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Predictive power in QFT
✦ Observable, computed in perturbation theory 

✦ Finite order: only take lowest few “n”. Please complete then this checklist 
α is small enough? 
Is Rn small enough ? 

cn does not grow too fast with n? 
✦ Only if all ok can we trust (accurate and precise) the prediction. 
✦ Here we worry about the last check. 
✦ Hadronic observable is then convolution 

update weakest link
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Perturbative series in QFT

✦ Typical perturbative behavior of observable 
‣ α is the coupling of the theory (QCD, QED, ..) 

‣ L is some numerically large logarithm 

‣ “1” =  π2, ln2, anything no 

‣ Notice: effective expansion parameter is αL2. Problem occurs if is this >1!! 

‣ Possible fix: reorganize/resum terms such that  

✦ Notice the definition of LL, NLL, etc
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LL, NLL,.. and matching to fixed order
✦ Leading-log, next-to-leading log, etc 

‣ Schematic overview 

‣ Systematic expansion in αs in the exponent 
✓ If we can find the coefficients cn, dn, en, C0, C1 etc 

‣ It is directly clear how to combine this with an exact NLO or NNLO calculation 
✓ Expand the resummed version to the next order in αs . Add the NLO and resummed, but subtract the order αs - 

expanded resummed result, to avoid double counting. 

- generalization to NNLO is “obvious” 

✦ Various examples of logs
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Benefits of resummation
✦ It can rescue predictive power 

‣ when perturbative series converges poorly 

‣ and can predict terms in next order when they are not known exactly yet  (“approximate NNLO”) 
✓ by expanding the resummed cross section to that order 

✦ Better physics description 

✦ Typically reduces the scale uncertainty
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Goals
✦ Explain how one arrives at such exponential formulae 
✦ Review recent progress for certain processes and observables 
✦ Give a flavour of some new ideas in analytic resummation 
✦ Caveat: 
‣ This will not be a review of codes producing resummed results 
‣ I’ll omit much: 

✓ impressive progress in Soft-Collinear Effective Theory theory and applications → Wouter 
Waalewijn’s talk 

✓ jet-stuff 
✓ resummation and Monte Carlo  (Geneva, etc) 
✓ ….
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Recent reviews:
Luisoni, Marzani
(SCET) Becher, Broggio, Ferroglia



Background



Case: double recoil logs
✦ Eg. pT of Z-bosons produced in hadron collisions    

‣ Z-boson gets pT from recoil agains (soft) gluons 

‣ “Visible” logs: have argument made of measured quantities 
✓ 1 emission: with gluon very soft: divergent 

- virtual: large negative bin at pT=0 

‣ The turn-over at pT around 5  GeV is only explained by resummation, not by finite order calculations
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Recoil logs
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Physics of resummation near small pT
✦ At finite order 

‣ hence the real divergence toward pT near zero 

✦ Resummed 

✓ this is also the effective behaviour of the parton shower there 

✦ Take home message: 
‣ finite order oscillates wildly near small pT, and may be negative 

‣ resummed is positive, and it tracks the data well 

✦ Physics of resummed answer: 
‣ probability of the process not to emit at small pT is vanishingly small 

✓ After all, there is violent acceleration of color charges, easy to radiate
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Case: double threshold logs
✦ Logarithm2 of “energy above threshold Q2” 

‣ “Hidden” logs”: have integration variables in arguments 

‣ Typical effect: enhancement of cross section 

✦ Both cases: log of “deviation from Born kinematics” 
‣ due to either soft and/or collinear radiation
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Reminder of origin of double (“Sudakov”) logs
✦ Double logarithms in cross sections are related to IR divergences 

✦ An interference effect.. 

✦ But where does the expontial form come from?
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Resummation 101
✦ Cross section for n extra gluons 

✦ When emissions are soft, can factorize phase space measure and matrix element  
[eikonal approximation] 

✦ Sum over all orders 

✦ For differential cross sections, incorporate phase space Theta or Delta functions 
‣ but these must also factorize similarly, else they cannot go into exponent!
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Phase space in resummation
✦ Kinematic condition expresses “z” in terms of gluon energies 

‣ or conservation of transverse momentum 
✦ Transform (e.g. Laplace or Fourier) factorizes the phase space constraint 

✦ So can go into exponent. E.g. 

‣ Large logs:  ln(N) or ln(bQ)
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Resummation and factorization

✦ Very generically, if a quantity factorizes, one can resum it 
‣ Renormalization; factorizes UV modes into Z-factor 

‣ Evolution equation (here RG equation) 

‣ Solving = resumming
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Resummation and factorization
✦ Type of factorization dictates resummation 
‣ small x [ln(x)] → kT factorization 

✓ Regge, High-Energy,.. 

‣ large x  [ln2(1-x)] → near-threshold factorization 

✓ Threshold, Sudakov 

✦ Factorization is essentially separating degrees of freedom 

‣ Systematic approach in Soft Collinear Effective Theory
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Bauer, Fleming, Pirjol, Stewart,...

Beneke, Chapovsky, Diehl, Feldmann



Factorization and resummation for Drell-Yan

✦ Near threshold, cross section is equivalent to product of 4 well-defined functions 
✦ Demand independence of  
‣ renormalization scale µ 
‣ gauge dependence parameter ξ 

✓ find exponent of double logarithm
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Threshold resummed Drell-Yan/Higgs cross section
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From N space back to momentum-space
✦ Parton cross section derived in N space 

✦ PDF’s in available in N space 
‣ QCD-PEGASUS evolution (A. Vogt) 

✦ Use inverse Mellin transform, avoid Landau pole with e.g. 
‣ Minimal Prescription (go left, young man..) 

‣ Borel method  
✓ both give good numerical stability
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Catani, Mangano
Nason, Trentadue 

Forte, Ridolfi,
Rojo, Ubiali



More color: 2 → 2 parton scattering
✦ Four external  partons can connect in multiple ways 

✦ For gg -> gg, (at least) 6 ways. 
‣ (Different basis choices possible in this space of color tensors)
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Colorful 2 → 2 scattering
✦ Factorization by “usual” methods into Δ, S, H functions 
‣ Δ’s color diagonal (~ collinear partons) 
‣ Soft emissions mix the color tensors, and the effective vertices H 

✦ Represent amplitude as a vector in color-tensor space 

✦ Note also, different threshold definitions possible in 2→2 scattering:
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Soft anomalous dimensions
✦ Define soft amplitude as VEV of Wilson lines with velocities βi 

‣ represent external particles  

✦ Soft amplitude (matrix!) has anomalous dimension (also matrix!) 

✦ Soft function is square of amplitude, at fixed energy, depends on ratio (Q/Nµ), so can 
control N dependence through µ dependence 
‣ To resum beyond LL, must understand soft anomalous dimensions 
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Soft anomalous dimension
✦ Matrices become diagonal in β→0 limit 

‣ also true for pT distributions 
‣ e.g. for squark-gluino production
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3-loop soft anomalous dimensions for 4+  legs
✦ Dipole ansatz for soft anomalous dimension 

‣ Dipole part xxact at two loops, but possible full 4-parton correlation Δ at 3 loops. Now 
computed explicitly 

✦ This stress-tests factorization of IR singularities
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Almelid, Duhr, Gardi (15)
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FIG. 1: The four connected webs at three-loop contributing to the quadrupole term �(3)

4
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where �sij = 2 |pi · pj | e�i⇡�ij , with �ij = 1 if partons
i and j both belong to either the initial or the final
state and �ij = 0 otherwise; Ti are colour generators
in the representation of parton i, acting on the colour in-
dices of the amplitude as described in ref. [11]; b�K(↵s) is
the universal cusp anomalous dimension [7, 46, 47], with
the quadratic Casimir of the appropriate representation
scaled out (Casimir scaling of the cusp anomalous di-
mension holds through three loops [46]; it may be broken
by quartic Casimirs starting at four loops); �Ji are the
anomalous dimensions of the fields associated with exter-
nal particles, which govern hard collinear singularities,
currently known up to three loops [28, 48]. Equation (4)
is known as the dipole formula, and captures the en-
tirety of the soft anomalous dimension matrix up to two
loops. In particular, tripole corrections correlating three
partons, with colour factors of the form ifabcTa

iT
b
jT

c
k,

which could appear starting from two loops, are not
present in the soft anomalous dimension at any order
because the corresponding kinematic dependence on the
three momenta is bound to violate the rescaling symme-
try constraints [17–20]. The first admissible corrections
in eq. (3) are then quadrupoles, because four momenta
can form conformally-invariant cross ratios,

⇢ijkl ⌘ (�sij)(�skl)

(�sik)(�sjl)
, (5)

which are invariant under rescaling of any of the mo-
menta. Given that diagrams connecting four lines con-
tribute for the first time at three loops, this is the first
order at which contributions to�n in eq. (3) may appear,

�n ({⇢ijkl} ,↵s) =
1
X
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n ({⇢ijkl}) . (6)

According to the non-Abelian exponentiation theo-
rem [44] the colour factors must correspond to connected
graphs – specifically those of Fig. 1 – and therefore the
general form of the quadrupole term at three loops is
completely determined by the four-parton case, where
there are only two independent cross ratios:
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where the sum runs over all permutations of the set
{2, 3, 4}. Note that the terms in the sum are not all
independent, because of the antisymmetry of the struc-
ture constants and the Jacobi identity. The function F is
independent of the colour degrees of freedom and only de-
pends on two conformal cross ratios. Note that at three

loops, �(3)

n is independent of the details of the under-
lying theory and completely determined by soft gluon

interactions. In particular, this implies that �(3)

4

is the
same in QCD and in N = 4 Super Yang-Mills, and it
is therefore expected to be a pure polylogarithmic func-
tion of weight five. Moreover, its functional form has
been constrained by considering collinear limits and the
Regge limit [17–26], but it has so far remained unclear
whether three-loop corrections to the dipole formula are
present. The purpose of the present paper is to compute

�(3)

n . We will present the complete functional form of
F , hence determining soft singularities of any massless

multi-leg amplitude at three loops. As �(3)

4

(⇢
1234
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1432

)
can only receive contributions from connected colour fac-
tors connecting four partons, there is only a limited set of
diagrams that we need to consider, which we divide into
two classes, called connected and non-connected graphs
(see Fig. 1 and 2).

Let us start by discussing the contribution from the
connected graphs, which we have explicitly computed.
The calculation of the connected graphs is rather lengthy,
and we will only describe the main steps, deferring a de-
tailed exposition to a dedicated publication [49]. We set
up the calculation in configuration space, with four non-
lightlike Wilson lines with four-velocities �i. The posi-
tion of the three- and four-gluon vertices o↵ the Wilson
lines are integrated over in D = 4 � 2✏ dimensions. Fol-
lowing [38, 43] we introduce an infrared regulator which
suppresses exponentially contributions far along the Wil-
son lines. This is necessary to capture the ultraviolet
singularity associated with the vertex where the Wilson
lines meet. Upon performing the integral over the over-
all scale, we extract an overall 1/✏ ultraviolet pole, and
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FIG. 2: Representative non-connected three loop diagrams of webs which contribute to the quadrupole term �(3)

4

.

the contribution to the soft anomalous dimension is the
coe�cient of that pole, which is finite for each of the
diagrams in Fig. 1 (they have no subdivergences) and
can be evaluated in D = 4 dimensions. Next, we ob-
serve that the integrals over the positions of the three-
and four-gluon vertices give rise to one- and two-loop
o↵-shell four-point functions, for which we derive a mul-
tifold Mellin-Barnes (MB) representation. After integra-
tion over the four Wilson lines, we obtain a MB repre-
sentation of each of the connected graphs for the general
non-lightlike case, depending on the velocities through

the cusp angles �ij ⌘ 2�i · �j/

q

�

2

i �
2

j . In order to pro-

ceed, we use standard techniques [50] to perform a simul-
taneous asymptotic expansion for �ij ! �1 correspond-
ing to the lightlike limit, where we neglect any term sup-
pressed by powers of 1/�ij . After this procedure, we ob-
tain a collection of lower-dimensional MB integrals. The
remaining MB integrals are then converted into paramet-
ric integrals using the techniques of ref. [51], which can be
performed using modern integration techniques [52]. The
sum over all connected graphs is expressible as a linear
combination of products of logarithms of cusp angles �ij
and single-valued harmonic polylogarithms [53, 54] with
arguments z and z̄, related to the conformally-invariant
cross ratios (5) by

z z̄ = ⇢

1234

and (1� z) (1� z̄) = ⇢

1432

. (9)

A few comments are in order at this point: First, we ob-
serve that individual connected graphs are not pure func-
tions, but they involve pure functions of weight five mul-
tiplied by rational functions in z and z̄. These rational
functions, however, cancel in the sum over all connected
graphs, leaving behind a pure function of weight five,
in agreement with the expectation that scattering ampli-
tudes in N = 4 Super Yang-Mills are uniformly transcen-
dental. Second, we see that the sum over all connected
graphs cannot be written as a function of conformally-
invariant cross ratios alone, but it still explicitly depends
on cusp angles �ij . We observe, however, that the resid-
ual dependence on the cusp angles, which violates rescal-
ing symmetry in the lightlike limit, is only logarithmic:
after applying the Jacobi identity, the sum over all con-
nected graphs can be written in the form,

�(3)

4 con.

= F

con.

(z, z̄) +Q({log(��ij)}) , (10)

where Q is a polynomial in logarithms of cusp angles,
while the polylogarithmic function F

con.

(z, z̄) depends
exclusively on the invariant cross ratios.

Since �(3)

4

only depends on conformally-invariant cross
ratios, rescaling invariance must be restored when com-
bining the contribution from Q with the contributions
from the non-connected graphs in Fig. 2. Some of these
webs have been computed in ref. [38] in the general, non-
lightlike case, and the calculation of the remaining ones
is nearing completion [55]. It turns out, however, that
explicit results for all non-connected graphs are not re-

quired in order to determine �(3)

4

. One can show that
each non-connected web contributes at most a sum of
products of logarithms of cusp angles to �(3)

4

(with co-
e�cients that are zeta values), and that no zeta value of
weight greater than three can appear. We can then sim-
ply write down the most general Bose-symmetric combi-
nation of products of logarithms of cusp angles of weight
five satisfying these constraints and require that rescal-
ing invariance is restored when combining it with Q in
eq. (10). Upon requiring in addition that the sum of
connected and non-connected graphs is consistent with
the behaviour of a two-to-two scattering amplitude in
the Regge limit [23, 56], we find that there is a unique
function of the type described above that we can add to
eq. (10), accounting for the sum over the contributions
of all non-connected webs.
Putting everything together, we find the following sim-

ple result for the three-loop correction to the soft anoma-
lous dimension
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where the function F (z) is given by

F (z) = L
10101

(z) + 2 ⇣
2

[L
001
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100

(z)] + 6 ⇣
4

L
1

(z) ,
(12)

and Lw(z) are Brown’s single-valued harmonic polylog-
arithms (SVHPLs) [53] (see also ref. [57]). Note that
we kept implicit the dependence of these functions on z̄.

Connected graphs

Non-connected graphs
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Gardi, Magnea 
Becher Neubert



3-loop soft anomalous dimensions for 4 legs
✦ Result: indeed dipole formula breaks down at 3 loop 

‣ with F(z) a combination of Brown’s single-valued harmonic polylogs 
✦ Final answer has nice symmetry and analytical properties 
✦ Important test using collinear limit: 

‣ “Sp” should only depend on quantum number of collinear pair 
‣ But: in collinear limits Δ4(3) is not zero: from 3 loops onwards, splitting amplitude probes full 

color structure. 
✓ Impact on factorization, physics? 
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Some recent applications and results



Top: NNLO-NNLL inclusive cross section 
✦ A milestone in QCD, with clear resummation benefit 

✦ Note: based on threshold 1: 
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Perturba-ve$convergence$

15$

Concurrent$uncertain-es:$
$
Scales $ $ $~$3%$
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Resummation for boosted top production
✦ Top quark pair production in 1PI (one-particle inclusive) kinematics (s,t,u) 
‣ Very boosted regime: top quark mass small, but top at large pT, hence large invariant 

mass 
‣ Derivation of new factorization formula for this regime, using SCET methods 
‣ Allows simultaneous resummation of threshold logs and small mass logs 

✓ Special care for soft emission collinear to observed top (D) and unobserved anti-top (B), 
and wide-angle soft emission (Sij) 

✓ Yields top fragmentation function and top jet function 

‣ Factorization of original soft function 

✓ Resummation through RG equations
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the remainder of the section. To simplify the discussion we ignore for the moment contributions
from closed top-quark loops appearing in virtual corrections.

The factorization of the hard function in the small-mass limit was derived in [22]. It reads

Hm
ij (ŝ, t̂1, û1, mt, µ) = C2

D

(

ln
m2

t

µ2
, µ

)

Hij

(

ln
ŝ

µ2
, xt, µ

)

+O
(

m2
t

ŝ

)

. (14)

where xt ≡ −t̂1/ŝ and we used momentum conservation −û1/ŝ = 1 − xt (valid at Born level
and also in the soft limit) in order to simplify dependence on the Mandelstam variables. This
factorization can be thought of as a division of the virtual corrections into two momentum
regions. The hard matrix appearing on the right-hand side is related to the virtual corrections
evaluated with mt = 0 and receives contributions from loop momenta whose virtuality is at
the scale ŝ, while the coefficient function CD contains all the collinear singularities appearing
in the limit mt → 0 and receives contributions from loop momenta with virtuality at the scale
m2

t . The factorization thus separates physics from the widely separated scales m2
t ≪ ŝ. Two

different ways of deriving (14) were discussed in [22]. The first relied on the factorization
of the heavy-quark fragmentation function in the soft limit [39–42], and the second used the
factorization formula [43] (see also [44]) relating massive amplitudes in the small-mass limit
to their massless counterparts.

The factorization of the soft function in the small-mass limit is more subtle. Compared
to the factorization of the hard function and even the analogous factorization for the soft
function appearing in the top-pair invariant mass distribution [22], a complication here is that
the soft function in the small-mass limit is characterized by three distinct momentum scales
rather than two. In the next section, we derive the following result:

Sm
ij (s4, ŝ, t̂1, û1, mt, µ) =

∫

dωs dωd dωb δ(s4 − ωs − ωd − ωb)

× Sij

(

ωs,
ωs√
ŝ
, xt, µ

)

SD

(

ωd,
ωdmt

ŝ
, µ
)

SB

(

ωb,
ωb

mt
, µ

)

+O(s4/m
2
t ) +O(m2

t/ŝ) . (15)

At leading order, each of the above functions is a delta function in its first argument. At
higher orders, the three functions on the right-hand side are characterized by logarithmic
corrections at the scale shown in their second argument and following from the parametric
relation ωi ∼ s4. Before moving on, we discuss the interpretation of each of these component
functions.

First, the massless soft function Sij is related to wide-angle soft real emission corrections
to the partonic processes (qq̄, gg) → QQ̄, where q and Q are massless distinct quarks. Such
emissions are associated with a characteristic mass scale µs ∼ s4/

√
ŝ. This massless soft func-

tion is analogous to that entering the factorization formula for the invariant mass distribution
in the mt → 0 limit and calculated to NNLO in [45]. In fact, we will be able to construct
results for the Sij to NNLO using calculations from that paper.

Second, the function SD describes soft emissions which are simultaneously collinear to the
observed top quark. The characteristic scale for such soft-collinear emissions is µd ∼ mts4/ŝ.
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Threshold resummation using large and small x info
✦ So far, focus on large N  
✦ Interesting idea: use analyticity structure in complex N space 
‣ From large N (large x) and N=1 (small x) resummation 

✓ Sudakov  lniN,   BFKL  1/(N-1)i 

‣ Switch to (1-z)2/z 
‣ Leads in Mellin space to 

✓ Removes branchpoint at N=0
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N3LL resummation
✦ Mellin space analysis 
‣ Include information from N=1 pole (~ next-to-soft terms) 
‣ Nice progression, especially with exponentiated constants  

‣ Code: ResHiggs (SCET)  and ggHigs

30
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Figure 2. Our best prescription for the resummation, namely A-soft2 described in Sect. 3.3, plotted as a
function of the renormalization scale µR. The factorization scale is µF = mH. We show fixed-order results
as well as resummed ones. The plot on the left is obtained with the overall constant ḡ0, while the one on
the right with its exponentiated version ¯G0, as defined in Eq. (3.10).

We now move to resummation. In order to study the effect of different logarithmic orders, we
show in Fig. 2 the resummation at LL, NLL, NNLL and N3LL accuracy4, always matched to the
same NNLO contribution, as a function of µR, for fixed µF = mH. We also show, for comparison,
LO, NLO and NNLO curves. The fixed order results have been computed using the code ggHiggs,
while for the resummation we have written a new code called ResHiggs. The plots show our
best prediction, A-soft

2

, with ḡ

0

(left panel) and its exponentiated version ¯

G

0

(right panel). It is
interesting to observe that exponentiating ḡ

0

leads to a flatter resummed result, thereby suggesting
that its exponentiation is probably improving the convergence of the series. We also observe that,
in any case, the N3LL result is very similar in both cases over a wide range of scales, so the
exponentiation of ḡ

0

does not change significantly the final result, as we have anticipated at the
end of Sect. 3.3. In both cases, we note that the inclusion of soft-gluon resummation at N3LL
significantly reduces the µR scale uncertainty of fixed-order results and of previous resummed orders.

In Fig. 3 we concentrate on NNLO+N3LL and also show the effect of varying µF. Since the
resummation involves only the gg channel, the resummed result depends more significantly on the
scale µF, although formally such dependence is of order ↵3

s

with respect to the Born cross section.
Over a range of roughly a factor of 2 about µR = mH/2 the results with (right panel) or without (left
panel) exponentiation of ḡ

0

are very similar, while they differ (and are more sensitive to µF) for more
extreme choices of µR (especially at small µR). In these regions, the result obtained exponentiating
ḡ

0

looks more sensible and stable, suggesting, once again, that exponentiating ḡ

0

provides a more
stable result. Moreover, we notice that NNLO+N3LL result with µF = mH/ 2 barely depends on
µR. We also observe that resummed curves for different values of µF approximately coincide for a
value of µR slightly smaller than mH/2.

In Fig. 4 we show the same plots as in Fig. 3, but this time obtained with the  -soft
2

prescription.
Since now the constant function in front of the exponential is g

0

rather than ḡ

0

, we can expect a
result different from that of A-soft

2

, when g

0

is not exponentiated (left panel). However, the result
with G

0

(right panel) is very similar to the analogous result with A-soft
2

. It follows that  -soft
2

provides an acceptable alternative to our best choice A-soft
2

, provided that G

0

is used, i.e with g

0

4We are adopting Notation*, see Table 1, so N3LL is the currently highest possible accuracy.
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N3LL resummation for color single final states

✦ Recipe: expand to 3rd order. Among the terms is  
‣ Mild process dependence in  
‣ Infer this from comparing with recent N3LO threshold for Higgs  

✦ Can now use it in Drell-Yan (or any other 3-loop virtual process) 
‣ Take 3-loop DY form factor 
‣ Result: N3LO in soft-virtual approximation for DY, agrees with earlier result. 
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Top: N3LO approximate
✦ Using threshold 

‣ Same method as for Higgs 
‣ Small correction beyond NNLO 

✓ smaller uncertainty 

✦ Alternative, using threshold  
‣ correction about 4% 
‣ also works for pT and rapidity distributions
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Figure 9. Factorization (left) and renormalization (right) scale dependence of the top production
cross section at various perturbative orders. At N3LO the factorization scale dependence is shown
both including the contribution from all channels (NNNLO) and from the gluon channel only
(NNNLOgg).

scale dependence, but at N3LO it has flattened out almost completely, thereby indicating
a good perturbative convergence.

Our final results, with full uncertainty, are thus

LHC7: �N3LO
approx = 177.43 pb ± 1.79%(approx) ± 0.97%(channels)+3.02%

�2.87%(scales) (5.6a)

LHC8: �N3LO
approx = 253.98 pb ± 1.82%(approx) ± 0.96%(channels)+2.98%

�2.83%(scales) (5.6b)

LHC13: �N3LO
approx = 835.61 pb ± 1.88%(approx) ± 0.96%(channels)+2.73%

�2.65%(scales) (5.6c)

LHC14: �N3LO
approx = 988.57 pb ± 1.88%(approx) ± 0.97%(channels)+2.68%

�2.62%(scales) (5.6d)

where the “channels” uncertainty has been computed as (± half) the difference between the
µF scale variation evaluated with only the gg channel or with all the channels (NNNLO

gg

and NNNLO curves in Fig. 9), in the range m/2  µF  2m with µR = m. The “scales”
uncertainty is instead obtained through a canonical seven-point variation, namely m/2 
µR, µF  2m with 1/2  µR/µF  2, computed with all channels. We observe that the
approximation uncertainties, though conservatively estimated, are rather smaller than the
scale uncertainty, and in fact adding in quadrature scale and approximation uncertainties
we end up with an overall theoretical uncertainty on our N3LO result of 3.5%, not much
larger than the scale uncertainty itself. This uncertainties can be compared to the PDF
uncertainty, which at the LHC

p
s = 13 TeV (with NNPDF 3.0 PDFs) is of order 2%.

Additional uncertainties come from the values of ↵

s

and m

t

: see Ref. [49] for a more
detailed discussion.

We observe that the uncertainty due to scale variations at NNLO is about 5% at
the collider energies we are considering, which is larger than the overall uncertainty on

– 25 –

ln
s4
m2

= ln

✓
s+ t+ u� 2m2
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Vector boson transverse momentum resummation (inc. leptonic decay)

✦ Method: b-space resummation 
‣ Code: DYres 

✦ Key part of resummation formula 
‣ Precision: NNLL+NNLO 
‣ Lepton cuts can be included.
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Transverse-momentum resummation and the structure of hard factors at the NNLO Leandro Cieri

to δ (2)(qT) or to large logarithms of the type 1
q2T
lnm(M2/q2T ). The partonic cross sections of the

second term in the right-hand side of Eq. (2.2) are regular (i.e. free of logarithmic terms) order-
by-order in perturbation theory as qT → 0. In the following we focus on the singular component,
dσ (sing)

F , which has an universal all-order structure. The corresponding resummation formula is
written as [1, 5, 6]

dσ (sing)
F (p1, p2;qT,M,y,Ω)
d2qT dM2 dy dΩ

=
M2

s ∑
c=q,q̄,g

[
dσ (0)

cc̄,F

]∫ d2b
(2π)2

eib·qT Sc(M,b)

× ∑
a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

[
HFC1C2

]
cc̄;a1a2

fa1/h1 fa2/h2 , (2.3)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) is a numerical coefficient, and the kine-
matical variables x1 = M√

s e
+y and x2 = M√

s e
−y. The function Sc(M,b) is the Sudakov form factor,

which is universal (process independent) [5]: it only depends on the type (c = q or c = g) of col-
liding partons, and it resums the logarithmically-enhanced contributions of the form lnM2b2 (the
region qT ≪ M corresponds to Mb≫ 1 in impact parameter space). The all-order expression of
Sc(M,b) is [2]

Sc(M,b) = exp

{

−
∫ M2

b20/b2

dq2

q2

[
Ac(αS(q2)) ln

M2

q2
+Bc(αS(q2))

]}

, (2.4)

where Ac(αS) and Bc(αS) are perturbative series in αS. The perturbative coefficients A
(1)
c ,B(1)

c ,A(2)
c

[3], B(2)
c [7, 4, 8] and A(3)

c [9] are explicitly known.
The Born level factor2

[
dσ (0)

cc̄,F

]
in Eq. (2.3) is obviously process dependent, although its

process dependence is elementary (it is simply due to the Born level scattering amplitude of the
partonic process cc̄ → F). The remaining process dependence of Eq. (2.3) is embodied in the
‘hard-collinear’ factor

[
HFC1C2

]
. This factor includes a process-independent part and a process-

dependent part. The structure of the process-dependent part is the main subject of the present
proceeding.

In the case of processes that are initiated at the Born level by the qq̄ annihilation channel
(c= q), the symbolic factor

[
HFC1C2

]
in Eq. (2.3) has the following explicit form [5]

[
HFC1C2

]
qq̄;a1a2

= HF
q (x1p1,x2p2;Ω;αS(M2)) Cqa1(z1;αS(b

2
0/b2)) Cq̄a2(z2;αS(b

2
0/b2)) , (2.5)

and the functions HF
q and Cqa =Cq̄ā have the perturbative expansion

HF
q (x1p1,x2p2;Ω;αS) = 1+

∞

∑
n=1

(αS
π

)n
HF (n)
q (x1p1,x2p2;Ω) , (2.6)

Cqa(z;αS) = δqa δ (1− z)+
∞

∑
n=1

(αS
π

)n
C(n)
qa (z) . (2.7)

The function HF
q is process dependent, whereas the functions Cqa are universal (they only depend

on the parton indices). The factorized structure in the right-hand side of Eq. (2.5) is based on the
2The cross section at its corresponding lowest order in αS.

4

(a) (b)

Figure 5: Vector boson production at the LHC with lepton selection cuts. The NLL+NLO (red)
and NNLL+NNLO (blue) normalized qT spectra for Z/γ∗ production are compared with the CMS
data of Ref. [91] (left panel) and the ATLAS data of Ref. [92] (right panel). The scale variation
bands are obtained as described in the text. The inset plot shows the ratio of the data and of the
scale dependent NNLL+NNLO result with respect to the NNLL+NNLO result at central values of
the scales.

see that our NNLL+NNLO calculation describes the W production data within the perturbative
uncertainties. The NNLL+NNLO perturbative uncertainty is about ±8% at the peak, it decreases
to about ±4% at qT ∼ 15 GeV, and it increases again to about ±15% at qT = 50 GeV.

In Sect. 3.1 and in the first part of this Section, we have examined vector boson qT distributions
(without and with the application of acceptance cuts) and we have computed and studied the
effects that are produced by the all-order resummation of large logarithmically-enhanced terms
at small values of qT . Our related calculations are performed at complete NNLL+NNLO (and
NLL+NLO) accuracy. In the following part of this Section, we consider other observables that
are related to the qT distributions but in which fixed values of qT are not directly measured.
These observables are inclusive over qT within certain qT ranges. Since the bulk of the vector
boson cross section is produced at small values of qT , if the observable (indirectly) probes the
detailed shape of the production cross section in the small-qT region, the observable itself can
be very sensitive to high-order radiative corrections and to the qT resummation effects that we
can explicitly compute. This reasoning illustrates and justifies the physical (and quantitative)
relevance of qT resummation for other qT -related observables. In the second part of this Section
we study the quantitative impact of qT resummation on some observables.

At the formal level, our study of other observables implies that we are resumming high-order
logarithmic corrections (in case they are present) that appear in the computation of those ob-
servables. Strictly speaking, this resummation has to be performed on an observable-dependent
basis (see, e.g., Ref. [95]). Therefore, our observable-independent treatment (based on transverse-

20



NNLL resummation for squark and gluino production

✦ QCD interest: production of heavy colored particles with possibly different masses 
‣ Helps with setting limits on their masses 

✓ Increase in cross section saves LHC running time 
✦ All NNLL threshold-resummed (matched to approx NNLO) for all squark-gluino 

pairs computed (stops on the way) 
‣ still notable enhancements beyond NLO at large masses 
‣ reduced scale uncertainty (gluino case subtle) 

✦ NLL results made into public code: NLLFast
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See talk by Christoph Borschensky



NNLL resummation for squark and gluino production

✦ Key formula 

‣ Note that Born functions, C-functions, and Δ functions depend on color structure 
‣ Possibly two different final state masses (squark-gluon final state) 
‣ Also included, the Coulomb enhancements proportional to 1/β at finite order
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hadronic cross section for the production of particles k and l, �
h1h2!kl

, can be written in

terms of the partonic cross section, �
ij!kl

, in the following manner

�

h1h2!kl

�
⇢, {m2}� =

X

i,j

Z
dx1dx2 d⇢̂ �

✓
⇢̂� ⇢

x1x2

◆

⇥ f

i/h1
(x1, µ

2) f
j/h2

(x2, µ
2)�

ij!kl

�
⇢̂, {m2}, µ2

�
, (2.1)

where {m2} denotes all the masses entering the calculation, i and j are the initial-state

parton flavours, f
i/h1

and f

j/h2
are the parton distribution functions, µ is the common

factorisation and renormalisation scale, x1 and x2 are the momentum fractions of the

partons inside the hadrons h1 and h2, and ⇢ and ⇢̂ are the hadronic and partonic threshold

variables respectively. The threshold for the production of two final-state particles k and

l with masses m

k

and m

l

corresponds to a hadronic center-of-mass energy squared of

S = (m
k

+m

l

)2. Therefore we define the hadronic threshold variable ⇢, measuring the

distance from threshold in terms of a quadratic energy fraction, as

⇢ =
(m

k

+m

l

)2

S

.

In the threshold region, the dominant contributions to the higher-order QCD correc-

tions due to soft-gluon emission have the general form

↵

n

s log
m

�

2
, m  2n with �

2 ⌘ 1� ⇢̂ = 1 � 4(m
av

)2

s

, (2.2)

where s = x1x2S is the partonic center-of-mass energy squared, ↵s is the strong coupling

and m

av

= (m
k

+m

l

)/2 is the average mass of the final-state particles k and l. We perform

the resummation of the soft-gluon emission after taking the Mellin transform (indicated by

a tilde) of the cross section:

�̃

h1h2!kl

�
N, {m2}� ⌘

Z 1

0
d⇢ ⇢

N�1
�

h1h2!kl

�
⇢, {m2}�

=
X

i,j

f̃

i/h1
(N + 1, µ2) f̃

j/h2
(N + 1, µ2) �̃

ij!kl

�
N, {m2}, µ2

�
. (2.3)

The logarithmically enhanced terms now take the form of ↵n

s log
m

N , m  2n, where the

threshold limit � ! 0 corresponds toN ! 1. The all-order summation of such logarithmic

terms follows from the near-threshold factorisation of the cross section into functions that

each capture the contributions of classes of radiation e↵ects: hard, collinear and wide-angle

soft radiation [16–21]. Near threshold the resummed partonic cross section takes the form:

�̃

(res)
ij!kl

�
N, {m2},µ2

�
=

X

I

�̃

(0)
ij!kl,I

�
N, {m2}, µ2

�
C

ij!kl,I

(N, {m2}, µ2)

⇥ �
i

(N + 1, Q2
, µ

2)�
j

(N + 1, Q2
, µ

2)�(s)
ij!kl,I

�
Q/(Nµ), µ2

�
, (2.4)

where we have introduced the hard scale Q

2 = 4m2
av

. The soft radiation is coherently sen-

sitive to the colour structure of the hard process from which it is emitted [18–21, 37, 38].
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At threshold, the resulting colour matrices become diagonal to all orders by performing the

calculation in the s-channel colour basis [22, 23, 39]. The di↵erent contributions then corre-

spond to di↵erent irreducible representations I. Correspondingly, �̃(0)
ij!kl,I

in equation (2.4)

are the colour decomposed leading-order (LO) cross sections. The collinear radiation e↵ects

are summed into the functions �
i

and �
j

and the wide-angle soft radiation is described

by �(s)
ij!kl,I

. The radiative factors can then be written as

�
i

�
j

�(s)
ij!kl,I

= exp
h
Lg1(↵sL) + g2(↵sL) + ↵sg3(↵sL) + . . .

i
. (2.5)

This exponent contains all the dependence on large logarithms L = logN . The leading

logarithmic approximation (LL) is represented by the g1 term alone, whereas the NLL

approximation requires additionally including the g2 term. Similarly, the g3 term is needed

for the NNLL approximation. The customary expressions for the g1 and g2 functions can

be found in e.g. [23] and the one for the NNLL g3 function in e.g. [32].

The matching coe�cients C
ij!kl,I

in (2.4) collect non-logarithmic terms as well as log-

arithmic terms of non-soft origin in the Mellin moments of the higher-order contributions.

The coe�cients C
ij!kl,I

factorise into a part that contains the Coulomb corrections and a

part containing hard contributions [28]

C

ij!kl,I

= (1 +
↵s

⇡

CCoul,(1)
ij!kl,I

+
↵

2
s

⇡

2
CCoul,(2)
ij!kl,I

+ . . . )(1 +
↵s

⇡

C(1)
ij!kl,I

+
↵

2
s

⇡

2
C(2)
ij!kl,I

+ . . . ) . (2.6)

Apart from the terms of O(↵
s

), which need to be included in C

ij!kl,I

when performing

resummation at NNLL, some of the O(↵2
s

) terms are also known and can be included in

the numerical calculations. Expanding (2.6) we have

C

NNLL
ij!kl,I

= 1 +
↵s

⇡

⇣
CCoul,(1)
ij!kl,I

(N, {m2}, µ2) + C(1)
ij!kl,I

({m2}, µ2)
⌘

+
↵

2
s

⇡

2

⇣
CCoul,(2)
ij!kl,I

(N, {m2}, µ2) + C(2)
ij!kl,I

({m2}, µ2)

+ C(1)
ij!kl,I

({m2}, µ2)CCoul,(1)
ij!kl,I

(N, {m2}, µ2)
⌘
. (2.7)

The first-order hard matching coe�cients C(1)
ij!kl,I

were calculated in [27], whereas the

expressions for the first-order Coulomb corrections CCoul,(1)
ij!kl,I

in Mellin-moment space are

listed in appendix A. The form of the two-loop Coulomb corrections in �-space is known in

the literature [40]. We calculate the CCoul,(2)
ij!kl,I

coe�cient by taking Mellin moments of the

near-threshold approximation of these two-loop Coulomb corrections, the result of which

can be found in appendix B. The second-order hard matching coe�cient C(2)
ij!kl,I

is not

known at the moment and we put C(2)
ij!kl,I

= 0 in (2.7).

Once we have the NNLL resummed cross section in Mellin-moment space, we match

it to the approximated NNLO cross section, which is constructed by adding the near-

threshold approximation of the NNLO correction [40] to the full NLO result [14]. The
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‣ Use threshold 

‣ Joint resummation, schematically

‣ Already done for NLL, now extension to NNLL.  Coulomb modes factorize into H (hard), 
W(soft) and JR (Coulomb)

‣ Coulomb contributions can be resummed by Green’s function method

‣ Results for top quarks, squark and gluino production available. Full comparison with Mellin 
approach ongoing.
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Some new developments



Automated resummation

✦ NLO now fully automatized, resummation cannot, and should not be far behind 
‣ already exists for event shapes  (CAESAR) 
‣ automated NNLL+NLO resummation for jet-veto cross sections 

✦ Universal elements in resummation 
‣ Functions Δi(N)  and Ji(N) for initial and final state collinear radiation 
‣ Soft function depends on mildly on process 

✦ Process dependent: hard function.  Idea: reweight MadGraph_aMC@NLO results 
with resummation factors (kinematics does not change) 
‣ Achieved NNLL precision
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PDF’s and threshold resummation
✦ Recall that (N)NLO partonic cross sections must be combined with (N)NLO PDFs, for 

two reasons 

‣ 1. To match the order of the scale dependence of PDF and σ 
‣ 2. Some of the (N)NLO correction may be due to the PDF’s, inherited from the fitting 

processes 
✦ New:  NNPDF with threshold resummation 
✦ Fit using (N)NLL resummed DY+DIS+tt cross sections 

✓ not (yet): inclusive jets, and W-production → larger PDF uncertainties
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PDF’s and threshold resummation
✦ Recall that (N)NLO partonic cross sections must be combined with (N)NLO PDFs, for 

two reasons 

‣ 1. To match the order of the scale dependence of PDF and σ 
‣ 2. Some of the (N)NLO correction may be due to the PDF’s, inherited from the fitting 

processes 
✦ New:  NNPDF with threshold resummation 
‣ addresses reason 2 

✦ Fit to data using (N)NLL resummed DY+DIS+tt cross sections (via TROLL and Top++) 
✓ not (yet): inclusive jets, and W-production → larger PDF uncertainties 
✓ if the resummed partonic cross section in fit are larger (smaller), the fitted PDF’s will be 

smaller (larger)
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PDF’s and threshold resummation
✦ K-factors  

✦ Effect of restricted data set (DIS+DY+Top only) 

‣ Jet data are import for gluon at large x
41
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Figure 1. �K-factors Eq. (2.11) for the neutral current DIS structure function F2(x,Q), as a
function of x, for Q = 2 GeV and Q = 30 GeV. The plot on the left corresponds to j = 1, k = 1 in
Eq. (2.11), i.e. NLO and NLL, while the one on the right to j = 2, k = 2, i.e. NNLO and NNLL.
The effect of adding TMCs is shown as a thin solid line.

Figure 2. Same as Fig. 1 for the NLL (left plot) and NNLL (right plot) resummation of neutral-
current Drell-Yan invariant mass distribution at the Tevatron and at the LHC.

In Fig. 1 we show the �K-factors for the neutral current DIS structure function
F2(x,Q), as a function of x, for Q = 2 GeV and Q = 30 GeV. The plot on the left
corresponds to j = 1, k = 1 in Eq. (2.11), i.e. NLL to be matched to NLO, while the
one on the right to j = 2, k = 2, i.e. NNLL to be matched to NNLO. We note that the
resummation enhances the cross section at large x, while it gives a very small contribution
at small x, as it should. We also note a dip in the region of intermediate x, which is also
present in fixed-order calculations [122].

TMC effects are also shown as light shadows to the actual curves: as expected, at large
scales they are negligible, while at smaller scales their effect is non-negligible, in particular
at large x, where they reduce the effect of the resummation. Note that in the definition of
�K we use the fact that the same TMCs are already included in the LO cross section, so
much of their effect cancels out.

In Fig. 2 we show the corresponding �K-factors this time for Drell-Yan invariant mass
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Figure 7. Comparison of the fixed-order NNPDF3.0 NLO fits based on different datasets: global,
DIS-only and DIS+DY+top, for ↵s(m

2
Z) = 0.118, at a typical LHC scale of Q2

= 10

4 GeV2. Results
are normalised to the central prediction of the NNPDF3.0 NLO global fit. From left to right and
from top to bottom, we show the gluon, the total quark singlet, the total valence PDF and the total
strangeness.

tainties due to the reduced dataset. For simplicity, we restrict these comparisons to NLO,
since the impact of the reduced dataset is roughly independent of the perturbative order.

We have produced two baseline fits: one with the all the data marked in the last column
of Table 2, and the other with only DIS-data included. In Fig. 7 we compare the NNPDF3.0
NLO DIS-only and DIS+DY+top set with ↵s(m

2
Z) = 0.118, with the corresponding global

set.3 In both cases we use Nrep = 100 replicas, and the comparison is performed at a typical
LHC scale Q = 100 GeV. Results are normalised to the central prediction of the global fit.
From left to right and from top to bottom, we show the gluon, the total quark singlet, the
total valence PDF and the total strangeness.

As we can see, there is a reasonable agreement for most of the PDF flavours and of
momentum fraction x between the three fits, with as expected larger PDF uncertainties
in the DIS-only and DIS+DY+top fits due to the reduced dataset. The DIS-only fit is
relatively close to the global fit for the large-x quarks, since these are well constrained by
the DIS fixed-target data. On the other hand, the DIS-only fit is affected by rather larger

3In the rest of this section, we concentrate only on the large-x region of the PDFs, since as we will show
the effects of threshold resummation are negligible at medium and small-x.
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PDF’s and threshold resummation: results

✦ Impact of resummation will be more important at NLO+NLL than NNLO+NNLL 
‣ part of NLL sits in NNLO 

✦ Effect of resummation in fit:  large shifts in central value only where uncertainty is 
large 

✦ Luminosities suppressed for very large mass final state (> 1 TeV) 
✦ Impact on SM Higgs: no effect.   For heavy higgses, resummed PDF’s cancel 

resummation effects in cross section

42
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Figure 11. Same as Fig. 10, now comparing the NNLO DIS+DY+top fit with the corresponding
NNLO+NNLL fit.

next section.
We begin by estimating the effect on the PDF luminosities of the reduced dataset used

in our baseline fits, as compared to the NNPDF3.0 global fit. Thus in Fig. 12 we compare
the NNPDF3.0 NLO partonic luminosities for ↵s(m

2
Z) = 0.118, in the global fit and in the

DIS+DY+top baseline fit. In the upper plots we show the quark-antiquark and quark-
quark luminosities, and in the lower plots the gluon-gluon and gluon-quark luminosities.
The calculation has been performed for the LHC 13 TeV, as a function of the mass of the
final state MX , and results are normalised to the central value of the global fit.

As we can see in Fig. 12, there are some important differences between the global and
DIS+DY+top fits. For the qq luminosity, the impact of varying the dataset is small, both
in terms of central values and of PDF uncertainties, except at very large values of MX . For
the qq̄ luminosity, the differences are again only sizeable at large MX , where the central
value of the DIS+DY+top fit is softer than that of the global fit, for instance by 10% at
MX ' 3 TeV. PDF uncertainties are similar in the two cases, and the two fits agree within
one-sigma. The missing jet data have a stronger impact on the gg and qg luminosities. For
instance for the gg luminosity above 0.5 TeV, PDF uncertainties increase by a factor two or
more. Therefore, in order to consistently assess the impact of the resummation, one should
compare the resummed and fixed-order DIS+DY+top fits, rather than the NNPDF3.0
global fit, with the resummed fits presented here.
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next section.
We begin by estimating the effect on the PDF luminosities of the reduced dataset used

in our baseline fits, as compared to the NNPDF3.0 global fit. Thus in Fig. 12 we compare
the NNPDF3.0 NLO partonic luminosities for ↵s(m

2
Z) = 0.118, in the global fit and in the

DIS+DY+top baseline fit. In the upper plots we show the quark-antiquark and quark-
quark luminosities, and in the lower plots the gluon-gluon and gluon-quark luminosities.
The calculation has been performed for the LHC 13 TeV, as a function of the mass of the
final state MX , and results are normalised to the central value of the global fit.

As we can see in Fig. 12, there are some important differences between the global and
DIS+DY+top fits. For the qq luminosity, the impact of varying the dataset is small, both
in terms of central values and of PDF uncertainties, except at very large values of MX . For
the qq̄ luminosity, the differences are again only sizeable at large MX , where the central
value of the DIS+DY+top fit is softer than that of the global fit, for instance by 10% at
MX ' 3 TeV. PDF uncertainties are similar in the two cases, and the two fits agree within
one-sigma. The missing jet data have a stronger impact on the gg and qg luminosities. For
instance for the gg luminosity above 0.5 TeV, PDF uncertainties increase by a factor two or
more. Therefore, in order to consistently assess the impact of the resummation, one should
compare the resummed and fixed-order DIS+DY+top fits, rather than the NNPDF3.0
global fit, with the resummed fits presented here.
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Eikonal exponentiation: a fun path to the exponent 

A0

�
dnk

1
k2

p · p̄
(p · k)(p̄ · k)
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k
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k1 k2 A0
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⇥2

QED one loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series
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Non-abelian exponentiation: webs

✦ Not immediately generalizable to QCD it seems 
‣ Vertices terms have color charges, which don’t commute. But 
‣ Non-abelian exponentiation theorem 

✦ In the exponent: “webs” 
✦ Generalized to multiple colored external lines 
✦ Direct link to soft-anomalous dimensions, but now also finite terms exponentiate 
‣ For N(N..)LL resummation for jet cross sections, e.g.
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Generic large x behavior
✦ For DY, DIS, Higgs, singular behavior when x→ 1 

‣ delta-function: pure virtuals 
‣ plus distributions: resummable to all orders (N3LL for Higgs production now) 
‣ NLP logarithms, systematics are beginning to emerge 

✦ Method of regions allows their computation 

✓ at least to p=37 
✦ Can they be predicted?
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N3LO  Higgs and subleading powers
✦ Landmark N3LO Higgs cross section as an expansion around threshold 

✦ Sobering note: N=-1, 0, .. is not a good approximation..
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2

threshold expansion of each master integral. An impor-
tant part of our computation has been the evaluation of
the boundary conditions which are needed for solving the
di↵erential equations for the master integrals. Many of
the boundary conditions required in this project had al-
ready been derived in the context of the soft-virtual and
next-to-soft results [15–18, 20]. Using similar techniques,
we have computed the remaining few unknown boundary
conditions for master integrals which start to be relevant
only at a high order in the threshold expansion.

Having at our disposal the complete set of master
integrals as expansions around the threshold limit, we
can easily obtain the cross-sections at N3LO for all par-
tonic channels contributing to Higgs production via gluon
fusion. The partonic cross-sections are related to the
hadronic cross-section at the LHC through the integral

� =
X

i,j

Z
dx1dx2fi(x1, µf )fj(x2, µf )�̂ij(z, µr, µf ) , (1)

where the summation indices i, j run over the parton fla-
vors in the proton, fi are parton densities and �̂ij are

partonic cross-sections. Furthermore, we define z = m2

H

s ,
where mH is the mass of the Higgs boson and

p
s is the

partonic center-of-mass energy, related to the hadronic
center-of-mass energy

p
S through s = x1 x2 S. The

renormalisation and factorisation scales are denoted by
µr and µf . We work in an e↵ective theory approach
where the top-quark is integrated out. The e↵ective La-
grangian describing the interaction of the Higgs boson
and the gluons is,

Le↵ = �C

4
H Ga

µ⌫G
aµ⌫ , (2)

where H is the Higgs field, Ga
µ⌫ is the gluon field

strength tensor and C the Wilson coe�cient, known up
to N4LO [26]. We expand the partonic cross-sections
into a perturbative series in the strong coupling constant
evaluated at the scale µr,

�̂ij = �̂0

"
�ig �jg �(1� z) +

1X

`=1

✓
↵s(µr)

⇡

◆`

�̂
(`)
ij

#
. (3)

In this expression �̂0 denotes the leading order cross-
section, and the terms through NNLO in the above ex-
pansion have been computed in [23, 30, 31]. The main
result of this Letter is the result for the N3LO coe�-
cient, corresponding to ` = 3 in eq. (3), for all possible
parton flavours in the initial state. We cast the N3LO
coe�cients in the form

�̂
(3)
ij = lim

N!1
�̂
(3,N)
ij , (4)

where we introduce the truncated threshold expansions
defined by

�̂
(3,N)
ij = �ig �jg �̂

(3)
SV +

NX

n=0

c
(n)
ij (1� z)n . (5)

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Truncation order

σ g
gN
3L
O
/p
b

●
●●●●●●●●●●

●●●
●●●

●●●
●●●

●●●
●●

■■■■■■■■■■■■■■■■■■■■■
■■■■■■■

10 15 20 25 30 35
2.52

2.53

2.54

2.55

2.56

LHC@ 13TeV
gg→h+X subchannel
MSTW08 68cl
μ=μR=μF=mh

σgg σgg : z > 0.1

FIG. 1: The N3LO correction from the gg channel to the
hadronic cross-section as a function of the truncation order
N in the threshold expansion for the scale choice µ = mH .

Here, �̂(3)
SV denotes the soft-virtual cross-section at N3LO

of ref. [17–19] and N = 0 is the next-to-soft approxi-
mation of ref. [20]. Using our method for the threshold
expansion of the master integrals, we were able to deter-

mine the c(n)ij analytically up to at least n = 30. Note that
at any given order in the expansion these coe�cients are
polynomials in log(1� z). While this approach does not
cast the partonic cross-sections in a closed analytic form,
we argue that it yields the complete result for the value
of the hadronic cross-section. In Fig. 1 we show the con-
tribution of the partonic cross-section coe�cients N3LO
to the hadronic cross-section for a proton-proton collider
with 13TeV center-of-mass energy as a function of the
truncation order N . We use NNLO MSTW2008 [28] par-
ton densities and a value for the strong coupling at the
mass of the Z-boson of ↵s(mZ) = 0.117 as initial value
for the evolution, and we set the factorisation scale to
µf = mH . We observe that the threshold expansion sta-
bilises starting from N = 4, leaving a negligible trun-
cation uncertainty for the hadronic cross-section there-
after. We note, though, that we observe a very small,
but systematic, increase of the expansion in the range
N 2 [15, 37], as illustrated in Fig. 1. We have observed
that a similar behaviour is observed for the threshold
expansion at NNLO. The systematic increase originates
from values of the partonic cross-section at very small z.
Indeed, this increase appears only in the contributions
to the hadronic cross-section integral for values z < 0.1.
It is natural that the terms of the threshold expansion
computed here do not furnish a good approximation of
the hadronic integral in the small z region due to the di-
vergent high energy behaviour of the partonic cross sec-
tions [29]. However, it is observed that this region is
suppressed in the total hadronic integral and for z < 0.1
contributes less than 0.4% of the total N3LO correction.
The same region at NLO and NNLO, where analytic ex-
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next-to-soft results [15–18, 20]. Using similar techniques,
we have computed the remaining few unknown boundary
conditions for master integrals which start to be relevant
only at a high order in the threshold expansion.

Having at our disposal the complete set of master
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� =
X

i,j

Z
dx1dx2fi(x1, µf )fj(x2, µf )�̂ij(z, µr, µf ) , (1)

where the summation indices i, j run over the parton fla-
vors in the proton, fi are parton densities and �̂ij are

partonic cross-sections. Furthermore, we define z = m2

H

s ,
where mH is the mass of the Higgs boson and

p
s is the

partonic center-of-mass energy, related to the hadronic
center-of-mass energy

p
S through s = x1 x2 S. The

renormalisation and factorisation scales are denoted by
µr and µf . We work in an e↵ective theory approach
where the top-quark is integrated out. The e↵ective La-
grangian describing the interaction of the Higgs boson
and the gluons is,

Le↵ = �C

4
H Ga

µ⌫G
aµ⌫ , (2)

where H is the Higgs field, Ga
µ⌫ is the gluon field

strength tensor and C the Wilson coe�cient, known up
to N4LO [26]. We expand the partonic cross-sections
into a perturbative series in the strong coupling constant
evaluated at the scale µr,

�̂ij = �̂0

"
�ig �jg �(1� z) +

1X

`=1

✓
↵s(µr)

⇡

◆`

�̂
(`)
ij

#
. (3)

In this expression �̂0 denotes the leading order cross-
section, and the terms through NNLO in the above ex-
pansion have been computed in [23, 30, 31]. The main
result of this Letter is the result for the N3LO coe�-
cient, corresponding to ` = 3 in eq. (3), for all possible
parton flavours in the initial state. We cast the N3LO
coe�cients in the form

�̂
(3)
ij = lim

N!1
�̂
(3,N)
ij , (4)

where we introduce the truncated threshold expansions
defined by

�̂
(3,N)
ij = �ig �jg �̂

(3)
SV +

NX

n=0

c
(n)
ij (1� z)n . (5)

FIG. 1: The N3LO correction from the gg channel to the
hadronic cross-section as a function of the truncation order
N in the threshold expansion for the scale choice µ = mH .

Here, �̂(3)
SV denotes the soft-virtual cross-section at N3LO

of ref. [17–19] and N = 0 is the next-to-soft approxi-
mation of ref. [20]. Using our method for the threshold
expansion of the master integrals, we were able to deter-

mine the c(n)ij analytically up to at least n = 30. Note that
at any given order in the expansion these coe�cients are
polynomials in log(1� z). While this approach does not
cast the partonic cross-sections in a closed analytic form,
we argue that it yields the complete result for the value
of the hadronic cross-section. In Fig. 1 we show the con-
tribution of the partonic cross-section coe�cients N3LO
to the hadronic cross-section for a proton-proton collider
with 13TeV center-of-mass energy as a function of the
truncation order N . We use NNLO MSTW2008 [28] par-
ton densities and a value for the strong coupling at the
mass of the Z-boson of ↵s(mZ) = 0.117 as initial value
for the evolution, and we set the factorisation scale to
µf = mH . We observe that the threshold expansion sta-
bilises starting from N = 4, leaving a negligible trun-
cation uncertainty for the hadronic cross-section there-
after. We note, though, that we observe a very small,
but systematic, increase of the expansion in the range
N 2 [15, 37], as illustrated in Fig. 1. We have observed
that a similar behaviour is observed for the threshold
expansion at NNLO. The systematic increase originates
from values of the partonic cross-section at very small z.
Indeed, this increase appears only in the contributions
to the hadronic cross-section integral for values z < 0.1.
It is natural that the terms of the threshold expansion
computed here do not furnish a good approximation of
the hadronic integral in the small z region due to the di-
vergent high energy behaviour of the partonic cross sec-
tions [29]. However, it is observed that this region is
suppressed in the total hadronic integral and for z < 0.1
contributes less than 0.4% of the total N3LO correction.
The same region at NLO and NNLO, where analytic ex-



NLP logs in Drell-Yan  at NNLO
✦ Check NLP Feynman rules for NNLO Drell-Yan double real emission (only CF2 terms) 

‣ Result at NE level, agrees with equivalent exact result 

✦ Next, 1 Real- 1 Virtual (only CF2 terms) 
✓ virtual gluon not necessarily soft 
✓ we redid exact calculation again, for comparison
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Figure 19: Diagrams for the double-real-emission contribution to the NNLO Drell-Yan K factor
discussed in the text. A cut is implied over the intermediate state in each case, and complex
conjugates of the above diagrams (excluding (e), which is real) must also be included.

are not fully uncorrelated, but their correlation is simple, depending only on the global

variables of the multi-gluon system and not on individual gluon momenta.

This discussion applies to the explicit example of Drell-Yan production. We expect

that such arguments will apply more generally in other scattering processes, pending a

suitable parametrisation of the partonic momenta.

C. The double-real-emission contribution to the Drell-Yan K factor

In this appendix we briefly describe how to compute the terms proportional to C2
F of the

Drell-Yan K-factor, for the qq̄ initial state, by using ordinary Feynman diagrams and ex-

panding them to NE order. The relevant diagrams are shown in fig. 19. The corresponding

squared matrix elements are easily computed, and must then be integrated with the phase

space measure in eq. (6.26). As an example, diagram (a) contributes a factor

|M|2(a) ∝ Tr [̸ p̄γα(̸p− ̸k1− ̸k2)γν (̸p− ̸k1)γµ ̸pγα(− ̸ p̄+ ̸k1+ ̸k2)γµ(− ̸ p̄+ ̸k2)γν ]
(p− k1 − k2)2 (p − k1)2 (−p̄+ k1 + k2)2 (−p̄+ k2)2

. (C.1)

Note that the contributions from diagrams (a) − (d) must be counted twice in order to

include Hermitian conjugate graphs, while diagram (e) is real.

To calculate the squared matrix element to NE order, one first relabels ki → ξki, so

that

p̄ · ki → ξ p̄ · ki, p · ki → ξ p · ki, ki · kj → ξ2 ki · kj . (C.2)
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One then expands each diagram to first subleading order in ξ, which corresponds to the

NE approximation. Through repeated use of the identities

p · k1
p · k2

=
1

p · k2
s− t̃

2
− 1 ,

p̄ · k1
p̄ · k2

=
1

p̄ · k2
s12 + t̃−Q2

2
− 1 , (C.3)

(with similar results for k1 ↔ k2), each diagram can be written as a sum of terms containing

no more than two factors of p · ki and p̄ · ki. Then each term becomes an integral of the

form of eq. (6.29). The remaining phase space integrals can be carried out after expanding

the integrand in powers of 1− z and ϵ, as described for the NE calculation in Sec. 6.2. The

final result for the full amplitude (keeping only logarithmic terms with rational coefficients

as done in the text) is given by

K(2)
NE(z) =

(αs

4π
CF

)2 [
−32

ϵ3
D0(z) +

128

ϵ2
D1(z) −

128

ϵ2
log(1− z)

− 256

ϵ
D2(z) +

256

ϵ
log2(1− z)− 320

ϵ
log(1− z)

+
1024

3
D3(z)−

1024

3
log3(1− z) + 640 log2(1− z)

]
, (C.4)

which is in complete agreement with the sum of eqs. (6.31) and (6.33).
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Diagnosis: method of regions
✦ Method of region approach, extended to next power 
‣ Allow treatment of (next-to-)soft and (next-to-)collinear on equal footing 

✦ How does it work? 
‣ Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by 

appropiate scaling 

‣ expand integrand in λ, to leading and next-to-leading order 
‣ but then integrate over all k1 anyway! 
‣ Treat emitted momentum as soft and incoming momenta as hard

48

Vernazza, Bonocore, EL, Magnea, Melville, White

’’nnlo 2’’ (c) ’’nnlo 2b’’ (d)

’’nnlo 3b’’ (b)’’nnlo 3’’ (a)

Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads

�NNLO
2

= g4s

Z
[dk1] [dk2]

1

k2
1

(2⇡)�(k2) ✓(k0) �
⇣!
2
� k0

⌘

·
⇢
Tr


p/ �↵ k/2 � p̄/

(k2 � p̄)2
�µp̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�↵

p/+ k/1 � k/2
(p+ k1 � k2)2

�µ
p/+ k/1

(p+ k1)2
�⇢

�

+Tr
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�
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+Tr
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Method of Regions
✦ Find 
‣ Hard region (expansion in λ2) 

✓ reproduces already all plus-distributions, and some NLP logarithms 

‣ Soft region (expansion in λ2) 
✓ all integrals are scale-less, hence all zero in dimensional regularization 

‣ (anti-)collinear regions (expansion in λ) 
✓ only give NLP logarithms, once all diagrams in set are summed 

✦ Result: 
‣ the full  K(1)1r,1v is reproduced, including constants 

✓ Collinear regions give only NLP logarithms 
✓ Clearly, one must first expand in ε, then in soft momentum 

✦ For predictive power, need factorization (“soft theorems” 
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New: a factorization approach
✦ Can we predict the log(1-z) logarithms?  
✦ Can we resum the log(1-z) logarithms to NLL, NNLL etc? 
‣ For both we need to factorize the cross section, as we did earlier 

✓ H contains both the hard and the soft function (non-collinear factors) 
✓ J: incoming jet functions 

✦ Next, add one extra soft emission, as in Low’s (LBKD) theorem. Let every blob 
radiate! 

✓ Can we compute each new “blob + radiation?”, and put it together? 
✓ New: radiative jet function
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(a) (b) (c)
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J

J

H H H

Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ ¯S ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ ¯S , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ
(k) = AJ

µ ✏
µ
(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ
µ =

2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)

Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here

6

Jµ
�
p, n, k,↵s(µ

2), ✏
�
u(p) =

Z
ddy e�i(p�k)·y h0 | �n(y,1) (y) jµ(0) | pi



Factorization approach: main formula

✦ Upshot: a factorization formula for the emission amplitude 

✦ Remarks 
‣ for logs: to be contracted with cc amplitude 
‣ only process dependent terms are H and A 
‣ Jµ is needed  at loop level, done 
‣ In dim.reg.: J is scale-less, so =1 

✦ Interesting SCET approach, translation underway
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Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.

4.5 Diagrams NNLO2

The diagrams NNLO2 in fig. 6 reads

�NNLO
2

= g4s

Z
[dk1] [dk2]

1

k2
1

(2⇡)�(k2) ✓(k0) �
⇣!
2
� k0

⌘

·
⇢
Tr


p/ �↵ k/2 � p̄/

(k2 � p̄)2
�µp̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�↵

p/+ k/1 � k/2
(p+ k1 � k2)2

�µ
p/+ k/1

(p+ k1)2
�⇢

�

+Tr


p/ �µ p/� k/2

(p� k2)2
�↵p̄/ �⇢ k/1 � p̄/

(k1 � p̄)2
�µ

k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�↵

p/+ k/1
(p+ k1)2

�⇢

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�↵ k/1 + k/2 � p̄/

(k1 + k2 � p̄)2
�µ k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �↵ p/� k/2

(p� k2)2
�µ

�

+Tr


p/ �⇢ p/+ k/1

(p+ k1)2
�µ

p/+ k/1 � k/2
(p+ k1 � k2)2

�↵
k/1 � p̄/

(k1 � p̄)2
�⇢p̄/ �µ k/2 � p̄/

(k2 � p̄)2
�↵

��
. (41)

13

Aµ(pj , k) =
2X

i=1

✓
qi

(2pi � k)µ

2pi · k � k2
+ qi G

⌫µ
i

@

@p⌫i
+G⌫µ

i J⌫(pi, k)

◆
A(pi; pj)

Larkoski, Neill, Stewart (14)



NE logs in factorization approach

✦ Now put it all together, contract with cc amplitude and integrate over phase space 
‣ Can do so in organized fashion 

✦ Result: 

‣ first steps toward resummation of NLP logarithms
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d� = d�3,LP (PLP + PNLP) + d�3,NLPPLP

Find agreement with exact result, including constants:
four powers of logarithms

Bonocore, EL, Magnea, Melville, Vernaza, White
arXiv:1503.05156



Summary
✦ Various resummation tools  
‣ factorization → resummation   
‣ straight exponentiation of soft effects (“webs”) 

✦ Resummation systematically improvable, like fixed order 
‣ just add “N”’s. 

✦ Progress 
‣ towards more exclusive cross sections 
‣ towards automization and threshold-resummed PDF’s 
‣ better understanding of analytic structure at high orders 
‣ next-to-soft logarithms
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