OUTLINE

• Big picture

• Higgs: Getting to know the newest member of the Standard Model

• Going beyond the Standard Model

• New analysis techniques: getting boosted
\[\mathcal{L}_{SM} = D_\mu H^+ D_\mu H + \mu^2 H^+ H - \frac{\lambda}{2} (H^+ H)^2 - (y_{ij} H \bar{\psi}_i \psi_j + h.c.) \]

- Couplings to EW gauge bosons
- Higgs self-couplings
- Couplings to fermions
\[\mathcal{L}_{SM} = D_\mu H^\dagger D_\mu H + \mu^2 H^\dagger H - \frac{\lambda}{2} (H^\dagger H)^2 - (y_{ij} H \bar{\psi}_i \psi_j + \text{h.c.}) \]

- **Couplings to EW gauge bosons**
- **Higgs self-couplings**
- **Couplings to fermions**

Diagram showing interactions of particles and fermions.
Reconstruction, Simulation, Calculations

\[\mathcal{L}_{SM} = D_\mu H^\dagger D_\mu H + \mu^2 H^\dagger H - \frac{\lambda}{2} (H^\dagger H)^2 - (y_{ij} H \bar{\psi}_i \psi_j + h.c.) \]

- Couplings to EW gauge bosons
- Higgs self-couplings
- Couplings to fermions
REALITY (SORT OF)

Higher order processes

Fatjets?

Hard Scatter

underlying event

Multiple parton interactions

PDFs

Initial & Final State Radiation

Parton Shower

Hadronization
THE GENERAL QCD UNCERTAINTY FORMULA
THE GENERAL QCD UNCERTAINTY FORMULA

• Generate events with most precise MC available for your favorite process
 • Typically NLO, but some exceptions
THE GENERAL QCD UNCERTAINTY FORMULA

• Generate events with most precise MC available for your favorite process
 • Typically NLO, but some exceptions
• Take cross-section from most precise available calculation
 • Use kinematically weighted K-factors if possible
THE GENERAL QCD UNCERTAINTY FORMULA

• Generate events with most precise MC available for your favorite process
 • Typically NLO, but some exceptions

• Take cross-section from most precise available calculation
 • Use kinematically weighted K-factors if possible

• Assess uncertainties by varying:
 • Generators (ex. PS(ISR/FSR), Matching scales, UE, MPI, Pileup)
 • Factorization & renormalization scales by 1/2, 2.
 • PDFs using PDF4LHC recommendations
THE GENERAL QCD UNCERTAINTY FORMULA

• Generate events with most precise MC available for your favorite process
 • Typically NLO, but some exceptions

• Take cross-section from most precise available calculation
 • Use kinematically weighted K-factors if possible

• Assess uncertainties by varying:
 • Generators (ex. PS(ISR/FSR), Matching scales, UE, MPI, Pileup)
 • Factorization & renormalization scales by 1/2, 2.
 • PDFs using PDF4LHC recommendations

• Add any necessary analysis specific tweaks to this procedure!
 • e.g., α_s variations, Stewart-Tackmann and/or jet-veto-efficiency methods, quark mass treatments, variations of substructure variables
SUMMARY OF RUN I

- Run I stats:
 - 5 fb$^{-1}$ @7 TeV, 20 fb$^{-1}$ @ 8 TeV
 - ~95% detector uptime for CMS & ATLAS
 - Mean simultaneous collisions: 21
SUMMARY OF RUN I

- Run I stats:
 - 5 fb\(^{-1}\) @ 7 TeV, 20 fb\(^{-1}\) @ 8 TeV
 - ~95% detector uptime for CMS & ATLAS
 - Mean simultaneous collisions: 21
 - Measured cross-sections of < 10\(^{-2}\) pb!
SUMMARY OF RUN I

- Run I stats:
 - 5 fb\(^{-1}\) @ 7 TeV, 20 fb\(^{-1}\) @ 8 TeV
 - ~95% detector uptime for CMS & ATLAS
 - Mean simultaneous collisions: 21
- Measured cross-sections of < 10\(^{-2}\) pb!
- 100+ papers on Higgs Physics, 200+ on BSM from ATLAS & CMS
SUMMARY OF RUN I

- Run I stats:
 - 5 fb\(^{-1}\) @ 7 TeV, 20 fb\(^{-1}\) @ 8 TeV
 - ~95% detector uptime for CMS & ATLAS
 - Mean simultaneous collisions: 21
 - Measured cross-sections of < 10\(^{-2}\) pb
 - 100+ papers on Higgs Physics, 200+ on BSM from ATLAS & CMS

CAN'T POSSIBLY COVER EVERYTHING!
WILL FOCUS ON MEASUREMENTS WITH IMPORTANT QCD EFFECTS
OUTLINE

• Big picture

• **Higgs: Getting to know the newest member of the Standard Model**

• Going beyond the Standard Model

• New analysis techniques: getting boosted
PORTRAIT OF A PARTICLE
PORTRAIT OF A PARTICLE

• What does it look like?
 • Mass, width, spin, parity

\[m_H = 125.09 \pm 0.21 \text{ (stat.)} \pm 0.11 \text{ (scale)} \pm 0.02 \text{ (other)} \pm 0.01 \text{ (theory) GeV}, \]
PORTRAIT OF A PARTICLE

• What does it look like?
 • Mass, width, spin, parity

• What’s its origin story?
 • Production processes
PORTRAIT OF A PARTICLE

- What does it look like?
 - Mass, width, spin, parity

- What’s its origin story?
 - Production processes

- Does it decay like we think it should?
 - Branching ratios, non-standard decays
PORTRAIT OF A PARTICLE

• What does it look like?
 • Mass, width, spin, parity

• What’s its origin story?
 • Production processes

• Does it decay like we think it should?
 • Branching ratios, non-standard decays

• Does it act the way we think it should?
 • Cross-sections and differential distributions
WIDTH FROM $H \rightarrow ZZ$
WIDTH FROM $H \rightarrow ZZ$

- Use ratio of on-shell to off-shell gg production cross-sections to measure width

\[
\sigma_{on-shell}^{gg \rightarrow H \rightarrow ZZ} \sim \frac{g^2_{gg} \delta_{H}^2}{m_H \Gamma_H} \quad \text{and} \quad \sigma_{off-shell}^{gg \rightarrow H^* \rightarrow ZZ} \sim \frac{g^2_{gg} \delta_{H}^2}{(2m_Z)^2}
\]

WIDTH FROM H→ZZ

- Use ratio of on-shell to off-shell gg production cross-sections to measure width.

\[\sigma_{\text{on-shell}}^{gg \to H \to ZZ} \sim \frac{\delta_{gg}^2 \delta_{HZZ}^2}{m_H \Gamma_H} \quad \text{and} \quad \sigma_{\text{off-shell}}^{gg \to H^* \to ZZ} \sim \frac{\delta_{gg}^2 \delta_{HZZ}^2}{(2m_Z)^2} \]

Data

WIDTH FROM H → ZZ

- Use ratio of on-shell to off-shell gg production cross-sections to measure width

\[\sigma_{\text{on-shell}}^{\text{gg→H→ZZ}} \sim \frac{g^2 g H g H Z Z}{m_H \Gamma_H} \quad \text{and} \quad \sigma_{\text{off-shell}}^{\text{gg→H*→ZZ}} \sim \frac{g^2 g H g H Z Z}{(2m_Z)^2} \]

- Need to isolate gg component: Enhance gg contribution with MELA discriminant

\[D_{gg} = \frac{p_{gg}^{\text{tot}}}{p_{gg}^{\text{tot}} + p_{qq}^{\text{bkg}}} = \left[1 + \frac{p_{qq}^{\text{int}} + p_{gg}^{\text{bkg}}}{a \times p_{gg}^{\text{sig}} + \sqrt{a} \times p_{gg}^{\text{int}} + p_{gg}^{\text{bkg}}} \right]^{-1} \]

\[(m_{Z_1}, m_{Z_2}, \Omega) \]
Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

\[
\begin{align*}
(m_{4l}, D_{\text{bkg}}^\text{kin}, p_T^{4l} \text{ or } D_{\text{jet}}) &: \quad 4l \text{ on } \text{–} \text{ shell} \\
(m_{4l}, D_{\text{gg}}) &: \quad 4l \text{ off } \text{–} \text{ shell} \\
m_T &: \quad 2l2\nu \text{ off } \text{–} \text{ shell}
\end{align*}
\]
• Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

$$(m_{4l}, D_{\text{kin}}^{\text{bkg}}, p_T^{4l} \text{ or } D_{\text{jet}}) : 4l \text{ on } - \text{ shell}$$

$$(m_{4l}, D_{gg}) : 4l \text{ off } - \text{ shell}$$

$$m_T : 2l2\nu \text{ off } - \text{ shell}$$

• Makes heavy use of MC & calculations for discriminants & PDF construction

• LO MC (gg2VV, MCFM) reweighted with NNLO (+NNLL) K-factors* of 2-2.5 (same applied to signal & bkgd)
• Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

$$(m_{4l}, D_{bkg}^{\text{kin}}, p_T^{4l} \text{ or } D_{\text{jet}}) : 4l \text{ on-shell}$$

$$(m_{4l}, D_{gg}) : 4l \text{ off-shell}$$

$m_T : 2l2\nu \text{ off-shell}$$

• Makes heavy use of MC & calculations for discriminants & PDF construction

• LO MC ($gg2VV$, MCFM) reweighted with NNLO (+NNLL) K-factors* of 2-2.5 (same applied to signal & bkgd)

95% CL: $\Gamma_H < 22$ MeV ($5.4 \times \Gamma_H^{\text{SM}}$)

Best Fit: $\Gamma_H = 1.8^{+7.7}_{-1.8}$ MeV (CMS)

95% CL: $\Gamma_H < 23$ MeV (ATLAS)
• Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

$$(m_{4l}, D_{bkg}^{\text{kin}}, p_T^{4l} \text{ or } D_{\text{jet}}) : \quad 4l \text{ on – shell}$$

$$(m_{4l}, D_{gg}) : \quad 4l \text{ off – shell}$$

$m_T : \quad 2l2\nu \text{ off – shell}$$

• Makes heavy use of MC & calculations for discriminants & PDF construction

• LO MC (gg2VV, MCFM) reweighted with NNLO (+NNLL) K-factors* of 2-2.5 (same applied to signal & bkgd)

• Experimental uncertainties: O(10%)

95% CL: $\Gamma_H < 22$ MeV ($5.4\times\Gamma_H^{\text{SM}}$)
Best Fit: $\Gamma_H = 1.8^{+7.7}_{-1.8}$ MeV (CMS)
95% CL: $\Gamma_H < 23$ MeV (ATLAS)
• Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

\[
(m_4l, D_{bkg}^{kin}, p_T^4l \text{ or } D_{jet}) : \quad 4l \text{ on – shell} \\
(m_4l, D_{gg}) : \quad 4l \text{ off – shell} \\
m_T : \quad 2l2\nu \text{ off – shell}
\]

• Makes heavy use of MC & calculations for discriminants & PDF construction

• LO MC (gg2VV, MCFM) reweighted with NNLO (+NNLL) K-factors* of 2-2.5 (same applied to signal & bkgd)

• Experimental uncertainties: O(10%)

• O(10%) QCD scale uncertainties on qq background (m_{ZZ} dependent), 2-6% uncertainties for higher order terms, 10% uncertainty on gg->ZZ K-factor

95% CL: $\Gamma_H < 22$ MeV (5.4×Γ_H^{SM})
Best Fit: $\Gamma_H = 1.8^{+7.7}_{-1.8}$ MeV (CMS)
95% CL: $\Gamma_H < 23$ MeV (ATLAS)
• Unbinned ML fit for $\Gamma_H, \mu_{ggH}, \mu_{VBF}$ using

$$(m_{4l}, D_{\text{bkg}}^{\text{kin}}, p_T^{4l} \text{ or } D_{\text{jet}}) : \quad 4l \text{ on } - \text{shell}$$

$$(m_{4l}, D_{gg}) : \quad 4l \text{ off } - \text{shell}$$

$$m_T : \quad 2l2\nu \text{ off } - \text{shell}$$

• Makes heavy use of MC & calculations for discriminants & PDF construction

• LO MC (gg2VV, MCFM) reweighted with NNLO (+NNLL) K-factors* of 2-2.5 (same applied to signal & bkgd)

• Experimental uncertainties: O(10%)

• O(10%) QCD scale uncertainties on qq background (m_{ZZ} dependent), 2-6% uncertainties for higher order terms, 10% uncertainty on gg->ZZ K-factor

95% CL: $\Gamma_H < 22 \text{ MeV (5.4}\times\Gamma_H^{\text{SM}})$

Best Fit: $\Gamma_H = 1.8_{-1.8}^{+7.7} \text{ MeV (CMS)}$

95% CL: $\Gamma_H < 23 \text{ MeV (ATLAS)}$

Relies on no new physics assumption (on-shell & off-shell couplings are the same)!

Would have tighter constraints if new physics existed: CMS arXiv:1507.06656
• By combining all Run I observations, can measure signal strength of different production processes

 • Assuming SM BR
• By combining all Run I observations, can measure signal strength of different production processes

• Assuming SM BR

By combining all Run I observations, can measure signal strength of different production processes

- Assuming SM BR

PRODUCTION

- By combining all Run I observations, can measure signal strength of different production processes.

- Assuming SM BR

<table>
<thead>
<tr>
<th>Production</th>
<th>Signal strength μ at $m_H = 125.36$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{s} = 8$ TeV</td>
</tr>
<tr>
<td>ggF</td>
<td>1.23 ± 0.25</td>
</tr>
<tr>
<td>VBF</td>
<td>1.55 ± 0.39</td>
</tr>
<tr>
<td>VH</td>
<td>0.93 ± 0.39</td>
</tr>
<tr>
<td>ttH</td>
<td>1.62 ± 0.78</td>
</tr>
</tbody>
</table>

- Total uncertainty on production is \sim15% with different processes contributing 20-40% uncertainties.

- CMS: EPJC 75 (2015) 212

19.7 fb$^{-1}$ (8 TeV) + 5.1 fb$^{-1}$ (7 TeV)

$\mu = 1.00 \pm 0.13$

$\mu = 0.87 \pm 0.16$

$\mu = 1.14 \pm 0.27$

$\mu = 0.89 \pm 0.38$

$\mu = 2.76 \pm 0.99$

σ/σ_{SM}

$m_H = 125$ GeV

Preliminary
PRODUCTION

• By combining all Run I observations, can measure signal strength of different production processes

• Assuming SM BR

<table>
<thead>
<tr>
<th>Production</th>
<th>Signal strength μ at $m_H = 125.36$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{s} = 8$ TeV</td>
</tr>
<tr>
<td>ggF</td>
<td>$1.23^{+0.25}_{-0.21}$</td>
</tr>
<tr>
<td>VBF</td>
<td>$1.55^{+0.39}_{-0.35}$</td>
</tr>
<tr>
<td>VH</td>
<td>0.93 ± 0.39</td>
</tr>
<tr>
<td>ttH</td>
<td>1.62 ± 0.78</td>
</tr>
</tbody>
</table>

• Total uncertainty on production is ~15% with different processes contributing 20-40% uncertainties:

• Theory uncertainties dominate ggF process determination
By combining all Run I observations, can measure signal strength of different production processes:

- Assuming SM BR

Total uncertainty on production is ~15% with different processes contributing 20-40% uncertainties:

- Theory uncertainties dominate ggF process determination
 - Current QCD scale in NNLO+NNLL (+7-8%) and PDF+alpha_s (+-8%) uncertainties

PRODUCTION

• By combining all Run I observations, can measure signal strength of different production processes

 • Assuming SM BR

Total uncertainty on production is ~15% with different processes contributing 20-40 % uncertainties:

 • Theory uncertainties dominate ggF process determination
 • Current QCD scale in NNLO+NNLL (+7-8%) and PDF+alpha_s (+-8%) uncertainties
 • VBF uncertainties are comparable to experimental uncertainties: dominated by ggF contamination from jet veto

\[
\begin{array}{c|c|c|c}
\text{Process} & \mu \sqrt{s=8 \, \text{TeV}} & \mu \sqrt{s=7 \text{ and } 8 \text{ TeV}} \\
\hline
\text{ggF} & 1.23^{+0.25}_{-0.21} & 1.23^{+0.23}_{-0.20} \\
\text{VBF} & 1.55^{+0.39}_{-0.35} & 1.23 \pm 0.32 \\
\text{VH} & 0.93 \pm 0.39 & 0.80 \pm 0.36 \\
\text{ttH} & 1.62 \pm 0.78 & 1.81 \pm 0.80 \\
\end{array}
\]
• Production type determined by event jet properties
JET COUNTING & VETOS

- Production type determined by event jet properties

<table>
<thead>
<tr>
<th>Decay tag and production tag</th>
<th>Expected signal composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → γγ [18], Section 2.1</td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td>Untagged</td>
</tr>
<tr>
<td></td>
<td>2-jet VBF</td>
</tr>
<tr>
<td></td>
<td>Leptonic VH</td>
</tr>
<tr>
<td></td>
<td>E_T^{miss} VH</td>
</tr>
<tr>
<td></td>
<td>2-jet VH</td>
</tr>
<tr>
<td></td>
<td>Leptonic ttH</td>
</tr>
<tr>
<td></td>
<td>Multijet ttH</td>
</tr>
<tr>
<td>H → ZZ → 4ℓ [16], Section 2.2</td>
<td>Untagged</td>
</tr>
<tr>
<td>4μ, 2e2μ/2μ2e, 4e</td>
<td>2-jet</td>
</tr>
</tbody>
</table>
JET COUNTING & VETOS

- Production type determined by event jet properties
- Large uncertainties on ggF contamination estimated with:
 - Active area for improvement in Run II

<table>
<thead>
<tr>
<th>Process</th>
<th>$gg \to H, q\bar{q}/gg \to b\bar{b}H/t\bar{t}H$</th>
<th>$q\bar{q}' \to Hq\bar{q}'$</th>
<th>$q\bar{q} \to W/ZH$</th>
<th>ZZ^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF enriched category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical cross section</td>
<td>20.4%</td>
<td>4%</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>Underlying event</td>
<td>6.6%</td>
<td>1.4%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>9.6%</td>
<td>4.8%</td>
<td>7.8%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.9%</td>
<td>0.2%</td>
<td>1.0%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total</td>
<td>23.5%</td>
<td>6.4%</td>
<td>8.8%</td>
<td>12.6%</td>
</tr>
<tr>
<td>VH-hadronic enriched category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical cross section</td>
<td>20.4%</td>
<td>4%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Underlying event</td>
<td>7.5%</td>
<td>3.1%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>9.4%</td>
<td>9.3%</td>
<td>3.7%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>1.0%</td>
<td>1.7%</td>
<td>0.6%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>23.7%</td>
<td>10.7%</td>
<td>5.5%</td>
<td>12.9%</td>
</tr>
<tr>
<td>VH-leptonic enriched category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical cross section</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Leptonic VH-specific cuts</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td>–</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>8.8%</td>
<td>9.9%</td>
<td>1.7%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Total</td>
<td>14.9%</td>
<td>10.7%</td>
<td>6.6%</td>
<td>5.9%</td>
</tr>
<tr>
<td>ggF enriched category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical cross section</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2.2%</td>
<td>6.6%</td>
<td>4.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Total</td>
<td>12.2%</td>
<td>7.7%</td>
<td>5.7%</td>
<td>4.1%</td>
</tr>
</tbody>
</table>
JET COUNTING & VETOS

- Production type determined by event jet properties

- Large uncertainties on ggF contamination estimated with:

 - Active area for improvement in Run II

<table>
<thead>
<tr>
<th>Process</th>
<th>(gg \rightarrow H, qq/gg \rightarrow b\bar{b}H/t\bar{t}H)</th>
<th>(qq' \rightarrow Hqq')</th>
<th>(qq \rightarrow W/ZH)</th>
<th>ZZ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical cross section</td>
<td>20.4%</td>
<td>4%</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>Underlying event</td>
<td>6.6%</td>
<td>1.4%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>9.6%</td>
<td>4.8%</td>
<td>7.8%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.9%</td>
<td>0.2%</td>
<td>1.0%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total</td>
<td>23.5%</td>
<td>6.4%</td>
<td>8.8%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VH-hadronic enriched category</th>
<th>(gg \rightarrow H, qq/gg \rightarrow b\bar{b}H/t\bar{t}H)</th>
<th>(qq' \rightarrow Hqq')</th>
<th>(qq \rightarrow W/ZH)</th>
<th>ZZ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical cross section</td>
<td>20.4%</td>
<td>4%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Underlying event</td>
<td>7.5%</td>
<td>3.1%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>9.4%</td>
<td>9.3%</td>
<td>3.7%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>1.0%</td>
<td>1.7%</td>
<td>0.6%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>23.7%</td>
<td>10.7%</td>
<td>5.5%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VH-leptonic enriched category</th>
<th>(gg \rightarrow H, qq/gg \rightarrow b\bar{b}H/t\bar{t}H)</th>
<th>(qq' \rightarrow Hqq')</th>
<th>(qq \rightarrow W/ZH)</th>
<th>ZZ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical cross section</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Leptonic VH-specific cuts</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>8.8%</td>
<td>9.9%</td>
<td>1.7%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Total</td>
<td>14.9%</td>
<td>10.7%</td>
<td>6.6%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggF enriched category</th>
<th>(gg \rightarrow H, qq/gg \rightarrow b\bar{b}H/t\bar{t}H)</th>
<th>(qq' \rightarrow Hqq')</th>
<th>(qq \rightarrow W/ZH)</th>
<th>ZZ*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical cross section</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>2.2%</td>
<td>6.6%</td>
<td>4.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Total</td>
<td>12.2%</td>
<td>7.7%</td>
<td>5.7%</td>
<td>4.1%</td>
</tr>
</tbody>
</table>
COUPLINGS

- Measuring fermionic couplings is a key part of Higgs program
- bs and taus branching ratios & top coupling targeted

<table>
<thead>
<tr>
<th>Couplings</th>
<th>Signal strength (μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS Prelim.</td>
<td>$m_H = 125.36$ GeV</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>$\mu = 1.17^{+0.27}_{-0.27}$</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4l$</td>
<td>$\mu = 1.44^{+0.40}_{-0.33}$</td>
</tr>
<tr>
<td>$H \rightarrow WW^* \rightarrow l\nu l\nu$</td>
<td>$\mu = 1.09^{+0.23}_{-0.21}$</td>
</tr>
<tr>
<td>$W,Z H \rightarrow b\bar{b}$</td>
<td>$\mu = 0.5^{+0.4}_{-0.4}$</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>$\mu = 1.4^{+0.4}_{-0.4}$</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 7$ TeV $\int Ldt = 4.5$-4.7 fb$^{-1}$
$\sqrt{s} = 8$ TeV $\int Ldt = 20.3$ fb$^{-1}$

$\mu = \frac{\sigma_{ob}}{\sigma_{SM}}$

Released 12.01.2015
• Measuring fermionic couplings is a key part of Higgs program

• $b\bar{s}$ and taus branching ratios & top coupling targeted
VH → bblν(ll)(νν)
VH → bblνν(νν)

- Challenging measurement with many signal regions & complex backgrounds
$VH \rightarrow bbl\nu(\bar{ll})(\nu\nu)$

- Challenging measurement with many signal regions & complex backgrounds
- Theory systematics dominate over experimental uncertainties

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>σ_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.41</td>
</tr>
<tr>
<td>Statistical</td>
<td>0.32</td>
</tr>
<tr>
<td>Systematic</td>
<td>0.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experimental uncertainties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jets</td>
<td>0.08</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>0.03</td>
</tr>
<tr>
<td>Leptons</td>
<td>0.01</td>
</tr>
<tr>
<td>b-tagging(*)</td>
<td>b-jets 0.07</td>
</tr>
<tr>
<td></td>
<td>c-jets 0.04</td>
</tr>
<tr>
<td></td>
<td>light jets 0.04</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theoretical and modelling uncertainties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>0.07</td>
</tr>
<tr>
<td>Floating normalisations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W-jets 0.06</td>
</tr>
<tr>
<td></td>
<td>Z-jets 0.03</td>
</tr>
<tr>
<td></td>
<td>$t\bar{t}$ 0.04</td>
</tr>
<tr>
<td>Background modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W-jets 0.11</td>
</tr>
<tr>
<td></td>
<td>Z-jets 0.08</td>
</tr>
<tr>
<td></td>
<td>$t\bar{t}$ 0.05</td>
</tr>
<tr>
<td>Single-top</td>
<td>0.04</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.02</td>
</tr>
<tr>
<td>Multijet</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Challenging measurement with many signal regions & complex backgrounds

Theory systematics dominate over experimental uncertainties

Largest uncertainty: V + hf

\[\Delta \mu \]

\[\mu \]

\[\mu \]

ATLAS: JHEP01(2015)069
CMS: PRD 89 (2014) 012003
• New CMS measurement exploits lower energy QCD phenomena to enhance all hadronic final state

 • Quark-gluon discrimination (RMSs of jet constituents in η-Φ, jet asymmetry pull, jet particle multiplicity, max energy fraction carried by constituent)

 • Scalar sum of soft hadronic activity built from soft track-jets

• Relies on good modeling of fragmentation and soft QCD effects!
- Use QGL, soft activity (HT & N_{softjets}), production & decay dynamics in BDT to define signal regions: best S/B 1.7%; 50-7% ggF contamination
- Use QGL, soft activity (HT & N_{softjets}), production & decay dynamics in BDT to define signal regions: best S/B 1.7%; 50-7% ggF contamination

- Fit M_{bb} spectra to extract signal: $\mu = 2.8^{+1.6}_{-1.4}$
• Measurement of ttH allows direct access to top yukawa coupling

• Busy final state:
 • 4-6 jets, 1-2 leptons, missing energy from t & H decay

• Most dominant backgrounds include QCD production of multiple heavy flavor quarks (ttbb, ttb, ttcc)
 • Many scales involved for signal & backgrounds!

• Analyses use multivariate and matrix-element discriminants for highest sensitivity
CMS ANALYSIS EXAMPLE
CMS ANALYSIS EXAMPLE

- Test two sets of hypotheses with event discriminants:
 - ttH vs QCD $tt+bb$ (kinematics & dynamics)
 - $tt+lf$ vs. $tt+hf$ (b-tagging information)
CMS ANALYSIS EXAMPLE

- Test two sets of hypotheses with event discriminants:
 - ttH vs QCD $tt+bb$ (kinematics & dynamics)
 - $tt+lf$ vs. $tt+hf$ (b-tagging information)

- Discriminants built from MC:
 - ttH: Pythia 6 w/NLO x-section normalization
 - $tt+jet$: Madgraph+Pythia normalized to NNLO + NNLL
• Fit to extract ttH signal strength, μ

\[\hat{\mu} = 1.2^{+1.6}_{-1.5} \]
• Fit to extract ttH signal strength, μ

$$\hat{\mu} = 1.2^{+1.6}_{-1.5}$$

• Fit uncertainties highlights:
• Fit to extract ttH signal strength, μ

\[\hat{\mu} = 1.2^{+1.6}_{-1.5} \]

• Fit uncertainties highlights:

• Top p_T reweighting: vary between none & 2x weighting factor
• Fit to extract ttH signal strength, μ

$$\hat{\mu} = 1.2^{+1.6}_{-1.5}$$

• Fit uncertainties highlights:

 • Top pT reweighting: vary between none & 2x weighting factor

 • Normalization of tt+hf assigned 50% uncertainty so it can be fixed by fit
• Fit to extract ttH signal strength, μ
 $$\hat{\mu} = 1.2^{+1.6}_{-1.5}$$

• Fit uncertainties highlights:
 • Top pT reweighting: vary between none & 2x weighting factor
 • Normalization of tt+hf assigned 50% uncertainty so it can be fixed by fit

<table>
<thead>
<tr>
<th>Source</th>
<th>Rate uncertainty</th>
<th>Shape</th>
<th>Process</th>
<th>ttH</th>
<th>tt+jets</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental uncertainties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.6%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigger and lepton identification</td>
<td>2–4%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JES</td>
<td>4–13%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JER</td>
<td>0.5–2%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>b tagging</td>
<td>2–17%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical uncertainties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top p_T modelling</td>
<td>3–8%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_R/μ_F variations</td>
<td>2–25%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt+bb normalisation</td>
<td>50%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt+b normalisation</td>
<td>50%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tt+c\bar{c} normalisation</td>
<td>50%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal cross section</td>
<td>7%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background cross sections</td>
<td>2–20%</td>
<td>No</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PDF</td>
<td>3–9%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Statistical uncertainty (bin-by-bin)</td>
<td>4–30%</td>
<td>Yes</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

FIDUCIAL CROSS-SECTIONS

• Most precise channels ($\gamma\gamma$, ZZ) give stringent tests of predictions
 • Still statistics limited!

• Experimental systematic errors roughly equivalent to theory uncertainties
 • PDF uncertainty significant for N3LO calculation, but will be reduced to 2-3% with new PDF4LHC recommendations
FIDUCIAL CROSS-SECTIONS

- Most precise channels ($\gamma\gamma$, ZZ) give stringent tests of predictions
 - Still statistics limited!
- Experimental systematic errors roughly equivalent to theory uncertainties
 - PDF uncertainty significant for N^3LO calculation, but will be reduced to 2-3% with new PDF4LHC recommendations

![Graph showing fiducial cross-sections with CMS Preliminary results.](image-url)
• Sizeable differences in H +jet rates between MCs & data

• Important consequences for jet veto

• Data systematic uncertainties comparable theory uncertainties
Differential Distributions

- Shape comparison yields harder $H p_T$ spectrum in data
- Same true for leading jet spectrum

• Shape comparison yields harder H p_T spectrum in data

• Same true for leading jet spectrum
• Also testing rapidity distributions in inclusive and H + jet events

• Higher statistics measurements will be quite important for Runs II & III
OUTLINE

• Big picture

• Higgs: Getting to know the newest member of the Standard Model

• Going beyond the Standard Model

• New analysis techniques: getting boosted
THE BSM FORMULA

Define Control Region

Input to fit machinery

Look in Signal region

Determine transfer factor to Signal Region from MC

Do simultaneous fits to signal & control regions to extract signal
Define Control Region

Input to fit machinery

GOOD MC MODELING IS CRITICAL TO THIS PROCESS!

Look in Signal region

Determine transfer factor to Signal Region from MC

Do simultaneous fits to signal & control regions to extract signal
• Most Run 1 searches are concluded, combinations in progress

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>Cross-section order in α_s</th>
<th>Tune</th>
<th>PDF set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(\rightarrow l\nu)$+jets</td>
<td>SHERPA 1.4.1 [75]</td>
<td>NNLO [76]</td>
<td>SHERPA default</td>
<td>CT10 [77]</td>
</tr>
<tr>
<td>$Z/\gamma^*(\rightarrow \ell\ell)$+jets Drell–Yan (8 < $m_{\ell\ell}$ < 40 GeV)</td>
<td>SHERPA 1.4.1</td>
<td>NNLO [76]</td>
<td>SHERPA default</td>
<td>CT10</td>
</tr>
<tr>
<td>$Z/\gamma^*(\rightarrow \ell\ell)$+jets (10 < $m_{\ell\ell}$ < 60 GeV)</td>
<td>ALPGEN 2.14 [79] + HERWIG 6.520 [82, 83] + JIMMY [84]</td>
<td>NNLO [78]</td>
<td>AUET2 [80]</td>
<td>CTEQ6L1 [81]</td>
</tr>
<tr>
<td>γ+jets</td>
<td>SHERPA 1.4.1</td>
<td>LO</td>
<td>SHERPA default</td>
<td>CT10</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>Powheg-Box 1.0 [85–87] + PYTHIA 6.426 [90]</td>
<td>NNLO+NNLL [88, 89]</td>
<td>Perugia2011C [91, 92]</td>
<td>CT10</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>SHERPA 1.4.1</td>
<td>NNLO+NNLL</td>
<td>SHERPA default</td>
<td>CT10</td>
</tr>
<tr>
<td>Single top</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-channel</td>
<td>AcerMC 3.8 [93] + PYTHIA 6.426</td>
<td>NNLO+NNLL [94]</td>
<td>AUET2B [95]</td>
<td>CTEQ6L1</td>
</tr>
<tr>
<td>s-channel, Wt</td>
<td>mc@nlo 4.03 [96, 97] + HERWIG 6.520</td>
<td>NNLO+NNLL [98, 99]</td>
<td>AUET2B</td>
<td>CT10</td>
</tr>
<tr>
<td>$t\bar{t}$+W/Z boson</td>
<td>Madgraph 5 1.3.28 [100] + PYTHIA 6.426</td>
<td>NLO [101–103]</td>
<td>AUET2B</td>
<td>CTEQ6L1</td>
</tr>
<tr>
<td>Dibosons WW, WZ, ZZ, $W\gamma$ and $Z\gamma$</td>
<td>SHERPA 1.4.1</td>
<td>NLO [104, 105]</td>
<td>SHERPA default</td>
<td>CT10</td>
</tr>
</tbody>
</table>

• Most signal samples are LO generators, cross-sections at NLO + NLL
• Can combine many (13) analyses and test against both full and simplified models

• Typically, experimental errors slightly larger or on par with theory signal uncertainties
• Can combine many (13) analyses and test against both full and simplified models

• Typically, experimental errors slightly larger or on par with theory signal uncertainties
AN EXAMPLE: 3RD GEN SQUARKS IN ALL HADRONIC FINAL STATES

- Signal: 1 or 2 b-jets with large missing energy (MET)
 - Require high transverse mass (built from MET & subleading jet)
 - Signal regions binned in contransverse mass

\[(M_{CT})^2 = [E_T^{j1} + E_T^{j2}]^2 - [\vec{p}_T^{j1} - \vec{p}_T^{j2}]^2 = 2p_T^{j1}p_T^{j2} [1 + \cos \phi(j_1, j_2)]\]

- Include ISR search region with high p_T non b-tagged jet
• Background estimation is key:
 • Dominated by Z/W+jets, ttbar

• For each signal region, define $W\rightarrow l\nu$ control region

$$N_{SR}^{\text{pred}}(Z \rightarrow \nu\bar{\nu}; M_{CT}, p_{T}^{\text{non-b}}, N_{b\text{jets}}) = N_{CR}^{\text{obs}}(M_{CT}, p_{T}^{\text{non-b}}) R_{MC}^{SR/CR}(M_{CT}, p_{T}^{\text{non-b}}, N_{b\text{jets}})$$

• Assess systematic on procedure by MC closure test, variations of non- W contributions, Z+hf modeling, normalization of contributions taken from MC

<table>
<thead>
<tr>
<th>$N_{b\text{jets}}$</th>
<th>M_{CT}</th>
<th>M_{CT}</th>
<th>M_{CT}</th>
<th>M_{CT}</th>
<th>ISR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><250</td>
<td>[250,350]</td>
<td>[350,450]</td>
<td>>450</td>
<td></td>
</tr>
<tr>
<td>$Z(\nu\bar{\nu})$ +jets</td>
<td>1</td>
<td>848±12±79</td>
<td>339±8±52</td>
<td>48.0±3.0±6.0</td>
<td>8.1±1.6±1.7</td>
</tr>
<tr>
<td>$t\bar{t}$, $W(\ell\nu)$ +jets</td>
<td>1</td>
<td>645±24±57</td>
<td>381±17±38</td>
<td>36.0±4.9±5.7</td>
<td>7.8±2.6±2.0</td>
</tr>
<tr>
<td>QCD multijets</td>
<td>1</td>
<td>25.0±9.4±5.2</td>
<td>16.0±7.4±2.8</td>
<td>0.0±1.0±1.2</td>
<td>negligible</td>
</tr>
<tr>
<td>Rare processes</td>
<td>1</td>
<td>18.0±9.2</td>
<td>18.0±8.9</td>
<td>1.1±0.5</td>
<td>0.3±0.1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1540±100</td>
<td>754±68</td>
<td>85±10</td>
<td>16.0±4.1</td>
</tr>
<tr>
<td>$Z(\nu\bar{\nu})$ +jets</td>
<td>2</td>
<td>60.0±3.4±7.1</td>
<td>28.0±2.4±3.8</td>
<td>3.9±0.9±1.0</td>
<td>0.7±0.6±0.6</td>
</tr>
<tr>
<td>$t\bar{t}$, $W(\ell\nu)$ +jets</td>
<td>2</td>
<td>29.0±2.9±5.5</td>
<td>17.0±2.5±3.3</td>
<td>2.4±0.9±0.6</td>
<td>0.0±0.2±0.2</td>
</tr>
<tr>
<td>QCD multijets</td>
<td>2</td>
<td>1.9±0.7±0.4</td>
<td>1.2±0.8±0.2</td>
<td>0.0±0.1±0.1</td>
<td>negligible</td>
</tr>
<tr>
<td>Rare processes</td>
<td>2</td>
<td>1.8±0.9</td>
<td>3.4±1.7</td>
<td>0.1±0.1</td>
<td>0.1±0.1</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>93±10</td>
<td>50.0±6.4</td>
<td>6.5±1.7</td>
<td>1.0±0.9</td>
</tr>
</tbody>
</table>
• Good data/MC agreement is found in signal regions
• Good data/MC agreement is found in signal regions

• Combine and set limits!
GENERIC DIBOSON RESONANCES
• Hint of excess @ 2 TeV in all hadronic di-boson resonance search
• Hint of excess @ 2 TeV in all hadronic di-boson resonance search

• Select events using jet mass, properties and substructure variables
GENERIC DIBOSON RESONANCES

- Hint of excess @ 2 TeV in all hadronic di-boson resonance search
- Select events using jet mass, properties and substructure variables
- Fit to smoothly falling dijet mass spectrum

![Graph showing events vs dijet mass with significance](image)

ATLAS

$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

- Data
- Background model
- 1.5 TeV Bulk G_{RS}, $k/\overline{M}_{Pl} = 1$
- 2.0 TeV Bulk G_{RS}, $k/\overline{M}_{Pl} = 1$
- Significance (stat)
- Significance (stat + syst)

WW Selection

ATLAS: arXiv:1506.00962
Generic Diboson Resonances

- Hint of excess @ 2 TeV in all hadronic di-boson resonance search
- Select events using jet mass, properties and substructure variables
- Fit to smoothly falling dijet mass spectrum
- Majority of uncertainties arise from use of jet properties

ATLAS: arXiv:1506.00962
OUTLINE

• Big picture
• Higgs: Getting to know the newest member of the Standard Model
• Going beyond the Standard Model

New analysis techniques: getting boosted

More details: BOOST 2015
NEW TOOLS FOR USING JETS

- Confluence of theory and experimental improvements and √s increase are making us sensitive to the details of jets
 - Jet mass, constituents properties
- Makes use of hadronic decays possible!
 - Used in several Run I analyses, many planned for Run II
- Wide open parameter space for taggers: tops, Higgs, W/Z bosons, quark-gluon

CMS Simulation, $\sqrt{s} = 8$ TeV

Top Tag Efficiency

- **Mistag Rate**
 - Matched parton $p_T > 400$ GeV/c
 - Matched parton $p_T > 600$ GeV/c
 - Matched parton $p_T > 800$ GeV/c

- **Top Tag Efficiency**
 - Distributions for different jet masses and efficiencies.
 - Comparison between CMS Top Tagger and HEP Top Tagger with various working points (WP).

Events / 5 GeV

- Data / Bkg
 - Data vs. Background comparison for different jet masses and efficiencies.

CMS

- Data, tf, W$\to l\nu$+jets, Others

CMS-B2G-13-008

- 19.7 fb$^{-1}$ (8 TeV)

- M$_{jet}$[GeV]
• However, uncertainties can be significant

\[
D^\beta_2 = \frac{e_3^\beta}{(e_2^\beta)^3} = \frac{\sum_{i<j<k} p_T^i p_T^j p_T^k (R^\beta_{ij} R^\beta_{ik} R^\beta_{kj})}{(\sum_{i<j} p_T^i p_T^j R^\beta_{ij})^3}
\]

W/Z-boson tagging using substructure variables
• However, uncertainties can be significant
• However, uncertainties can be significant

• Expected to be a very active development area in Run II with close collaboration with theorists!
CONCLUSIONS

• Wide range of QCD calculations and models used in Higgs & BSM measurements

• Run 1 analyses had important uncertainties due to PDFs, heavy flavor production, jet substructure and soft(ish) QCD effects

• Looking forward to pushing the limits in Run II!

 • Lots of recent theory improvements still to be incorporated
BACK-UP
ZZ K-FACTORS

• QCD ZZ production only known to LO:
 • CMS width analysis uses same k-factors as NNLO Higgs calculation based on arXiv: 1312.2397
 • ATLAS width measurement reported as function of unknown K-factor
 • Key place for theory development
• K-factor measured as a function m_{4l}, $p_{T_{4l}}$ in ATLAS-CONF-2015-031
• ATLAS width results as a function of relative K-factors
Diboson Resonance

Table 2: Parameters for the mass-drop filtering algorithm used to groom C/A jets. The choice of μ_f parameter corresponds to no mass-drop requirement being imposed in the grooming procedure.

<table>
<thead>
<tr>
<th>Filtering parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{y_f}$</td>
<td>0.2</td>
</tr>
<tr>
<td>μ_f</td>
<td>1</td>
</tr>
<tr>
<td>R_f</td>
<td>0.3</td>
</tr>
<tr>
<td>n_f</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\sqrt{y} \equiv \min(\triangle_R^{(j_1, j_2)} \frac{\Delta R_{(j_1, j_2)}}{m_0} \geq \sqrt{y_f}, \text{ Boson Tagging Requirements} \]

\[\sqrt{y} \geq 0.45, n_{trk} < 30, \text{ and } |m_j - m_{\nu}| < 13 \text{ GeV} \]

Figure 2: Event selection efficiencies as a function of the resonance masses for EGM $W' \rightarrow WZ$ and bulk $G_{RS} \rightarrow WW$ and ZZ for simulated events with resonance mass within 10% of the nominal signal mass. In (a), the event topology requirements are applied to EGM $W' \rightarrow WZ$, $G_{RS} \rightarrow WW$ and $G_{RS} \rightarrow ZZ$ samples, while in (b), the WZ, WW and ZZ boson tagging selections are also applied in the EGM $W' \rightarrow WZ$, $G_{RS} \rightarrow WW$ and $G_{RS} \rightarrow ZZ$ samples respectively and the efficiencies shown are corrected by the simulation-to-data scale factor. The width of the bands in each figure indicates both the statistical and systematic uncertainties.
FULL EVENT DISPLAY FROM FIRST SLIDE