New Developments on Si Photonics at CERN

Vth INFIERI Workshop,
28th April 2015
Sarah Seif El Nasr-Storey

S.Detraz, L.Olantera, G.Pezzullo, C.Sigaud, C.Soos, J.Troska, F.Vasey, M.Zeiler.

Optical Links for LHC data-transmission.

· Tens of thousands of optical links are currently used by all LHC experiments

- Links are based on :
 - COTs lasers and photodiodes qualified for use in the LHC environment.
 - · Custom radiation hard laser drivers, amplifiers, serializers/deserializers
- Links for Phase I upgrade largely provided by the Versatile Link Project
 - Bi-directional @ 5.0 Gbps , Front-end pluggable module, rad-hard front-end
 - GBT chipset for rad-hard custom ASICs

Electronics for HL-LHC applications.

- Increase in luminosity (~x5) requires upgrades to electronics/detector system
 - increased granularity of detectors → higher number of read-out channels
 - increased data rates for links → 10.0 Gb/s
 - higher levels of radiation for on-detector electronics → ~x5 TID + particles/cm²

- Directly-modulated VCSEL-based links will continue to be the workhorse of the optical links:
 - improved packaging techniques enable small form-factor/multi-channel devices
 - intrinsic bandwidth of VCSELs still well beyond target data-rates for Phase II
 - radiation-levels are workable for all but pixel environments
- Work has started on identifying design solutions for a high-speed, multi-channel, small formfactor front-end transceiver that meets HL-LHC requirements based on experience from the Versatile Link.

Is there room for improvement?

- What more can we ask of the HL-LHC optical links?
 - bring optical links all the way to pixel level region of detector with highest granularity/ channel-density that would benefit the most from going optical
 - need: extremely radiation-hard devices.
 - even higher channel density with less power consumption
 - need: extremely small/compact devices.
 - increase flexibility in producing custom transceivers for HEP
 - need: improved access to the design level of the optoelectronics.
 - complete integration of links with sensors
 - need: ability to easily hybridize optoelectronics with sensors/ASICs.

Is there room for improvement?

- What more can we ask of the HL-LHC optical links?
 - bring optical links all the way to pixel level region of detector with highest granularity/ channel-density that would benefit the most from going optical
 - need: extremely radiation-hard devices.
 - even higher channel density with less power consumption
 - need: extremely small/compact devices.
 - increase flexibility in producing custom transceivers for HEP
 - need: improved access to the design level of the optoelectronics.
 - complete integration of links with sensors
 - need: ability to easily hybridize optoelectronics with sensors/ASICs.

Silicon Photonics?

Outline

- Silicon Photonics
 - What is it?
 - Where do we start looking?
- · CERN evaluation of the radiation-resistance of silicon photonics devices
 - first radiation tests on silicon modulators
- Looking ahead

Silicon photonics: a full optical circuit in silicon.

Silicon photonics :

manufacturing of photonics circuits on Silicon using CMOS process technology in a

CMOS fab on SOI wafers

- Complete production/integration of the components required to make a full optical circuit in a single piece of silicon :
 - passive components
 - low loss waveguides, optical couplers, optical splitters
 - active components
 - Photodiodes , Lasers, Modulators

Optical confinement in SOI wafers.

- SOI wafer is a natural optical waveguide due to the difference in refractive index between the Si and SiO₂ layers of the SOI wafer
 - high index contrast between Si and SiO2 for low-loss waveguides
 - core-size ≤ 400 nm for Single-Mode (SM) operation in the 1310-1550 nm telecom-band
 - typical core-size for SM fibre is 9 μm

L. Pavesi, "Will silicon be the photonics material of the third millennium?" Journal of Physics: Condensed Matter, vol. 15, pp. 1169–1196, 2005.

Passive components in SiPh: waveguides.

- Waveguides are patterned onto the SOI wafer using standard CMOS fabrication processes
 - electron-beam (EB) lithography/laser deep ultraviolet (DUV) lithography technologies developed for the fabrication of electronic circuits in CMOS are re-used to manufacture the sub µm waveguides
 - capable of forming 100-nm patterns
 - silicon core formed by low-pressure plasma etching with an electron-cyclotron resonance (ECR)/inductive coupled plasma (ECP).
 - cladding layer deposited by a low-temperature process (e.g. PE-CVD)

SEM images of SiPh passive structures: K.Yamada et.al Silicon Photonics Based on Photonic Wire Waveguides

Passive components in SiPh: couplers.

- SM fibre is still used to connect an optical circuit to the "outside world"
 - interface between photonics devices and the optical fibre is challenging due to the differences in the size of the two devices

Si Core ~200 nm

 Although processes have been developed to allow for horizontal coupling (tapers/spot-size converters) usually vertical coupling techniques are used to relax alignment tolerances for coupling between photonics circuits and SM fibre.

- Grating couplers :
 - the grating period is designed to match a specific wavelength and coupling angle

SEM images of SiPh grating coupler.

Active components in SiPh: photodiodes.

- Silicon is transparent in the 1300-1550 nm telecom band, but a photodetector needs to absorb light!
 - active (detection) region is grown directly on the SOI waveguide in a material with good absorption in the IR region (Ge-on-Si).
 - active region in III-V compound is heterogeneously integrated on-to the SOI waveguide (III-V-on-Si):
 - direct epitaxy of III-V using buffer layer
 - molecular bonding of III-V wafers/dies

Surface illuminated Ge-Photodiode
<u>Université Paris Sud</u>

III-V photodetector on Silicon FP-7 Helios course on SiPh

Active components in SiPh: lasers.

- Silicon is an indirect band gap material (i.e. not by default a lasing medium)
 - have to work pretty hard to make an efficient silicon laser
 - instead the SiPh community seems to have chosen to focus on heterogeneous integration:
 - optical gain (i.e. laser) in standard III-V material
 - coupling to silicon photonics circuits done via SOI waveguides

Active components in SiPh: modulators.

- Modulators can also be used for data transmission in photonic circuits.
- Optical intensity modulators are the most common
 - The intensity of light at the output port of the modulator can be changed by varying the applied voltage.
 - two common approaches: interferometers and resonant cavities
 - in both cases modulation depends on changing the refractive index of the active medium

Mach-Zehnder interferometer

Investigating viability of SiPh for HEP.

 For silicon photonics to be considered for future HEP application it must at least meet the requirements set for HL-LHC

Requirements for HEP data transmission (HL-LHC)

high speed -

low power -

high-channel density - 👍 👍

radiation hardness ??

- Radiation hardness to be compared to existing technologies used in state of the art optical links for HEP; i.e. VCSELs and p-i-n photodiodes.
- Start by looking at the basic building blocks of a SiPh circuit, and investigate:
 - Effect of damage from non-ionizing energy loss on the blocks
 - Effect of damage from ionizing energy loss on the building blocks
 - Compare results to VCSELs/p-i-n photodiodes
- Work in the CERN PH-ESE-BE has focused on evaluating the effect of radiation on silicon Mach-Zehnder interferometers provided by the <u>photonics group</u> at the Université Paris Sud.

Silicon Mach-Zehnder Modulators.

- What does each arm of the Mach-Zehnder interferometer look like?
 - rib width and etch depth chosen to create a single-mode waveguide
 - p-n diode is created by selectively doping regions of the waveguide
 - reverse-biasing the diode changes the carrier densities in the silicon waveguide
 - refractive index of silicon depends on the free-carrier density of the material
 - changing the refractive index of the waveguide changes the effective index (n_{eff}) of the structure
 - think of n_{eff} as, on-average, the refractive index seen by light propagating in the waveguide

Silicon Mach-Zehnder Modulators.

 Changing the reverse-bias applied to the device will induce a phase-shift in the transmission of the interferometer

Characterization of Silicon Mach-Zehnder Modulators.

- The optical transmission of the MZI is measured using a broadband source and an optical spectrum analyzer:
 - DC measurement of phase-shift achievable for an applied reverse bias.

Test-chip from Université Paris Sud

Optical bench set-up at CERN to measure test chips

· Pig-tailing (external to CERN) and bonding (internal) can also be performed to allow for

continuous monitoring of devices during radiation tests.

Results from first radiation tests in 2014.

First tests on radiation tolerance of silicon modulators carried out in 2014

- Neutron irradiation, 20 MeV neutron facility, up-to fluences of 10¹⁶ n/cm² without any significant degradation in performance.
- X-ray irradiation up-to doses of a few MGy shows that the devices are sensitive to damage from ionizing radiation.

Results from first radiation tests in 2014.

Look to the structure to try and understand what was measured during the radiation tests

- Highly doped p-n diodes :
 - damage from non-ionizing energy loss typically causes changes in effective doping concentration of silicon (n → p)
 - no intrinsic region in irradiated structures
 - high doping levels (both p and n) compared to typical sensors
- SOI waveguides :
 - thick, not necessarily radiation-hard oxide surrounding the active regions of the phase-shifting diodes
 - damage from ionizing energy loss is known to cause :
 - positive charge build-up in SiO₂ layers
 - additional traps in the Si/SiO₂ interface

Comparison between standard link components and SiPh modulators.

- While VCSELs and p-i-n photodiodes behave differently, so far we cannot say that the p-n phase shifting modulators are any worse:
 - · neither devices are suitable for anything beyond the inner trackers.

Beyond the first radiation tests: a model for TID in silicon photonics Mach-Zehnder modulators.

- Models/simulation tools that are already in use to study the effects of radiation on CMOS transistors and silicon sensors applied to the Mach-Zehnder modulators:
 - predict how design changes to modulators can affect radiation resistance.

Beyond the first radiation tests: ICE-DIP.

- The Intel-CERN European Doctorate Industrial program (ICE-DIP) launched in the fall of 2013 with a work package dedicated to developing a power-efficient, low-cost silicon-photonics data-link for harsh environments
 - Doctoral student in PH-ESE-BE (Marcel Zeiler)

- active + passive devices
- different foundries
- Characterization + Radiation tests planned for later in the year.

Conclusions

- Work has started on evaluating silicon photonics for future data transmission applications at the LHC
- First set of radiation tests completed on silicon-based modulators, so far all results indicate that structures can be as rad-hard as VCSELs/p-i-n photodiodes
 - devices are not affected by non-ionizing radiation (highly doped p-n structures)
 - sensitivity to ionizing radiation attributed to thick oxide layers used in the devices
 - low-dose rate testing and high temperature annealing show that a small amount of recovery can be expected, but not enough to push the devices to the most extreme radiation environments expected at the HL-LHC
- Future Prospects
 - Investigating different models to simulate the pre-and-post irradiation behaviour of silicon modulators and predict favourable design changes
 - New structures (different foundries/doping levels/etch-depths) have been designed and chips in hand expected later in the year