

Recent QCD results from the LHC

R. Arcidiacono

Universita' del Piemonte Orientale, INFN Torino

QCD interactions

Our knowledge of soft and hard QCD processes has a direct impact on the potential for precision measurements and discoveries

http://www.isgtw.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets

QCD interactions

Our knowledge of soft and hard QCD processes has a direct impact on the potential for precision measurements and discoveries

http://www.isgtw.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets

Outline

- Overview of **recent** (*and selected*) **results** of hard QCD from the 4 LHC experiments:
 - Jet production cross-sections
 - Measurement of α_s
 - V+j studies

Complete list of public results:

CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults LHCb: http://cds.cern.ch/collection/LHCb%20Papers?ln=en ALICE: https://twiki.cern.ch/twiki/bin/view/ALICEpublic/ALICEPublicResults

• Soft QCD \rightarrow covered by Alessia Bruni's talk

Thanks to all physics coordination teams for their support

Jet production cross - sections are excellent probes of QCD and its modeling over many orders of magnitudes

LHC is (also) a jet-factory:

- Most typical high-p_T object
- Different jet clustering algorithm radii used to probe interplay between Hard and Soft QCD effect
- Perfect to measure jet rates, normalized cross sections, correlations between jets and multi-dimensional differential cross sections

with Hera, Tevatron and LHC \rightarrow covering scales from few GeV to multi - TeV

Inclusive jet cross-section

Inclusive jet cross section, pp at 2.76 TeV

CMS-PAS-SMP-14-017

The double-differential inclusive jet cross section, 2013 data at 2.76 TeV Six |y| bins (0.0-3.0), p_T range 74-592 GeV Jets algorithm anti-k_t R=0.7 Compared with theoretical predictions (NLOJET++) for five different sets of PDF

A theory-normalized cross section ratio is calculated using 2.76 TeV and 8 TeV measurements.

Precise test of QCD at different \sqrt{s} and input to PDF fits [ATLAS 2.76TeV/7TeV[EPJC(2013)73 2509]

CMS 2.76 TeV / 8 TeV ratio \rightarrow good agreement with NLO theory

Inclusive jet cross-section

Charged jet differential cross sections at 7 TeV

ALICE

Phys. Rev. D 91 (2015) 112012

Differential charged jet cross sections, jet fragmentation distributions, and jet shapes in minimum bias proton-proton collisions.

Jets reconstructed from charged particle momenta with three different jet finders: sequential recombination k_t , anti- k_t and the SISCone jet finding algorithms (R=0.2 to 0.6). Differential jet production cross-sections are in agreement in the 20-100 GeV p_T range. In the high pT range, PYTHIA Perugia-2011 describes the data best, while in the low p_T range data is best described by HERWIG and PHOJET.

Jet azimuthal de-correlation

Two leading jets $\Delta \Phi$ for seven regions jet p_T up to 2.2 TeV.

The di-jet azimuthal de-correlation is sensitive to the radiation of additional jets and probes the dynamics of multi-jet production.

- Results are compared to perturbative QCD and to simulations using various Monte Carlo including NP corrections (parton showers, hadronization, and multi-parton interactions)
- Good agreement with 3 jet NLO calculation (NLOJet++)
- Multi-jet $2\rightarrow$ 4 MC (Madgraph +Pythia6) provides best description overall

4-Jet cross-section

Jet cross-sections at 13 TeV!

ATLAS-CONF-2015-034

- Inclusive-jet cross sections in |y| < 0.5 for anti-k_t jets with R=0.4, shown in a range of $350 < p_T < 840$ GeV
- NLO pQCD predictions are compared to the data, where the predictions are calculated using NLOJET++ with the CT10 NLO PDF set, (non-perturbative corrections applied)

QCD@LHC 2015 - London

- α_s is a fundamental QCD quantity which can be extracted from many QCD measurements:
 - Inclusive jet cross section, 3-jet mass, 3-jet to 2-jet cross section ratio (R₃₂), event shapes, tt cross-section etc.
- LHC allows the evolution of the strong coupling in the TeV region to be explored

α_s measurements

Comparison of the $\alpha_S(Q)$ evolution as determined from the inclusive jet analysis (solid curve with yellow uncertainty band) to measurements from electronproton, and proton-(anti)proton collider experiments. Covered range in Q up to ~ 1.4 TeV

α_s measurements

MultiJet transverse energy-energy correlation and its asymmetry

High energy jets ($\langle E_T \rangle$ of 2 leading jets > 250)

Fit at $Q=M_Z$:

 $\alpha_{\rm s}(m_Z) = 0.1173 \pm 0.0010 \text{ (exp.)} ^{+0.0063}_{-0.0020} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0002 \text{ (NPC)}$

 $\alpha_{\rm s}(M_{\rm Z})$

Excellent compatibility of latest results with the World Average and with jet-based measurements at hadron and e-p colliders

Vector Boson production

W, Z inclusive cross sections @ 13 TeV

QCD@LHC 2015 - London

R. Arcidiacono

Vector Boson + jets production

V+jets probe different aspects of QCD calculations

Sensitivity to:

- soft physics description
- merging techniques in soft/mid-scales
- QCD/QED corrections at harder scales

Larger cross-sections at LHC and larger integrated luminosity, different Bjorken-x, parton densities and subprocesses

High experimental accuracy \rightarrow RunI discrepancies observed have been used to improve calculations

- NLO calculations up to W+5 partons
- NNLO for W/Z+1 parton
- NLO MC matched to Parton Showering

W + jets

Eur. Phys. J. C (2015) 75:82

W + jets differential cross-sections @7 TeV

In general good agreement with the predictions

Disagreement in:

• p_T of the leading jets at high p_T

• *H_T* at high-*H_T* and low jet multiplicity

• *difference in azimuthal angle between the leading jet and the muon*

• *Mjj distributions (for* $N_{jets} \ge 2$)

QCD@LHC 2015 - London

CMS-PAS-SMP-14-009

 \mathbf{Z} + jets

Double differential cross section vs. p_T and y of the leading jet at 8 TeV

 $Z \rightarrow \mu\mu$. Jets reconstructed in an extended rapidity region, |y| < 4.7Black lines: LO+PS MADGRAPH predictions normalized to the inclusive NNLO cross-section. Blue band: NLO + PS SHERPA2 prediction shown with the statistical uncertainties

Discrepancies observed with MADGRAPH mainly for jet $p_T > 100 \text{ GeV}$ Overall agreement with SHERPA 2, except some discrepancies in specific p_T/y regions.

W/Z, Z/γ + jets ratios

arxiv.org/abs/1505.06520 MAY 2015

Differential cross-section ratio of W+jets and Z+jets (**Rjets**) (a) 7 TeV (electron and muon channels combined) The agreement with theory improves in Rjets wrt single measurements, but significant discrepancies remain in some regions of phase space

QCD@LHC 2015 - London

V + jets summary ATLAS

Observed/theory Ratio for several single-boson production cross section measurements

• theoretical expectations all calculated at NLO or higher

- the dark-color error bar represents the statistical uncertainly.
- the lighter-color error bar represents the full uncertainty (systematics and luminosity uncertainties)

V + jets summary CMS

QCD@LHC 2015 - London

Z + jets @ 13TeV

Fresh from the press !

ATLAS-CONF-2015-041

Cross section for the production of a Z boson in association with jets (up to 4) at 13 TeV

Good agreement between data and MC predictions, i.e. Sherpa (ME+PS@NLO) and Madgraph (LO) MC events normalised to inclusive Z at NNLO.

V + jets (heavy flavor)

Theoretical uncertainties on W/Z+heavy flavor jets are larger than for light jets, because of:

- heavy-quark content in the proton
- modeling of gluon splitting (initial state, final state)
- massive vs massless b-quark in calculations

Important processes to be studied \rightarrow background to Higgs and new physics searches

Allow the test of QCD predictions with various implementations (LO multileg+PS, NLO, NLO+PS)

W + jets (heavy flavor)

W + light-jet, W + b and W + c in forward region LHCb

arXiv:1505.04051

	Results		SM prediction	
	$7 \mathrm{TeV}$	$8 \mathrm{TeV}$	$7 \mathrm{TeV}$	$8 {\rm TeV}$
$\frac{\sigma(Wb)}{\sigma(Wj)} \times 10^2$	$0.66 \pm 0.13 \pm 0.13$	$0.78 \pm 0.08 \pm 0.16$	$0.74\substack{+0.17 \\ -0.13}$	$0.77\substack{+0.18 \\ -0.13}$
$\frac{\sigma(Wc)}{\sigma(Wj)} \times 10^2$	$5.80 \pm 0.44 \pm 0.75$	$5.62 \pm 0.28 \pm 0.73$	$5.02\substack{+0.80\\-0.69}$	$5.31\substack{+0.87\\-0.52}$
$\mathcal{A}(Wb)$	$0.51 \pm 0.20 \pm 0.09$	$0.27 \pm 0.13 \pm 0.09$	$0.27\substack{+0.03 \\ -0.03}$	$0.28\substack{+0.03 \\ -0.03}$
$\mathcal{A}(Wc)$	$-0.09 \pm 0.08 \pm 0.04$	$-0.01 \pm 0.05 \pm 0.04$	$-0.15\substack{+0.02\\-0.04}$	$-0.14\substack{+0.02\\-0.03}$
$\frac{\sigma(W^+j)}{\sigma(Zj)}$	$10.49 \pm 0.28 \pm 0.53$	$9.44 \pm 0.19 \pm 0.47$	$9.90\substack{+0.28 \\ -0.24}$	$9.48\substack{+0.16 \\ -0.33}$
$rac{\sigma(W^-j)}{\sigma(Zj)}$	$6.61 \pm 0.19 \pm 0.33$	$6.02 \pm 0.13 \pm 0.30$	$5.79\substack{+0.21 \\ -0.18}$	$5.52\substack{+0.13\\-0.25}$

$$\mathcal{A}(Wq)\equiv rac{\sigma(W^+q)-\sigma(W^-q)}{\sigma(W^+q)+\sigma(W^-q)}$$

Events: $W \rightarrow \mu v$ with 2.0 $< |\eta^{\mu}| < 4.5$ and 2.2 $< |\eta^{jet}| < 4.2$ and $p_T^{jet} > 20$ GeV 7 TeV + 8 TeV

• W+c/W+j and W+b/W+j ratios consistent with NLO QCD (4 - flavor scheme MCFM with CT10 PDF)

- Charge asymmetry for W + c lower than predicted:
 - larger strange quark contribution or ss_{bar} asymmetry?
- All measurements in agreement with SM

$\mathbf{Z} + \mathbf{b}$ jets

Production of a Z boson in association with at least one b-jet

 $Z \rightarrow ee, \mu\mu$

Studies of observables characterizing the b jet and Z boson kinematics

Cross section ratio R for the leading p_T jets between Z(1b) and Z+jets compared to MadGraph 5FS, MadGraph 4FS and POWHEG:

MadGraph 4FS fails in reproducing the shape

All other distributions of inclusive Z+jets (b) included) are in good agreement

ATLAS Z+b jets 7 TeV → JHEP10(2014)141 Data vs = 7 TeV, 4.6 fb⁻¹ (stat. Data vs = 7 TeV, 4.6 fb⁻¹ (stat.⊕svst

• **RunI LHC data** allowed our knowledge on QCD to be pushed forward on many fronts, exploring a wide kinematic range

- scale dependence of α_S tested to the TeV energy scale
- Jet production to multi-TeV scale
- V+jets to high jet multiplicity
- New results continue to flow in from Hera, Tevatron and LHC, more and more precise, prompting further theoretical developments on QCD
- With the expected RunII data (statistics and energy range)
 - provide further insight on QCD dynamics (higher x PDFs, probe higher order pQCD corrections ...)

Looking forward to LHC RunII full fledged results

Backup slides

Jet charge studies

Inclusive dijet events, average jet charge as a function of the more forward jet p_T (for $\kappa=0.3, 0.5, \text{ and } 0.7$)

ATLAS-CONF-2015-025

Jet charge: momentum-weighted sum of the charges of tracks associated to a jet

$$Q_J = \frac{1}{(p_{\mathrm{T}_J})^{\kappa}} \sum_{i \in Tracks} q_i \times (p_{\mathrm{T},i})^{\kappa}$$

> sensitive to the charge of the initiating quark or gluon

> depends on jet flavor, energy-dependence of PDFs and fragmentation functions

> can provide constraint on models of jet formation.

Average jet charge for the more forward jet compared with theory predictions with various PDF sets.

Heavy Flavor Production

Charm and beauty production in ALICE detector

CERN-PH-EP-2015-091

- Prompt D meson and non-prompt J/ψ yields studied as a function of the multiplicity of charged particles.
- D-meson relative yield is found to increase with increasing chargedparticle multiplicity.
- The fraction of non-prompt J/ψ in the inclusive J/ψ yields shows no dependence on the charged-particle multiplicity at central rapidity