Precision Calculations for Squark and Gluino Production at Threshold

Christoph Julian Borschensky

with Wim Beenakker, Michael Krämer, Anna Kulesza, Eric Laenen

QCD@LHC 2015

2 September 2015
London
1. Introduction
 Threshold effects in squark and gluino production

2. Calculations
 Soft-gluon resummation at NNLL
 Resummation of Coulomb corrections and bound states

3. New results
 Light-flavoured squark and gluino production
 Stop production
 Impact of resummed PDFs on the predictions: NNPDF3.0 studies
SUSY particle production at the LHC

Main sparticle production processes:

\[pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{q}\tilde{q}, \tilde{t}\tilde{t}^* \]

⇒ Cross sections needed at high precision for experimental searches

\[\sigma_{\text{tot}}[\text{pb}]: pp \rightarrow \text{SUSY} \]
\[\sqrt{s} = 8 \text{ TeV} \]
\[\text{NLO+NLL} \]
SUSY particle production at the LHC

Main sparticle production processes:

\[pp \to \tilde{g}\tilde{g}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g}, \tilde{q}\tilde{l}, \tilde{t}\tilde{t}^* \]

(see [CB, Krämer, Kulesza, Mangano, Padhi, Plehn, Portell; EPJ C74 (2014) 12, 3174])

⇒ Cross sections needed at high precision for experimental searches
LO production of squarks and gluinos

\[\tilde{g}\tilde{g} \]

\[\tilde{q}\tilde{q} \]

\[\tilde{q}\tilde{g} \]

\[\tilde{q}\tilde{q}^* \]
Outline

1 Introduction
 Threshold effects in squark and gluino production

2 Calculations
 Soft-gluon resummation at NNLL
 Resummation of Coulomb corrections and bound states

3 New results
 Light-flavoured squark and gluino production
 Stop production
 Impact of resummed PDFs on the predictions: NNPDF3.0 studies
Particle production close to threshold

Heavy SUSY particles \Rightarrow production in the **threshold limit** $\sqrt{s} \to 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} \equiv \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with \sqrt{s}: partonic centre-of-mass energy, m: average mass of final state particles

\Rightarrow Just enough energy to produce the two sparticles

\Rightarrow Real radiation processes are soft
Particle production close to threshold

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{s} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} \equiv \sqrt{1 - \frac{4m^2}{\hat{s}}} \rightarrow 0$$

with \sqrt{s}: partonic centre-of-mass energy, m: average mass of final state particles

\Rightarrow Just enough energy to produce the two sparticles

\Rightarrow Real radiation processes are soft

Remainder after cancellation of IR divergencies:

$$\sim \alpha_s^n \ln^m \beta^2, \ m \leq 2n$$

Soft & collinear gluons
Particle production close to threshold

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{s} \rightarrow 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} \equiv \sqrt{1 - \frac{4m^2}{\hat{s}}} \rightarrow 0$$

with \sqrt{s}: partonic centre-of-mass energy, m: average mass of final state particles

\Rightarrow Just enough energy to produce the two sparticles

\Rightarrow Real radiation processes are soft

Additionally:

C. Borschensky – Precision Calculations for Squark and Gluino Production at Threshold
Particle production close to threshold

Heavy SUSY particles \Rightarrow production in the threshold limit $\sqrt{\hat{s}} \to 2m$:

$$\beta = \sqrt{1 - \hat{\rho}} \equiv \sqrt{1 - \frac{4m^2}{\hat{s}}} \to 0$$

with $\sqrt{\hat{s}}$: partonic centre-of-mass energy, m: average mass of final state particles

\Rightarrow Just enough energy to produce the two sparticles

\Rightarrow Real radiation processes are soft

Enhanced partonic cross sections close to threshold:

- Soft & collinear gluons: $\alpha_s^n \ln^m \beta^2 \sim 1$
- Coulomb gluons: $\alpha_s^n / \beta^n \sim 1$

\Rightarrow Endangering the perturbative series

\Rightarrow Systematic treatment of these terms required
The need for a Mellin transform

Basis for resummation of soft-collinear gluons: factorisation between hard and soft parts

→ Factorisation of matrix elements and phase space

→ Matrix element: factorises automatically in soft-collinear limit ✓

→ Phase space: momentum-conservation causes entanglement ✗
The need for a Mellin transform

Basis for resummation of soft-collinear gluons: factorisation between hard and soft parts

→ Factorisation of matrix elements and phase space
→ Matrix element: factorises automatically in soft-collinear limit ✓
→ Phase space: momentum-conservation causes entanglement ×

In Mellin-moment space, the entanglement vanishes (momentum-conserving delta function turns into an exponential function)

\[
\tilde{\sigma}_{\text{hadr.}}(N) := \sum_{i,j} \tilde{f}_i(N + 1) \times \tilde{f}_j(N + 1) \times \tilde{\sigma}_{ij \rightarrow kl}(N)
\]

In \(\tilde{\sigma}_{ij \rightarrow kl}(N)\), hard and soft parts now fully factorised

→ Additionally, convolution with PDFs turns into a simple product
Treating large logarithms

Threshold logarithms in **Mellin-moment space** (threshold limit: $\beta \to 0 \equiv N \to \infty$):

$\ln \beta^2 \xrightarrow{\text{Mellin}} \ln N \equiv L$

(neglect subleading terms $\mathcal{O}(1/N)$)

Reordering of the perturbative series in α_s and L (schematically):

$$
\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \left[1 + \alpha_s \left(L^2 + L + 1 \right) + \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right) + ... \right]
$$
Treating large logarithms

Threshold logarithms in **Mellin-moment space** (threshold limit: $\beta \to 0 \equiv N \to \infty$):

$$\ln \beta^2 \overset{\text{Mellin}}{\longrightarrow} \ln N \equiv L$$

(neglect subleading terms $\mathcal{O}(1/N)$)

Reordering of the perturbative series in α_s and L (schematically):

$$\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \left[1 + \alpha_s \left(L^2 + L + 1 \right) + \alpha_s^2 \left(L^4 + L^3 + L^2 + L + 1 \right) + \ldots \right]$$

Summation of all these terms \to exponential function (g_1, g_2, g_3 known):

$$\tilde{\sigma} \sim \tilde{\sigma}^{(0)} \times C(\alpha_s) \exp \left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \ldots \right]$$

(Precision level: **LL + NLL + NNLL**)
Introduction Calculations New results

Factorised resummation formula

\[\bar{\sigma}_{ij \rightarrow kl}(N) \approx \frac{s^{4m^2}}{4} \sum_{\text{colours } I} H_{ij \rightarrow kl,I}(\mu) \times \Delta_i(N, \mu) \Delta_j(N, \mu) S_{ij \rightarrow kl,I}(N, \mu) \]

with

• process dependent hard part \(H_{ij \rightarrow kl,I}(\mu) \)

• process independent soft-collinear radiation factors \(\Delta_{ij}(N, \mu) \)

• soft wide-angle radiation factor \(S_{ij \rightarrow kl,I}(N, \mu) \)
Factorised resummation formula

\[
\tilde{\sigma}_{ij \rightarrow kl}(N) \xrightarrow{\hat{s} \rightarrow 4m^2} \sum_{\text{colours } I} H_{ij \rightarrow kl,I}(\mu) \times \Delta_i(N, \mu)\Delta_j(N, \mu)S_{ij \rightarrow kl,I}(N, \mu)
\]

with

• process dependent hard part \(H_{ij \rightarrow kl,I}(\mu) \)
• process independent soft-collinear radiation factors \(\Delta_i(N, \mu) \)
• soft wide-angle radiation factor \(S_{ij \rightarrow kl,I}(N, \mu) \)

Obtain exponentiated forms of \(\Delta_i(N, \mu) \) and \(S_{ij \rightarrow kl,I}(N, \mu) \) from renormalisation group equations:

→ Assume that the (physical) cross section is independent of the (unphysical) scale \(\mu \)
→ Scale dependence cancels out between the constituents
Matching coefficients

Higher order terms of different origin; split-up close to threshold [Beneke, Falgari, Schwinn ’09-10]:

\[C(\alpha_s) = C(N, \alpha_s) = C^{\text{Hard}}(\alpha_s) \times C^{\text{Coul}}(N, \alpha_s) \]

- \(C^{\text{Hard}}(\alpha_s) \): hard matching coefficients (independent of \(N \))
 - Calculated from NLO contributions [Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes, Van Daal ’13][Broggio, Ferroglia, Neubert, Vernazza, Yang ’13]

- \(C^{\text{Coul}}(N, \alpha_s) \): Coulomb terms (final state gluon exchange):
 - Can also be resummed [Kulesza, Motyka ’09][Beneke, Falgari, Schwinn ’10][Falgari, Schwinn, Wever ’12], using non-relativistic methods [Fadin, Khoze ’87][Peskin, Strassler ’91][Hagiwara, Yokoya ’09][Kauth, Kühn, Marquard, Steinhauser ’09-11][Kauth, Kress, Kühn ’11]
Matching coefficients

Higher order terms of different origin; split-up close to threshold [Beneke, Falgari, Schwinn ’09-10]:

\[C(\alpha_s) = C(N, \alpha_s) = C^\text{Hard}(\alpha_s) \times C^\text{Coul}(N, \alpha_s) \]

- \(C^\text{Hard}(\alpha_s) \): hard matching coefficients (independent of \(N \))
 → Calculated from NLO contributions [Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes, Van Daal ’13][Broggio, Ferroglia, Neubert, Vernazza, Yang ’13]

- \(C^\text{Coul}(N, \alpha_s) \): Coulomb terms (final state gluon exchange):
 → Can also be resummed [Kulesza, Motyka ’09][Beneke, Falgari, Schwinn ’10][Falgari, Schwinn, Wever ’12], using non-relativistic methods [Fadin, Khoze ’87][Peskin, Strassler ’91][Hagiwara, Yokoya ’09][Kauth, Kühn, Marquard, Steinhauser ’09-11][Kauth, Kress, Kühn ’11]
Matching coefficients

Higher order terms of different origin; split-up close to threshold [Beneke, Falgari, Schwinn '09-10]:

\[C(\alpha_s) = C(N, \alpha_s) = C_{\text{Hard}}(\alpha_s) \times C_{\text{Coul}}(N, \alpha_s) \]

- \(C_{\text{Hard}}(\alpha_s) \): hard matching coefficients (independent of \(N \))
 - Calculated from NLO contributions [Beenakker, Janssen, Lepoeter, Krämer, Kulesza, Laenen, Niessen, Thewes, Van Daal '13][Broggio, Ferroglia, Neubert, Vernazza, Yang '13]

- \(C_{\text{Coul}}(N, \alpha_s) \): Coulomb terms (final state gluon exchange):
 - Can also be resummed [Kulesza, Motyka '09][Beneke, Falgari, Schwinn '10][Falgari, Schwinn, Wever '12], using non-relativistic methods [Fadin, Khoze '87][Peskin, Strassler '91][Hagiwara, Yokoya '09][Kauth, Kühn, Marquard, Steinhauser '09-11][Kauth, Kress, Kühn '11]
Coulomb Green’s function

Calculation of ladder diagrams leads to non-relativistic Schrödinger equation:

\[
\left\{ \left[\frac{(-iV)^2}{2m_{\text{red}}} + V_C(\vec{r}) \right] - (E + i\Gamma) \right\} G(\vec{r}, E + i\Gamma) = \delta^{(3)}(\vec{r})
\]

with \(E = \sqrt{s} - 2m \): energy and \(\Gamma \): average decay width of the final state particles, \(m_{\text{red}} \): reduced mass,

and the Coulomb potential:

\[
V_C(\vec{r}) = -D_{R\alpha} \frac{\alpha_s}{|\vec{r}|} + O(\alpha_s^2)
\]

with \(D_{R\alpha} \): colour factor related to Casimir invariants
The solution at origin is [Beneke, Signer, Smirnov '99][Pineda, Signer '06]:

\[
G(\vec{0}, E + i\Gamma) = i \frac{m_{\text{red}}^2}{\pi} v + D_{R\alpha} \frac{\alpha_s m_{\text{red}}^2}{\pi} \left[g_{\text{LO}} + \frac{\alpha_s}{4\pi} g_{\text{NLO}} + \ldots \right]
\]

with \(g_{\text{LO}} (g_{\text{NLO}})\) contributions from LO (NLO) Coulomb potential (\(g_{\text{LO}} \sim\) Sommerfeld factor)

Incorporate into resummation framework (here: \(\Gamma = 0\); \(\vec{q}, \vec{g}\) stable):

\[
\hat{\sigma}^\text{Coul, res} = \hat{\sigma}^\text{LO} \times \frac{\text{Im } G(\vec{0}, E)}{\text{Im } G^\text{free}(\vec{0}, E)}
\]

with the velocity \(v = \sqrt{\frac{E + i\Gamma}{2m_{\text{red}}}} \approx \sqrt{\frac{m}{2m_{\text{red}}}} \beta\)
Coulomb Green’s function: boundstates

$$|\langle 0 | V | 0 \rangle |^2 \sim \text{Im} \langle 0 | V | 0 \rangle = \text{Im} G$$

The solution at origin is [Beneke, Signer, Smirnov ’99][Pineda, Signer ’06]:

$$G(\vec{0}, E + i\Gamma) = i \frac{m_{\text{red}}^2}{\pi} v + D_{R\alpha} \frac{\alpha_s m_{\text{red}}^2}{\pi} \left[g_{\text{LO}} + \frac{\alpha_s}{4\pi} g_{\text{NLO}} + \ldots \right]$$

with g_{LO} (g_{NLO}) contributions from LO (NLO) Coulomb potential ($g_{\text{LO}} \sim$ Sommerfeld factor)

$G(\vec{0}, E + i\Gamma)$ develops poles below threshold \rightarrow boundstates for attractive Coulomb potential ($D_{R\alpha} > 0$):

$$G(\vec{0}, E + i\Gamma) = \sum_n \frac{|\Psi(0)|^2}{E_n - (E + i\Gamma)} \rightarrow \sum_n |\Psi(0)|^2 \pi \delta (E - E_n)$$

with the wave function for the boundstate system at origin $\psi(0)$
Matching to fixed order

Resummed results added to fixed order cross section at $\text{NNLO}_{\text{approx.}}$:

$$\sigma_{\text{hadr.}}^{\text{NNLO}_{\text{approx.}}} = \sigma_{\text{hadr.}}^{\text{NLO}} + \Delta\sigma_{\text{hadr.}}^{\text{NNLO}_{\text{approx.}}}.$$

($\Delta\sigma_{\text{hadr.}}^{\text{NNLO}_{\text{approx.}}}$ consists of dominant terms in β for $\beta \to 0$ for arbitrary colour representations [Beneke, Czakon, Falgari, Mitov, Schwinn '09])

Total resummed cross section:

$$\sigma_{\text{hadr.}}^{\text{NNLL matched}}(\rho) = \sigma_{\text{hadr.}}^{\text{NNLO}_{\text{approx.}}}(\rho) + \sum_{\text{flavours } i,j}^{\rho \to NN} \int_{\text{CT}} dN \rho^{-N} \tilde{f}_i(N+1) \tilde{f}_j(N+1)$$

$$\times \left[\tilde{\sigma}_{ij \to kl}^{\text{(res.)}}(N) - \tilde{\sigma}_{ij \to kl}^{\text{(res.)}}(N) \right]_{\text{NNLO}}$$

→ NNLO matching needed to avoid double counting
Matching to fixed order

Resummed results added to fixed order cross section at NNLO\textsubscript{approx}.

\[
\sigma_{\text{hadr.}}^{\text{NNLO\textsubscript{approx}}} = \sigma_{\text{hadr.}}^{\text{NLO}} + \Delta \sigma_{\text{hadr.}}^{\text{NNLO\textsubscript{approx}}}
\]

(\Delta \sigma_{\text{NNLO\textsubscript{approx}}} consists of dominant terms in β for $\beta \to 0$ for arbitrary colour representations [Beneke, Czakon, Falgari, Mitov, Schwinn ’09])

Total resummed cross section:

\[
\sigma_{\text{NNLL matched}}^{\text{hadr.}}(\rho) = \sigma_{\text{hadr.}}^{\text{NNLO\textsubscript{approx}}}(\rho) + \sum_{\text{flavours } i,j} \left(\frac{1}{2\pi i} \int_{CT} dN \, \rho^{-N} \tilde{f}_i(N + 1) \tilde{f}_j(N + 1) \times \left[\tilde{\sigma}^{(\text{res.})}_{ij \to kl}(N) - \tilde{\sigma}^{(\text{res.})}_{ij \to kl}(N) \right]_{\text{NNLO}} \right)
\]

→ NNLO matching needed to avoid double counting
Outline

1 Introduction
Threshold effects in squark and gluino production

2 Calculations
Soft-gluon resummation at NNLL
Resummation of Coulomb corrections and bound states

3 New results
Light-flavoured squark and gluino production
Stop production
Impact of resummed PDFs on the predictions: NNPDF3.0 studies
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft gluon resum.

[Beenakker, CB, Krämer, Kulesza, Laenen, Theeuwes, Thewes; JHEP 1412 (2014) 023]

$K_x (pp \to \tilde{q}\tilde{g} + X)$

$\sqrt{S} = 8$ TeV, $r = \frac{m_{\tilde{g}}}{m_{\tilde{q}}} = 1.0$

- NNLL matched
- NLO+NLL
- NNLO
- Approx

$\mu_F = \mu_R = m_{av}$

$\sigma (pp \to \tilde{q}\tilde{g} + X)$ [pb]

$\sqrt{S} = 8$ TeV

$\mu_0 = m_{\tilde{g}} = m_{\tilde{q}} = 1200$ GeV

$\tilde{q}\tilde{q}$ & $\tilde{g}\tilde{g}$ dominant processes at high masses & energies
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.

$K_x(pp \rightarrow \tilde{g}\tilde{g} + X)$
$\sqrt{S} = 13$ TeV

$\mu_F = \mu_R = m$

$m_{\tilde{q}} = m_{\tilde{g}} = m$ [GeV]

$C_{\text{Coul}}^\text{(N)LO}$: resummed Coulomb corrections; compare to SCET \cite{Beneke, Falgari, Piclum, Schwinn, Wever '13-'14}

\cite{Beenakker, CB, Krämer, Kulesza, Laenen; in preparation}
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{g}\tilde{q}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.

$K_x(pp \rightarrow \tilde{q}\tilde{g} + X)$

$\sqrt{S} = 13$ TeV

$\mu_F = \mu_R = m$

$m_{\tilde{q}} = m_{\tilde{g}} = m$ [GeV]
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.

$\tilde{q}\tilde{q}$

$\tilde{q}\tilde{g}$

$\tilde{q}\tilde{q}^*$

$\tilde{g}\tilde{g}$

$\mu_F = \mu_R = m$

$\sqrt{S} = 13$ TeV

$m_{\tilde{q}} = m_{\tilde{g}} = m$ [GeV]

$C_{\text{Coul}}^{(N)LO}$: resummed Coulomb corrections; compare to SCET [Beneke, Falgari, Piclum, Schwinn, Wever ’13–14]
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.

Using MSTW 2008 PDFs (NLO & NNLO); squark and gluino masses set to 1200 GeV

[Beenakker, CB, Krämer, Kulesza, Laenen; in preparation]
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.
Results: $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}^*$, $\tilde{q}\tilde{g}$, $\tilde{q}\tilde{q}$ with soft + Coulomb resum.

Using MSTW 2008 PDFs (NLO & NNLO); squark and gluino masses set to 1200 GeV

[Beenakker, CB, Krämer, Kulesza, Laenen; in preparation]
Intermezzo: why are stops different?

Stops in the weak interaction basis do not correspond to physical states

→ From the MSSM Lagrangian, mass terms for the stops can be extracted:

\[
\mathcal{L}_{\text{MSSM}} \rightarrow (\tilde{t}_L^* \quad \tilde{t}_R^*) \begin{pmatrix} \Delta_{\tilde{t},LL} & M_{\tilde{t},LR}^2 \\ \Delta_{\tilde{t},RL} & M_{\tilde{t},RR}^2 \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}
\]

(in the basis of “left-” and “right-handed” stop fields, non-physical basis)

Eigenvalues correspond to the physical masses \(m_{\tilde{t}_i}^2\) of the stops \((i = 1, 2)\)

→ \(\Delta_{\tilde{t},LR} = \Delta_{\tilde{t},RL}^* \propto m_t \gg 0\): \(m_{\tilde{t}_i}^2\) contain a mixture of L and R
Intermezzo: why are stops different?

Stops in the weak interaction basis do not correspond to physical states

⇒ Rotate into physical basis:

\[
\begin{pmatrix}
\tilde{t}_1 \\
\tilde{t}_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_{\tilde{t}} & \sin \theta_{\tilde{t}} \\
-\sin \theta_{\tilde{t}} & \cos \theta_{\tilde{t}}
\end{pmatrix}
\begin{pmatrix}
\tilde{t}_L \\
\tilde{t}_R
\end{pmatrix}
\]

(light-flavoured squark mixing is negligible due to small quark masses)
Intermezzo: why are stops different?

Stops in the weak interaction basis do not correspond to physical states

⇒ Rotate into physical basis:

\[
\begin{pmatrix}
\tilde{t}_1 \\
\tilde{t}_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_{\tilde{t}} & \sin \theta_{\tilde{t}} \\
-\sin \theta_{\tilde{t}} & \cos \theta_{\tilde{t}}
\end{pmatrix}
\begin{pmatrix}
\tilde{t}_L \\
\tilde{t}_R
\end{pmatrix}
\]

(light-flavoured squark mixing is negligible due to small quark masses)

Additional parameters in Feynman rules: \(\theta_{\tilde{t}}, m_{\tilde{q}}, m_{\tilde{g}}, m_{\tilde{t}_2} \)

→ From benchmark point 40.2.5 \[^{[AbdusSalam, Allanach, Dreiner, Ellis et al.; arXiv: 1109.3859]}\]

→ NLO dependence on these parameters is small
Intermezzo: why are stops different?

Stops in the weak interaction basis do not correspond to physical states

⇒ Rotate into physical basis:

\[
\begin{pmatrix}
\tilde{t}_1 \\
\tilde{t}_2
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_{\tilde{t}} & \sin \theta_{\tilde{t}} \\
-\sin \theta_{\tilde{t}} & \cos \theta_{\tilde{t}}
\end{pmatrix}
\begin{pmatrix}
\tilde{t}_L \\
\tilde{t}_R
\end{pmatrix}
\]

(light-flavoured squark mixing is negligible due to small quark masses)

Additional parameters in Feynman rules: \(\theta_{\tilde{t}}, m_{\tilde{q}}, m_{\tilde{g}}, m_{\tilde{t}_2}\)

→ From benchmark point 40.2.5 [AbdusSalam, Allanach, Dreiner, Ellis et al.; arXiv: 1109.3859]

→ NLO dependence on these parameters is small

In many SUSY scenarios, \(\tilde{t}_1\) is among the lightest sparticles ⇒ easy detection?

Otherwise similar to \(\tilde{q}\tilde{q}^*\) production with certain production channels suppressed by very small PDFs
Results: $\tilde{t}_1\tilde{t}^*_1$ production

From:

$$\hat{\sigma}_{ij} = \frac{\alpha_s^2}{m_{\tilde{t}_1}^2} \left\{ f_{ij}^B + 4\pi\alpha_s \left[f_{ij} + \bar{f}_{ij} \ln \left(\frac{\mu^2}{m_{\tilde{t}_1}^2} \right) \right] \right\}$$

with:
- S: soft-gluon logarithms
- C: Coulomb terms
- H: hard-matching coefficient [Broggio et al. '13]

Other parameters according to benchmark point 40.2.5 \[1109.3859\]
Results: $\tilde{t}_1\tilde{t}^*_1$ production

NLO scaling functions for $gg \rightarrow \tilde{t}\tilde{t}^*$

- f_{gg}: Prospino
- $f_{gg,th}^{S+C+H}$: threshold limit
- $f_{gg,th}^{S+C}$
- $f_{gg,th}^S$

$m = m_{\tilde{t}_1} = 1085$ GeV

Other parameters according to benchmark point 40.2.5 [1109.3859]
Results: \(\tilde{t}_1 \tilde{t}_1^* \) production

NLO scaling functions for \(gg \rightarrow \tilde{t}\tilde{t}^* \)

- \(f_{gg} \): Prospino
- \(f_{gg,th} \): threshold limit

\[\eta = \frac{\hat{s}}{4m^2} - 1 \]

\(m = m_{\tilde{t}_1} = 1085 \text{ GeV} \)

Other parameters according to benchmark point 40.2.5 [1109.3859]
Results: $\tilde{t}_1 \tilde{t}_1^*$ production

From:

$$\hat{\sigma}_{ij} = \frac{\alpha^2_S}{m^2_{\tilde{t}_1}} \left\{ f_{ij}^B + 4\pi\alpha_s \left[f_{ij} + \tilde{f}_{ij} \ln \left(\frac{\mu^2}{m^2_{\tilde{t}_1}} \right) \right] \right\}$$

with:

- S: soft-gluon logarithms
- C: Coulomb terms
- H: hard-matching coefficient [Broggio et al. '13]
Results: $\tilde{t}_1 \tilde{t}_1^*$ production

Benchmark point 40.2.5

\begin{align*}
\sin 2\theta_t &= 0.669 \\
m_{\tilde{q}} &= 1496 \text{ GeV} \\
m_{\tilde{g}} &= 1493 \text{ GeV} \\
m_{\tilde{t}_2} &= 1321 \text{ GeV}
\end{align*}

$\eta = \frac{s}{4m^2} - 1$

$K_x(pp \to \tilde{t}_1 \tilde{t}_1^* + X)$

$\sigma(pp \to \tilde{t}_1 \tilde{t}_1^* + X)$ [pb]

Other parameters according to benchmark point 40.2.5 [1109.3859]

$\mu_F = \mu_R = m_{\tilde{t}_1}$

NNLO appr. + NNLL

NLO + NLL

NLO

[Beenakker, CB, Heger, Krämer, Kulesza, Laenen; in preparation]

C. Borschensky – Precision Calculations for Squark and Gluino Production at Threshold
Results: $\tilde{t}_1\tilde{t}^*_1$ production

Benchmark point 40.2.5

\[\begin{align*}
\sin 2\theta_\tilde{t} &= 0.669 \\
m_{\tilde{q}} &= 1496 \text{ GeV} \\
m_{\tilde{g}} &= 1493 \text{ GeV}
\end{align*} \]

Compare to NLO+NNLL SCET results [Broggio, Ferroglia, Neubert, Vernazza, Yang ’13]

$\eta = \frac{s}{4m^2} - 1$

$K_x(pp \to \tilde{t}_1\tilde{t}^*_1 + X)$

$\sqrt{S} = 13 \text{ TeV}$

$\mu_F = \mu_R = m_{\tilde{t}_1}$

$\sigma(pp \to \tilde{t}_1\tilde{t}^*_1 + X) [\text{pb}]$

$\sqrt{S} = 13 \text{ TeV}$

$\mu/m_{\tilde{t}_1} (m_{\tilde{t}_1} = 1085 \text{ GeV})$
NNPDF3.0 with resummation: luminosities

[Bonvini, Marzani, Rojo, Rottoli, Ubiali, Ball, Bertone, Carrazza, Hartland ’15]

Baseline fits (reduced data sets compared to global NNPDF3.0 analysis)
NNPDF3.0 with resummation: predictions (1)

\[K_{\text{NLO+NLL}}(pp \to \tilde{g}\tilde{g} + X) \quad \sqrt{S} = 13 \text{ TeV} \]

\[\mu_F = \mu_R = m \]

Including 1-\(\sigma\) PDF error band for NNPDF3.0 (NLL/NLO) (divided by 10)

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; in preparation]

\[\mu = \mu_R = m \text{ [GeV]} \]

\[K_{\text{NLO+NLL}}(pp \to \tilde{q}\tilde{q}^* + X) \quad \sqrt{S} = 13 \text{ TeV} \]

\[\mu_F = \mu_R = m \]

Including 1-\(\sigma\) PDF error band for NNPDF3.0 (NLL/NLO) (divided by 10)
NNPDF3.0 with resummation: predictions (1)

C. Borschensky – Precision Calculations for Squark and Gluino Production at Threshold

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; in preparation]

\[K_{NLO+NLL}(pp \rightarrow \tilde{q}\tilde{g} + X) \]
\[\sqrt{S} = 13 \text{ TeV} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[K = \frac{\sigma_{NLO+NLL}}{\sigma_{NLO}} \text{NLL baseline} \]

\[\sigma_{NLO} \text{NLO baseline} \]

Including 1-σ PDF error band for NNPDF3.0 (NLL/NLO) (divided by 10)

\[\mu_F = \mu_R = m \]

\[\frac{1}{\sigma_{NLO+NLL}} \text{NLO baseline} \]

\[\sigma_{NLO} \text{NLO baseline} \]

Including 1-σ PDF error band for NNPDF3.0 (NLL/NLO) (divided by 10)
NNPDF3.0 with resummation: predictions (2)

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; in preparation]

\[K_{\text{NLO+NLL}}(pp \rightarrow \tilde{q}\tilde{g} + X) \]
\[\sqrt{S} = 13 \text{ TeV} \]

- Global fit
- NLL/NLO baseline
- Prescription (1)
- Prescription (2)

Including PDF+scale error

\[\tilde{q} = \tilde{g} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]

\[m_{\tilde{q}} = m_{\tilde{g}} = m \text{ [GeV]} \]
NNPDF3.0 with resummation: predictions (2)
NNPDF3.0 with resummation: predictions (2)

\[K_{NLO+NLL}(pp \to \tilde{g}\tilde{g} + X) \]
\[\sqrt{S} = 13 \text{ TeV} \]

- Global fit
- NLL/NLO baseline
- Prescription (1)
- Prescription (2)

Including PDF+scale error

\[m_{\tilde{q}} = m_{\tilde{g}} = m \ [\text{GeV}] \]
NNPDF3.0 with resummation: predictions (2)

[Beenakker, CB, Krämer, Kulesza, Laenen, Marzani, Rojo, Ubiali; in preparation]
Conclusions and outlook

Conclusions:

✓ Corrections from soft-gluon and Coulomb effects can be sizeable → Coulomb contributions mainly covered by two-loop terms
✓ $\bar{q}q$ and $\bar{q}g$ largest processes at the LHC for high $m_{\bar{q}}$ and m_g
✓ Enhancement of the K factor and improvement of the theoretical uncertainty
✓ $\tilde{t}_1 \tilde{t}_1^*$ dependence on additional SUSY parameters increased at NNLL level with respect to NLO due to hard-matching coefficients
✓ NNPDF3.0 with threshold resummation change both the quantitative and qualitative behaviour of the cross sections → Changes within the PDF uncertainty of global NNPDF3.0

Outlook:

🔗 Public code: NNLL-fast, update to recent PDF sets
🔗 Comparison with results from SCET