

Electroweak Corrections at High Energy

Ansgar Denner, Würzburg

QCD@LHC 2015 London, September 01–05, 2015

- General features of electroweak corrections
- Automation of electroweak NLO corrections
- Electroweak corrections for specific processes at LHC

• LHC runs @ 13 TeV

Julius-Maximilians

UNIVERSITÄ

WÜRZBURG

 $\hookrightarrow\,$ energy reach extends deeper into TeV range

 \hookrightarrow electroweak corrections (EWC) \sim some 10%

- integrated LHC luminosity will reach some 100 fb⁻¹
 → many measurements at several-per-cent level
 → typical size of EWC
- planned high-precision measurements: cross-section ratios, $M_{\rm W}$, $\sin^2 \theta_{\rm eff}^{\rm lept}$ \hookrightarrow EWC are crucial
- Les Houches wishlist 2013 and update 2015: list of LHC processes where NLO EWC (and NNLO QCD) are needed

Intent of this talk

- describe salient features of EWC in particular sources of large effects
- give brief survey of results for specific process classes emphasizing recent developments

Features of electroweak corrections

coupling

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

typical correction

electromagnetic coupling $\alpha(0) \sim \frac{1}{137}$ $\frac{\alpha(0)}{2\pi} \sim 0.11\%$ charged weak coupling enhanced top coupling

 $\frac{\frac{\alpha}{2s_{\rm w}^2} \sim 2.2\alpha}{\frac{\alpha}{2s_{\rm w}^2} \frac{m_{\rm t}^2}{M_{\rm w}^2} \sim 10\alpha} \frac{\frac{\alpha}{4\pi s_{\rm w}^2} \sim 0.25\%}{\frac{\alpha}{4\pi s_{\rm w}^2} \frac{m_{\rm t}^2}{M_{\rm w}^2} \sim 10\alpha} s_{\rm w}^2 = 1 - \frac{M_{\rm W}^2}{M_Z^2}$

multiplied by $\mathcal{O}(1)$ factors example: pp \rightarrow Hjj: EWC $\sim 4 \times \frac{\alpha}{4\pi s_w^2} \frac{m_t^2}{M_w^2} \sim 5\%$

further enhancements by large logarithms:

- electromagnetic logarithms:
 - initial-state radiation at LEP: $\alpha \ln \frac{M_Z^2}{m^2} \sim 24\alpha \Rightarrow 3.0\%$
 - final-state QED corrections at LHC for exclusive muons $\alpha \ln \frac{M_Z^2}{m_{\prime\prime}^2} \sim 13 \alpha \Rightarrow 1.7\%$
- electroweak Sudakov corrections at $\sqrt{s} = 1 \text{ TeV}$:

$$\frac{\alpha}{2s_{\rm w}^2} \ln^2 \frac{s}{M_{\rm W}^2} \sim 57\alpha \Rightarrow 6.6\%$$

 \Rightarrow expect EWC up to several 10% at LHC

SM input parameters: α_s , α , M_W , M_Z , M_H , m_f , V_{CKM} (natural set)

Setting of α : process-specific choice to

- minimise universal EW corrections
- avoid sensitivity to non-perturbative light-quark masses

popular schemes: fix $M_{
m W}$, $M_{
m Z}$ and lpha

- $\alpha(0)$ scheme: appropriate for external photon
- $\alpha(M_Z)$ scheme: appropriate for internal photons (γ^*) at high energies

 $\alpha(M_{\rm Z})/\alpha(0) \approx 1.06$

 $[\alpha(M_{\rm Z})/\alpha(0)]^2 - 1 \approx 12\%$

• G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 - M_{W}^{2}/M_{Z}^{2})/\pi$, appropriate for W bosons (Z bosons) G_{μ} precisely measured in μ decay

 $\alpha_{G_{\mu}}/\alpha(0) \approx 1.03$

differences can amount to 10% and more for high powers of α

- pp \rightarrow WW: $\sigma \propto \alpha^2$, $[\alpha_{G_{\mu}}/\alpha(0)]^2 1 \approx 6\%$
- pp \rightarrow WWZ: $\sigma \propto \alpha^3$, $[\alpha_{G_{\mu}}/\alpha(0)]^3 1 \approx 10\%$

suitable choice of α crucial \Rightarrow reduces missing higher-order corrections

Warning: EW gauge invariance must be respected!

- \Rightarrow parameter relations must be maintained
 - α must not be set diagram by diagram
 - \blacktriangleright different values of α in gauge-invariant contributions possible
 - ▶ global factors like $\alpha(0)^m \alpha_{G_{\mu}}^n$ possible
 - weak mixing angle: $\sin \theta_w = s_w = \sqrt{1 M_W^2/M_Z^2}$ fixed once M_W and M_Z are fixed !
 - Yukawa couplings are uniquely fixed by fermion masses !

Sudakov logarithms induced by soft gauge-boson exchange

+ sub-leading logarithms from collinear singularities

typical impact on $2 \rightarrow 2$ reactions at $\sqrt{s} \sim 1 \,\mathrm{TeV}$:

Julius-Maximilians-

UNIVERSIT

WÜRZBURG

$$\begin{split} \delta_{\rm LL}^{1-\rm loop} &\sim -\frac{\alpha}{\pi s_{\rm w}^2} \ln^2 \frac{s}{M_{\rm W}^2} &\simeq -26\%, \qquad \delta_{\rm NLL}^{1-\rm loop} &\sim +\frac{3\alpha}{\pi s_{\rm w}^2} \ln \frac{s}{M_{\rm W}^2} &\simeq 16\%\\ \delta_{\rm LL}^{2-\rm loop} &\sim +\frac{\alpha^2}{2\pi^2 s_{\rm w}^4} \ln^4 \frac{s}{M_{\rm W}^2} &\simeq 3.5\%, \qquad \delta_{\rm NLL}^{2-\rm loop} &\sim -\frac{3\alpha^2}{\pi^2 s_{\rm w}^4} \ln^3 \frac{s}{M_{\rm W}^2} &\simeq -4.2\% \end{split}$$

 \Rightarrow corrections still relevant at 2-loop level

Note: differences to QED / QCD where Sudakov logarithms cancel

- non-Abelian charges of inc. particles "open" \rightarrow Bloch–Nordsieck theorem not applicable
- massive gauge bosons W, Z can be reconstructed
 → no need to add real W, Z radiation

extensive theoretical studies at fixed perturbative (1-/2-loop) order and suggested resummations via evolution equations Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al.; Hori et al.; Melles; Kühn et al., Denner et al. '00–'08 **Electroweak corrections in Sudakov approximation**

- Sudakov logarithms have simple universal origin (IR and UV regime)
 - \Rightarrow known for arbitrary processes at NLO (not mass suppressed at LO)

Denner, Pozzorini '01

• provide simple estimate for one-loop corrections at level of $\sim 5\%$ rules of thumb:

contribution of double logarithms per external line: $\delta_i = -C_i \frac{\alpha}{4\pi} \ln^2 \frac{s}{M_{uv}^2}$

particle	C_i	$\delta_i(1{ m TeV})$	particle	C_i	$\delta_i(1{\rm TeV})$
W boson	$\frac{2}{s_{\rm W}^2}$	14%	left-handed lepton	$\frac{s_{\rm w}^2 + 3c_{\rm w}^2}{4s_{\rm w}^2 c_{\rm w}^2}$	5.7%
Z boson	$\frac{2c_{\rm w}^2}{s_{\rm w}^2}$	11%	right-handed lepton	$\frac{1}{c_{\rm w}^2}$	2%
photon	2	3%	left-handed quark	$\frac{s_{\rm w}^2 + 27c_{\rm w}^2}{36s_{\rm w}^2 c_{\rm w}^2}$	5.2%
H boson	$\frac{s_{\rm w}^2 + 3c_{\rm w}^2}{4s_{\rm w}^2 c_{\rm w}^2}$	5.7%	right-handed quark	$\frac{4}{9c_{\rm W}^2}$	0.9%

additional mixing contributions for γ and Z mixing

• implementation of weak corrections in Sudakov approximation

▶ pp \rightarrow Z($\rightarrow \nu \bar{\nu}$) + {1, 2, 3} jets

Chiesa et al. '13 (Alpgen)

▶ pp \rightarrow Z \rightarrow l^+l^- , pp \rightarrow t \bar{t} , pp \rightarrow 2 jets

Campbell, Wackeroth, Zhou '15 (MCFM)

Julius-Maximilians-

Example: Drell-Yan production

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

(courtesy of S. Dittmaier)

B

Charged current: $pp \rightarrow l^+ \nu_l$ at $\sqrt{s} = 14 \text{ TeV}$ (based on Brensing et al. arXiv:0710.3309)

$M_{{ m T}, u_l l}/{ m GeV}$	$50 - \infty$	$100 - \infty$	$200\!-\!\infty$	$500\!-\!\infty$	$1000-\infty$	$2000-\infty$
$\sigma_0/{ m pb}$	4495.7(2)	27.589(2)	1.7906(1)	0.084697(4)	0.0065222(4)	0.00027322(1)
$\delta^{\mu^+\nu\mu}_{q\bar{q}}/\%$	-2.9(1)	-5.2(1)	-8.1(1)	-14.8(1)	-22.6(1)	-33.2(1)
$\delta^{ m rec}_{qar q}/\%$	-1.8(1)	-3.5(1)	-6.5(1)	-12.7(1)	-20.0(1)	-29.6(1)
$\delta^{(1)}_{ m Sudakov}/\%$	0.0005	0.5	-1.9	-9.5	-18.5	-29.7
$\delta^{(2)}_{ m Sudakov}/\%$	-0.0002	-0.023	-0.082	0.21	1.3	3.8
$M_{\mathrm{T},\nu_l l}$ large $\Rightarrow s, t$ large					Suda	kov domination

Neutral current: $pp \rightarrow l^+ l^-$ at $\sqrt{s} = 14 \text{ TeV}$ (based on Dittmaier/Huber arXiv:0911.2329)

$M_{ll}/{ m GeV}$	$50-\infty$	$100-\infty$	$200-\infty$	$500 - \infty$	$1000-\infty$	$2000 - \infty$
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\delta^{ m rec}_{qar q,{ m phot}}/\%$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta_{qar{q},\mathrm{weak}}/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta^{(1)}_{ m Sudakov}/\%$	0.27	0.54	-1.43	-7.93	-15.52	-25.50
$\delta^{(2)}_{ m Sudakov}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38
sizeable contribution from small t region					no Suda	akov domination

- Sudakov regime not always relevant ($s_{ij} = 2k_ik_j \gg M_W^2$ for all momenta $k_i \neq k_j$)
 - Sudakov appr. not applicable to processes with resonances ($s_{\rm res} \gg M_{\rm W}^2$)
 - Sudakov approximation not applicable to processes/observables dominated by *t*-channel diagrams ($t \gg M_{\rm W}^2$)
 - \Rightarrow additional potentially large logarithms of the form $\log(t/s) \sim 2\log\theta$
 - relevance depends on observable

e.g. Drell-Yan at LHC: large $p_{T,l}$ probes Sudakov regime large M_{ll} receives sizeable contributions from small t Dittmaier et al. '10

- real corrections should be included
 - ▶ real photon radiation \Rightarrow large effects
 - real massive vector-boson radiation Baur '06, Bell et al. '10
 - \Rightarrow partial cancellation of enhanced logarithmic corrections strongly dependent on W/Z reconstruction and separation
- $\bullet\,$ at LHC often sizeable contributions from energies below $1\,{\rm TeV}$
- \Rightarrow exact calculations of NLO EW corrections preferable if possible

Julius-Maximilians-

Consistent treatment of EWC \Rightarrow QED-corrected parton distributions analogous to QCD-improved parton model

collinear photon emission from initial-state quarks $q \to q\gamma$ and collinear photon splitting $\gamma \to q\bar{q}$

 \Rightarrow mass singularities in EWC

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- \Rightarrow absorb singularities into quark and photon distribution functions
 - EWC depend on factorization scale $\mu_{\rm fact,QED}$
 - $\mathcal{O}(\alpha)$ corrections to all PDFs
 - photon as parton in hadrons ⇒ new photon PDF

PDFs including QED corrections:

- MRST2004QED Martin et al. '04, only set including $\mathcal{O}(\alpha)$ until 2013, outdated
- NNPDF2.3QED Ball et al. '13 [NNPDF collaboration]

 \Rightarrow currently best PDF set (N)NLO QCD + NLO EW photon PDF fitted to DIS and Drell–Yan data ($10^{-5} \lesssim x \lesssim 10^{-1}$)

QED effects in PDFs

NNPDF2.3QED PDF set

Julius-Maximilians-

WÜRZBURG

Ball et al. '13 [NNPDF collaboration]

QED corrections to PDFs

• $\lesssim 0.1\%$ for x < 0.1, per-cent effects for x > 0.1

Photon PDF:

- agreement with old $\gamma_{\text{MRST}}(x)$ for $x \gtrsim 0.03$, but $\gamma_{\text{NNPDF}}(x) < \gamma_{\text{MRST}}(x)$ for smaller x
- lack of experimental information for $x \gtrsim 0.1$
 - $\hookrightarrow \mbox{ constrained via } \gamma\gamma \to \mu^+\mu^-, {\rm W}^+{\rm W}^- \mbox{ for larger } x \mbox{ in the future } ?$

AP

Photons as partons \Rightarrow photon-induced processes

• result from crossing of photonic bremsstrahlung corrections (in all qq, $q\bar{q}$, $\bar{q}\bar{q}$ initiated processes)

• LO contribution from $\gamma\gamma$ for production of charged particles in gg, $q\bar{q}$ channels (e.g. in $\mu^+\mu^-$, W⁺W⁻ production)

relevance

Julius-Maximilians

UNIVERSI

- $q\gamma$ contributes at per-cent level if qg channels exist (gluon PDFs are larger than photon PDFs for typical LHC processes)
- more significant contributions if no QCD counterparts exist e.g. $\gamma\gamma$ contributions up to 10% in certain regions of phase space for $\gamma\gamma \rightarrow l^+l^-$ Dittmaier, Huber '10; Carloni Calame et al. '07, Boughezal, Li, Petriello '13 $\gamma\gamma \rightarrow W^+W^-$ Bierweiler et al. '12; Baglio, Ninh, Weber '13; Billoni et al. '13

Universal logarithmically enhanced corrections $\propto \alpha^n \ln^n (m_l^2/Q^2)$ from final-state radiation

possible treatments:

Julius-Maximilians

UNIVFRSITÄ.

WÜRZBURG

- "bare leptons" (typical for muons, non-collinear-safe (NCS) case) photons are experimentally separated from leptons collinear singularities regularised by lepton mass ⇒ logarithmically enhanced corrections ⇒ large radiative tails
- "calorimetric/dressed leptons" (typical for electrons, collinear safe (CS)) recombination of leptons with (collinear) photons (inclusive treatment) ⇒ mass-singular logarithms cancel, collinear-safe observables, predictions depend on photon-recombination scheme
- dedicated photonic parton showers, e.g. PHOTOS

Placzek, Jadach '03; Carloni Calame et al. '04; Golonka, Was '07

full FSR not universal, in general not separable from other EW corrections combination of PHOTOS with full EW corrections difficult in practice

Combination of EW corrections with QCD and MC

Combination of NLO QCD and EW corrections:

- additive: $1 + \delta^{\text{NLO}} = 1 + \delta^{\text{NLO}}_{\text{OCD}} + \delta^{\text{NLO}}_{\text{EW}}$
- variants differ at $\mathcal{O}(\alpha \alpha_{\rm s})$ • multiplicative: $1 + \delta^{\text{NLO}} = (1 + \delta^{\text{NLO}}_{\text{QCD}})(1 + \delta^{\text{NLO}}_{\text{EW}})$

soft and collinear corrections factorise \Rightarrow multiplicative combination preferable

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = \frac{\mathrm{d}\sigma_{\mathrm{QCD}}}{\mathrm{d}x} \left(1 + \delta_{\mathrm{EW}}^{\mathrm{NLO}}(x)\right) + \frac{\mathrm{d}\sigma_{\gamma}}{\mathrm{d}x} + \dots$$

- used for Higgs production in VBF and WH/ZH to combine NLO EW and NNLO QCD calculations Higgs cross-section working group '13
- useful for including EW corrections in event generators via reweighting Anderson et al '10; Gieseke, Kasprzik, Kühn '14
- correction factor should capture dominant phase-space dependence treats photon radiation inclusively
 - \Rightarrow kinematic effects of hard emission neglected
- reweighting in generators should be checked against fully differential results

Julius-Maximilians-

UNIVERSITÄT

Automation of electroweak corrections

NLO QCD automation established: several (public) tools exist

tool	method	collaboration
Rocket	generalized unitarity	Ellis et al.
BLACKHAT	generalized unitarity	Berger et al.
NJET	generalized unitarity	Badger et al.
HELAC-NLO	4-dimensional (OPP) integrand reduction	Bevilacqua et al.
MadLoop	4-dimensional (OPP) integrand reduction	Hirschi et al.
Gosam	d-dimensional integrand reduction	Cullen et al.
FORMCALC	d-dimensional integrand reduction	Hahn et al.
OpenLoops	recursion relations for "open loops"	Cascioli et al.
Recola	recursion relations for "open loops"	Actis et al.

crucial ingredients

Julius-Maximilians-UNIVERSITÄT

- recursive calculation of amplitudes
- generalized unitaritiy
- reduction at integrand level
- improved reduction methods for tensor integrals

Methods can be transferred to full SM!

Complications mainly in calculation of loops:

- more contributions (diagrams, off-shell currents)
- more and very different mass scales
 → numerical stability more problematic
- more complicated renormalization (more parameters)
- mixing of QCD and EW contributions (expansion in two couplings)
- chiral structure of weak interactions (treatment of γ_5)
- more complicated treatment of unstable particles (decay width = EW one-loop effect ⇒ gauge invariance non trivial)

solutions exist!

Julius-Maximilians-

UNIVERSITÄ

Automation of EW NLO is just happening!

tools in preparation:

tool	collaboration	published applications
Gosam	Chiesa et al.	$pp \rightarrow W + 2 jets$
MadGraph5_aMC@NLO	Frixione et al.	$pp \rightarrow t\bar{t} + \{H,Z,W\}$
OpenLoops	Pozzorini et al.	$pp \rightarrow W + \{2 \text{ jets}, 3 \text{ jets}\}$
Recola	Actis et al.	${ m pp} ightarrow { m jj} l^+ l^-$

some results presented in the following

see also talks at Radcor-Loopfest 2015 conference: https://hepconf.physics.ucla.edu/radcor-loopfest/

Comparison of tools started within Les Houches 2015 workshop.

Electroweak corrections for specific processes at LHC

Electroweak corrections to single vector-boson production

large cross sections: $\sigma(W) = 20 \text{ nb}$ $\sigma(Z) = 1.9 \text{ nb}$

Physics goals:

Julius-Maximilians-

- σ , $\mathrm{d}\sigma \rightarrow \mathrm{precision}$ SM studies
- $M_Z \rightarrow$ detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ with $\delta \sin^2 \theta_{\text{eff}}^{\text{lept}} \sim 0.00014 \rightarrow \text{comparison with results of LEP1 and SLC}$
- $M_W \rightarrow \text{improvement over } \Delta M_W \sim 15 \text{ MeV}$, strengthen EW precision tests (W/Z shape comparisons sensitive to $\Delta M_W \sim 7 \text{ MeV}$ Besson et al. '08, Baak et al. '13)
- decay widths $\Gamma_{\rm Z}$ and $\Gamma_{\rm W}$ from M_{ll} or $M_{{\rm T},l\nu_l}$ tails
- search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
- information on PDFs, determination of collider luminosity

NNLO QCD and NLO EW corrections to W/Z production

	NNLO	QCD	correction
--	------	-----	------------

Julius-Maximilians-

WÜRZBURG

- QCD resummations / parton showers
- NLO EW corrections to W production
- NLO EW corrections to Z production

- multi-photon radiation via leading logs
- photon-induced processes
- POWHEG matching of QCD/EW corrections
- $\mathcal{O}(\alpha \alpha_s)$ corrections

Hamberg et al. '91; Harlander, Kilgore '02; Anastasiou et al. '03; Melnikov, Petriello '06; Catani et al. '09; Gavin et al. '10,'12

```
Arnold, Kauffman '91; Balazs et al. '95; ... many contributions
```

Baur, Keller, Wackeroth '98; Zykunov '01; Dittmaier, Krämer '01; Baur, Wackeroth '04; Arbuzov et al. '05; Carloni Calame et al. '06; Brensing et al. '07

Baur, Keller, Sakumoto '97; Baur, Wackeroth '99; Brein, Hollik, Schappacher '99; Baur et al. '02; Zykunov '05; Arbuzov et al. '06; Carloni Calame et al. '07; Dittmaier, Huber '09

Baur, Stelzer '99; Carloni Calame et al. '03, '05; Placzek, Jadach '03; Brensing et al. '07; Dittmaier, Huber '09

Dittmaier, Krämer '06; Arbusov, Sadykov '07; Brensing et al. '07; Carloni Calame et al. '07; Dittmaier, Huber '09

Bernaciak, Wackeroth '12; Barze et al. '13

Kotikov et al. '07; Bonciani '11; Kilgore, Sturm '11; Dittmaier, Huss, Schwinn '14

• photonic corrections

- large radiative tail for
 M_{ll} < M_Z
- multi-photon radiation significant
- recombination reduces corrections
- weak corrections significant for $M_{ll} \gg M_Z$
- γγ channel significant off resonance

Combination of NLO QCD and EW corrections

 $pp \rightarrow W \rightarrow \mu \nu$ (14 TeV LHC) Balossini et al. '09 600 0.1MC@NLC MC@NLO+HORACE_{Herwig} MCONLC 500MC@NLOxHORACE_{Herwig} ALPGEN 0.01(pb/GeV)MC@NLO+HORACE_{Herwig} ALPGEN S_0 (fb/Gev)MC@NLOxHORACE_{Herwig} 400 300 0.001 $\frac{d^{T}}{d m_{p}} 0.0001$ $o_p^{\sigma H} = 200$ 100 40 QCD 40QCD+EW QCD 30 QCD+EW QCDxEW QCDxEW 2020 $\delta(\%)$ $\delta(\%)$ 10 -20 -10 -40-206065707580 85 90 951000 15002000 25003000 M^W_\perp (GeV) M^W_\perp (GeV)

- $M_{W,T} \sim M_W$: negative EW corrections compensate positive QCD corrections EW corrections mandatory around Jacobian peak (-10%)
- $M_{W,T} \gg M_W$: large negative EW corrections (Sudakov logarithms) cancel positive QCD corrections
- different ways of combining QCD and EW corrections extreme alternatives: $(1 + \delta_{\text{QCD}}^{\text{NLO}} + \delta_{\text{EW}}^{\text{NLO}})$ versus $(1 + \delta_{\text{QCD}}^{\text{NLO}}) \times (1 + \delta_{\text{EW}}^{\text{NLO}})$ difference at per-cent level with shape distortion $\Rightarrow \mathcal{O}(\alpha \alpha_{s})$ calculation needed

Julius-Maximilians-UNIVERSITÄT

 ${\cal O}(lpha_{
m s}lpha)$ corrections in pole approximation

pole approximation: leading term in expansion about resonance pole

Stuart '91; Aeppli et al. '93, '94; ...

 \Rightarrow gauge-invariant definition of resonant contributions

two types of corrections in pole approximation:

- factorisable corrections (production and decay factorise) dominant contribution from $[\mathcal{O}(\alpha_s) \text{ to } q\bar{q}' \rightarrow V] \otimes$ $[\mathcal{O}(\alpha) \text{ to } V \rightarrow l\bar{l}']$
- non-factorisable corrections

 (connect production and decay)
 virtual and real corrections cancel ⇒
 non-factorisable O(α_sα) corrections < 0.1%

Julius-Maximilians

UNIVERSIT

${\cal O}(lpha_{ m s} lpha)$ corrections in pole approximation

factorizable initial-final corrections to W^+ production

Dittmaier, Huss, Schwinn: Radcor '15

---- best prediction $\delta_{\alpha_s \alpha}^{\text{prod} \times \text{dec}}$

Julius-Maximilians-

UNIVERSITÄ

- ---- naive product (NLO QCD) \times (NLO EW) $_{\rm dec}$
- maive product (NLO QCD) \times (NLO EW)

- $\delta_{\alpha_{s}\alpha}^{prod \times dec}$ well approximated by naive product $\delta_{\alpha_{s}}' \times \delta_{\alpha}^{dec}$
- naive factorization deteriorates for $p_{T,\mu} > M_W/2$ (enhancement from large QCD corrections)
- ⇒ quality of naive product depends on observable and implementation (further studies in progress)

Electroweak corrections to vector-boson production with additional hard jets

EW corrections for on-shell vector bosons

Julius-Maximilians-

WÜRZBURG

• weak $\mathcal{O}(\alpha)$ correction to $Z + 1 \text{ jet}$	Maina, Moretti, Ross '04	
• NLO EW to $W/Z + 1 jet$	Kühn et al. '04–'07, Hollik et al. '07, '15	
• NLO EW to $W + 2 jets$	Chiesa, Greiner, Tramontano '15	GOSAM
• NLO EW to $W_{(stable)} + \leq 3 jets$	Kallweit et al. '14	OpenLoops
NLO QCD corrections for off-shell vector k	oosons decaying into leptons	
• NLO QCD to $W/Z + \le 5 {\rm jets}$	Berger et al. '09,'10; Ellis et al. '09; Bern et al. '11–'13; Goetz et al. '14	Blackhat
EW corrections for off-shell vector bosons	decaying into leptons	
• NLO EW to $W/Z + 1 jet$	Denner et al. '09–'12	
• NLO EW to $Z + 2 jets$	Denner et al. '14	Recola
NNLO QCD corrections for off-shell vector	r bosons decaying into leptons	
• NNLO QCD to $W + 1 jet$	Boughezal et al. '15	

Ansgar Denner (Würzburg)

W/Z + higher jet multiplicities @ NLO QCD+EW

Note: QCD and EW orders mix for $W/Z + \ge 2 \text{ jets}$

Tree contributions:

Julius-Maximilians-

IINIVFRSITÄT

WÜRZBURG

(for cross section)

 $\left(\mathrm{W/Z} \text{ emission suppressed in graphs}\right)$

 $V = \gamma, \mathbf{Z}, \mathbf{W}$

Loop contributions:

 $\mathcal{O}(\alpha_{
m s}^2 \alpha)$ = "NLO EW"

NLO results for W + jets production

- W + 1 jKallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14• normalisation to $\sigma_{\rm QCD}^{\rm NLO}$ OpenLoops
 - $\mu_{\rm ren/fact} = \hat{H}_{\rm T}/2 = \sum_{\rm partons} E_{\rm T}/2$
 - QCD corrections: Rubin, Salam, Sapeta '10 "giant K factors" in W + 1j due to real emission (soft W's, hard jets recoiling against each other)
 - \hookrightarrow multi-jet merging important (or apply jet veto)
 - EW corrections: effects at high scales
 - negative EW Sudakov corrections larger than QCD unc. for p_{T,W} > 300 GeV
 - ► large positive tree-like contribution for large $p_{T,j}$ (from $qq \rightarrow qqW$ QCD-EW interference)
 - combination of QCD and EW corrections:
 - QCD × EW versus QCD + EW: large difference since QCD and EW sizeable !

NLO results for W + jets production

- - $\mu_{\rm ren/fact} = \hat{H}_{\rm T}/2 = \sum_{\rm partons} E_{\rm T}/2$
 - QCD corrections: small and stable (configurations with soft W's already at leading order)
 - EW corrections: effects at high scales
 - negative EW Sudakov corrections
 - ▶ positive tree-like contribution visible for large $p_{T,j}$ (from $qq \rightarrow qqWg$ QCD-EW interference)

• combination of QCD and EW corrections:

QCD × EW versus QCD + EW: good agreement

NLO results for W + jets production

- W + 3 jKallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14• normalisation to $\sigma_{\rm QCD}^{\rm NLO}$ OpenLoops
 - $\mu_{\rm ren/fact} = \hat{H}_{\rm T}/2 = \sum_{\rm partons} E_{\rm T}/2$
 - QCD corrections:

sizeable negative correction for $p_{T,j}$ distribution around $1 \,\mathrm{TeV}$ for standard scale

- EW corrections: effects at high scales
 - negative EW Sudakov corrections
 - Sudakov suppression in tails of all p_T distributions
- combination of QCD and EW corrections:
 - QCD × EW versus QCD + EW:
 QCD + EW might overestimate EWC
 because of negative QCD corrections

NLO results for $l^+l^- + 2j$ production

Transverse momentum of leading jet

Julius-Maximilians-

WÜRZBURG

azimuthal angle between leptons

- EWC sizeable for large $p_{\rm T}$ dominated by virtual corrections (Sudakov logarithms) exceed $300 \, {\rm fb}^{-1}$ statistical error
- real photonic corrections small
- real gluonic corrections reach several per cent for large $p_{\rm T}$

- virtual EW corrections distort distribution by 3%
- real photonic corrections small
- real gluonic corrections small (QCD corrections to QCD-EW interference $qq \rightarrow qql^+l^-g$)

Denner, Hofer, Scharf, Uccirati '14 Recola

Electroweak corrections to vector-boson pair production

 $\sigma(WW) \sim 100 \,\mathrm{pb}$ $\sim V' \qquad \sigma(W^{\pm}Z) \sim 30/20$ $\sigma(W^{\pm}Z) \sim 30/20 \,\mathrm{pb}$ $\sigma(\text{ZZ}) \sim 15 \,\text{pb}$

Physics issues:

- triple-gauge-boson couplings, in particular at high momentum transfer \Rightarrow EW corrections significant
- important class of background processes
 - to searches at high invariant masses (e.g. supersymmetry) \Rightarrow EW corrections
 - ▶ to Higgs production, $H \rightarrow VV \rightarrow 4f$
 - \hookrightarrow invariant masses below VV thresholds

proper description of off-shell VV production required

NLO EW and NNLO QCD corrections:

 $W\gamma/Z\gamma$ (with leptonic decays)

- NNLO QCD Grazzini, Kallweit, Rathlev '14,'15
- NLO EW Denner, Dittmaier, Hecht, Pasold '14 ($Z\gamma$ in preparation)

WW, WZ, ZZ

Julius-Maximilians-

WÜRZBURG

- NNLO QCD
 - ZZ (on-shell, total inclusive x-section)
 - ▶ WW (on-shell, total inclusive x-section) Gehrmann et al. '14
 - ▶ $gg \rightarrow VV \rightarrow 4$ leptons

• NLO EW

- stable W/Z bosons
- approximative inclusion in HERWIG++ (via correction factor)
- ▶ $pp \rightarrow WW \rightarrow 4$ leptons in DPA
- full off-shell calculation in progress

Bierweiler, Kasprzik, Kühn, Uccirati '12/'13 Baglio, Le, Weber '13 Gieseke, Kasprzik, Kühn '14

Billoni, Dittmaier, Jäger, Speckner '13

Denner et al.

Cascioli et al. '14

Binoth et al. '05,'06

EW corrections for p_{T} distr. in W γ production

• EW corrections $\sim -30\%$ in TeV range

(CS=collinear-safe, NCS=non-collinear-safe)

• γ -induced corrections non-negligible in TeV range (even with jet veto: $p_{T,j} > 100 \text{ GeV}$) \hookrightarrow reduction of γ PDF uncertainties mandatory !

Julius-Maximilians-

UNIVERSITÄT

EWC to WW production with W leptonic decays

EWC in double-pole approximation

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

Billoni, Dittmaier, Jäger, Speckner '13

- Sudakov corrections to qq channel reach -30%
- $\gamma\gamma$ contribution significant for large energies
- $q\gamma$ contribution suppressed by jet veto (otherwise overwhelmed by QCD corrections)
- realistic cuts on W decays can modify EW corrections at level of some per cent

Electroweak corrections to top and Higgs production processes

Higgs-production processes (stable Higgs boson!)

- NLO EW corrections to gluon fusion, $gg \rightarrow H$ (2-loop!) Actis et al '09; (Aglietti et al '04, '06; Degrassi, Maltoni '04)
- NLO EW corrections to vector-boson fusion, $qq \rightarrow Hjj$ Ciccolini, Denner, Dittmaier '07; Figy, Palmer, Weiglein '10
- NLO EW corrections to Higgs strahlung, $qq \rightarrow Hl\nu$ Denner et al. '11 [$qq \rightarrow HV$ for stable V: Ciccolini, Dittmaier, Krämer '03]
- NLO EW corrections to Higgs production in association with a top pair, $qq \rightarrow Ht\bar{t}$ Frixione et al. '14, Zhang Yu et al. '14

Top-production processes (stable top quark!)

- NLO EW corrections to top-pair production $pp \rightarrow t\bar{t}$ Kühn, Scharf, Uwer '06, '07, 13'; Bernreuther, Fücker, Si '06; Moretti, Nolten, Ross '06 (Beenakker et al. '94)
- NLO EW corrections to top-pair production in association with heavy vector bosons, $pp \rightarrow t\bar{t}V$ Frixione et al. '14

Julius-Maximilians-

EW corrections to ttH and ttZ distribution

Transverse momentum distribution of Higgs boson/Z boson

Frixione et al. '15

Sizeable contribution of photon-induced processes

Julius-Maximilians-

Transverse momentum distribution of W boson

Julius-Maximilians-

WÜRZBURG

Frixione et al. '15

EW corrections of same size as QCD scale uncertainty

Observations:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

Frixione, Hirschi, Pagani, Shao, Zaro '15 (MadGraph5_aMC@NLO)

 relative EW corrections @ 13 TeV LHC inclusive scenario: no cuts boosted scenario: p_{T,t}, p_{T,H}, p_{T,Z}, p_{T,W} > 200 GeV

process	$t\overline{t}H$	$t\overline{t}Z$	$t\overline{t}W^+$	$t\overline{t}W^{-}$	scheme
inclusive scenario	-1.2%	-3.8%	-7.7%	-6.7%	$\alpha(M_{\rm Z})$
inclusive scenario	+1.8%	-0.7%	-4.5%	-3.5%	G_{μ}
boosted scenario	-8.2%	-11.1%	-19.2%	-18.3%	$lpha(M_{ m Z})$

modest impact for inclusive scenario, sizeable for boosted case \Rightarrow EW corrections needed for precision study of $t\bar{t}V$ production

• heavy-boson radiation ($t\bar{t}VV$ final states) might be responsible for detectable effects (in particular for $t\bar{t}W$: 4–15%)

Electroweak corrections to other processes

Recent calculations:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- NLO QCD and EW corrections to WW+jet production with leptonic
 W-boson decays at LHC
 Li Wei-Hua et al. '15
- NLO QCD + NLO EW corrections to WZZ productions with leptonic decays at the LHC Shen Yong-Bai et al. '15
- NLO corrections to WWZ production at the LHC

Dao Thi Nhung, Le Duc Ninh, Marcus M. Weber '13

Earlier calculations:

• EW corrections to single-top production

Beccaria et al '06 '08, Bardin et al. '10

EW corrections to di-jet production

Moretti, Nolton, Ross '06; Dittmaier, Huss, Speckner '12

Apologies for any omissions!

Recent calculations:

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- Electroweak radiative corrections to $\rm W^+W^-\gamma$ production at the ILC Chong Chen et al. '14
- Full $\mathcal{O}(\alpha)$ electroweak radiative corrections to $t\bar{t}\gamma$ and $e^+e^-\gamma$ at the ILC with GRACE-Loop

P.H. Khiem et al. '14

• Full one-loop electroweak corrections to $e^+e^-\to ZH\gamma$ at a Higgs factory Ning Liu et al. '14

Apologies for any omissions!

Conclusions

- Electroweak corrections (EWC) are relevant for LHC processes
- EWC particularly large in tails of distributions or near resonances
- approximate treatments of EWC

Julius-Maximilians

- leading Sudakov logarithms
- appropriate correction factors in MC generators
- \blacktriangleright naive factorization for $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- automation of NLO EWC is in progress
- full EWC involve many new features and subtleties
 - parton distributions including QED corrections
 - photon-induced processes (large uncertainty from photon PDF)
 - photon-jet separation
 - ► consistent treatment of resonances (W, Z, t, H,...)
 - interplay between QCD and EW corrections
 - parton showers with EW effects

Thank you for your attention!