Update of the temperature correction

ECAL Lab Meeting 2015.03.20 Laszlo Varga (CERN, Eotvos Lorand University HU)

Data set

Same as in the 03.04 ECAL Lab Meeting "Update of the temperature correction" presentation:

- Measurement point: position(x,y) = (0 mm,0 mm)
- Initial setup before modifications of the tile holders
- Date: 08.02.2015; 15.02.2015; 19.02.2015

Update on data selection

The measurement was rejected if:

- High temperature gradient within a measurement
- Low number of triggers
- The begin of the VII. Run
- Single events were rejected if:
 - the pedestal contains a charge value comparable to signal

High temperature gradient within a measurement

II run, IV run and the first file of the I run are removed

Low number of triggers

7/10 points are already rejected because of the temperature gradient In the right figure all types of the modifications are applied

The begin of the VII. run

In the right figure all type of the modifications are applied

Events with signal in pedestal time window

Remove events in which the measured charge of the pedestal is compatible with the signal charge far above the normal pedestal value

Events with signal in pedestal time window

In the right figure all type of the modifications are applied

Mean of charge vs temperature dependence

- Fit Q vs T dependence with linear fit function: Q = p0 * T + p1
- After modifications the fit results are similar within the uncertainties
- The difference between the uncertainties is explainable by the number of triggers

2015.03.20

The relation between uncertainty of $\overline{\mathbf{Q}}$ and the #Trigger

• The uncertainty of the \overline{Q} is proportional to $1/(\#Trigger)^{1/2}$

2015.03.20

Thank you for your attention!