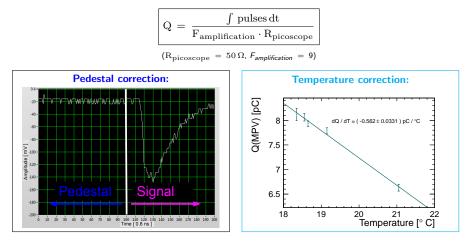
\hookrightarrow This talk:

About characterization of the SiPM which is used to readout signal in scintillator tile


ECAL Lab Meeting	M. Munker	Gain and Breakdown Voltage Measurement for the used SiPM	p. 2
------------------	-----------	--	------

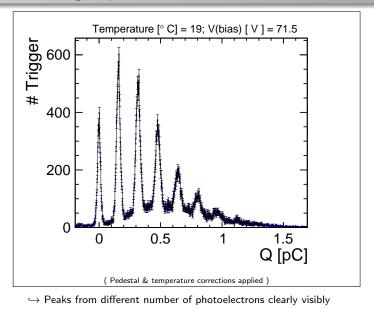
Setup for Characterization of SiPM

Same setup, but:

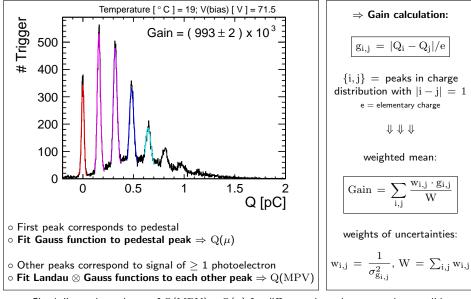

 \circ Replace scintillator tile by optical fibre, connected to LED pulser

 \circ Do not use trigger and electron gun

Observable to Measure Signal in SiPM


Observable to measure signal in SiPM = charge in SiPM:

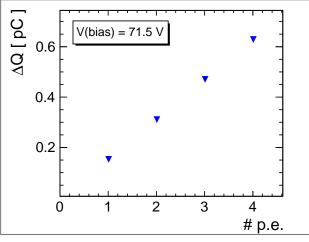
\Rightarrow Pedestal and temperature correction of the charge:


Measured Charge Spectrum

 \hookrightarrow Underlying noise spectrum from afterpulses ?

ECAL Lab Meeting | M. Munker | Gain and Breakdown Voltage Measurement for the used SiPM | p. 5

Gain Calculation


 $\hookrightarrow \mbox{Check linear dependence of $Q(MPV) - Q(\mu)$ for different photoelectron peaks to validate calibration of charge to number of photoelectrons}$

ECAL Lab Meeting	M. Munker	Gain and Breakdown Voltage Measurement for the used SiPM	p. 6
------------------	-----------	--	------

Cross Check of the Gain Calculation

 \circ Identify peaks in charge spectrum with different numbers of photoelectrons # p.e.

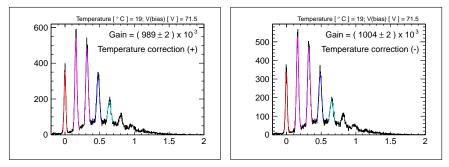
 \circ Calculate for each # p.e. difference in charge to pedestal peak ΔQ

 \hookrightarrow Can calibrate measured charge to # p.e. with the measured gain:

$$| \# \mathrm{p.e.} = \mathrm{Q}/(\mathrm{Gain} \cdot \mathrm{e}) |$$
 (e = electron charge)

ECAL Lab Meeting

p. 7


Uncertainties of the Gain Calculation

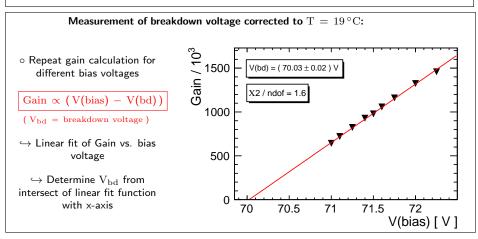
Motivation:

Breakdown voltage calculation by linear fit of gain values for different bias voltages

Composition of uncertainties in gain measurement:

- 1.) Propagate uncertainties of $Q(\mathrm{MPV})$ and $Q(\mu)$ (in the order of $1\,\%$)
- 2.) Uncertainties from the temperature correction:

 \hookrightarrow Additional uncertainty of $0.75\,\%$ from the temperature correction \hookleftarrow


Breakdown Voltage Calculation

Motivation:

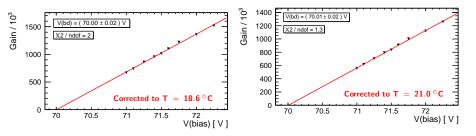
 \circ Currently used bias voltage of $V({\rm bias})$ = $71.5\,{\rm V}$ is optimal value for ${\rm T}$ = $25^{\circ}{\rm C}$

 \circ Temperature in the dark room is in the range of $T\,=\,(18-22)^\circ C$

 \hookrightarrow Calculate breakdown voltage to check if V(bias) = 71.5 V is optimal

ECAL Lab Meeting | M. Munker | Gain and Breakdown Voltage Measurement for the used SiPM | p. 9

Temperature Dependence of the Breakdown Voltage


Expectations:

Higher temperature leads to higher thermal vibrations of silicon lattice

 $\hookrightarrow \mathsf{Smaller} \ \mathsf{path} \ \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{electron}$

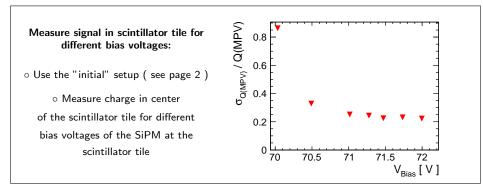
 $\hookrightarrow \mathsf{Higher} \ \mathsf{breakdown} \ \mathsf{voltage}$

Correct measurement of breakdown voltage for different temperatures:

 \hookrightarrow Value of breakdown voltage is stable \leftrightarrow in considered temperature range of the measurements

 $\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow$

Is V(bias) = 71.5 V the optimal value of the bias voltage ?


Breakdown Voltage / Interpretation of Results

Is V(bias) = 71.5 V the optimal value of the bias voltage ? :

 $\circ\,$ Bias voltage should be safely above breakdown voltage

o But the signal to noise ratio might get worse with higher bias voltage

 $\Downarrow \Downarrow \Downarrow \Downarrow$

 \hookrightarrow Used bias voltage of V(bias) = 71.5 V seems to be in a good range

ECAL Lab Meeting | M. Munker | Gain and Breakdown Voltage Measurement for the used SiPM | p. 11

Summary and Outlook

• Measurement of gain:

- \longrightarrow Conversion of charge into number of photoelectrons
- $\longrightarrow \quad \text{Comparison to other studies}$

• Measurement of breakdown voltage:

 \longrightarrow Confirmation that used bias voltage is in a good range

• To do:

- \longrightarrow Characterisation of new SiPMs
- \longrightarrow Application of new SiPMs for uniformity studies