

Measurement of t-channel single top quark production in pp collisions

QCD@LHC2015 - London

Steffen Röcker for the CMS Collaboration | September 2, 2015

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK, KARLSRUHE INSTITUTE OF TECHNOLOGY

Single top quark production

Electroweak production of single top quarks:

	$q \xrightarrow{\vec{q}'} W^+$	q q' $q'W^+ tg$ g g g g g g g g g	
Production	s-channel	t-channel	associated tW production
Predicted σ [pb]	PRD 81, 054028	PRD 83, 091503(R)	PRD 82, 054018 (Kidonakis)
Predicted σ [pb] $p\bar{p} \sqrt{s} = 1.96 \text{ TeV}$	PRD 81, 054028 1.05 ± 0.05	PRD 83, 091503(R) 2.1 ± 0.1	PRD 82, 054018 (Kidonakis) 0.25 ± 0.03
Predicted σ [pb] $p\bar{p} \sqrt{s} = 1.96$ TeV $pp \sqrt{s} = 7$ TeV	$\begin{array}{c} {}_{PRD81,054028} \\ 1.05\pm0.05 \\ 4.6\pm0.2 \end{array}$	PRD 83, 091503(R) 2.1 ± 0.1 $64.6^{+2.6}_{-1.9}$	PRD 82, 054018 (Kidonakis) 0.25 ± 0.03 15.7 ± 1.2
Predicted σ [pb] $p\bar{p} \sqrt{s} = 1.96 \text{ TeV}$ $pp \sqrt{s} = 7 \text{ TeV}$ $pp \sqrt{s} = 8 \text{ TeV}$	$^{ m PRD 81, 054028}$ 1.05 ± 0.05 4.6 ± 0.2 5.6 ± 0.2	$\begin{array}{c} \text{PRD 83, 091503(R)} \\ 2.1 \pm 0.1 \\ \textbf{64.6}^{+2.6}_{-1.9} \\ \textbf{87.2}^{+3.4}_{-2.4} \end{array}$	$ ext{PRD 82, 054018} (ext{Kidonakis}) \ 0.25 \pm 0.03 \ 15.7 \pm 1.2 \ 22.2 \pm 0.8 \ ext{}$

Interesting properties:

- Allows direct measurement of CKM matrix element |V_{tb}|
- Wtb vertex enables tests of V–A structure, anomalous couplings
- t-channel charge ratio sensitive to u(d) PDF, t-channel and tW production sensitive to b PDF
- Background for Higgs and searches for new physics (4th generation, FCNC, H⁺, W[']), SUSY

Event selection for *t*-channel measurements

- 7 TeV selection:
 - Single lepton triggers (e+b-jet @ 7 TeV)
 - 1 isolated charged lepton
 - Veto events with other softer charged leptons
 - $M_T(W)$ (E_T^{miss}) cut to suppress QCD multijet production
 - 2 jets, can be forward $|\eta| < 4.5$
 - 1 jet with b-tag (track counting algorithm, 0.1% mistag rate)

8 TeV selection:

Increased p_T tresholds and additional cuts to reduce pile-up

Background processes

t-channel

tthar

W+jets

Z+Jets, Diboson

s-channel, tW

- Contribution from background processes after selection:
 - Single Top: *s*-channel, *tW*
 - Top quark pair production $t\overline{t}$
 - W+jets
 - Z+jets
 - Diboson (WW, WZ, ZZ)
 - QCD multijet

- Main backgrounds: W+jets and top quark pair production $t\bar{t}$
- QCD multijet background difficult to model and MC statistics very small after cuts \rightarrow data driven estimation with fit to $M_T(W)$ (MET) in orthogonal data set

2 jet 1 tag µ 7 TeV

Cross section measurement (1.17/1.56 fb $^{-1}$ at 7 TeV)

Three different analyses: $|\eta_{j'}|$, NN, BDT

 $|\eta_{j'}|$ analysis

Robust template fit to $|\eta_{i'}|$

- Data driven W+jets estimation in top quark mass side band
- Signal region in top mass window $130 < M_{\ell\nu b} < 220 \text{ GeV}/c^2$

Multivariate analyses

- Neural network and Boosted Decision Trees
- 6 analysis bins (up to 4 jets with \geq 2 tags)
- Several well modeled input variables
- Bayesian method
- Correlation estimated with pseudo experiments, combination with BLUE

 $\sigma_{ ext{t-ch.}} =$ 67.2 \pm 3.7 (stat.) \pm 3.0 (syst.) \pm 3.5 (theor.) \pm 1.5 (lum.) pb

JHEP 1212 (2012) 035

• Template fit to $|\eta_{j'}|$ of recoil jet

- Adapted p_T thresholds, additional cuts to suppress pile-up
- Different background composition at 8 TeV: More $t\bar{t}$, less W+jets
- $|\eta_{i'}|$ distribution for $t\bar{t}$ taken from 3 jet 2 tag region
- W+jets modeling checked in 2 jet 0 tag region

$$\sigma_{ ext{t-ch.}} =$$
 83.6 \pm 2.3(stat.) \pm 7.4(syst.) pb

JHEP 06 (2014) 090

Comparison with theory

Good agreement with NNLO (approx.) theory prediction

Extraction of $|V_{tb}|$

- Assuming that $|V_{tb}|^2 \gg |V_{td}|^2 + |V_{ts}|^2$ and $|V_{tb}| = 1$ for $\sigma^{\text{th}}_{t-\text{ch.}}$
- $|V_{tb}|$ can be extracted from cross section measurement $|V_{tb}| = \sqrt{\frac{\sigma_{t-ch.}}{\sigma_{t-ch.}^{th}}}$

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

$$\begin{split} |f_{L_V} V_{tb}| &= 1.020 \pm 0.046 \text{ (exp.)} \pm 0.017 \text{ (theor.)} & (7 \text{ TeV}) \\ |f_{L_V} V_{tb}| &= 0.979 \pm 0.045 \text{ (exp.)} \pm 0.016 \text{ (theor.)} & (8 \text{ TeV}) \\ |f_{L_V} V_{tb}| &= 0.998 \pm 0.038 \text{ (exp.)} \pm 0.016 \text{ (theor.)} & (7+8 \text{ TeV}) \\ \end{split}$$

- f_{LV} left-handed vector coupling, possible anomalous form factor from BSM contributions (e.g. vector-like quarks)
- Constraining $|V_{tb}|$ to the interval [0, 1] and setting $f_{L_V} = 1$ yields:

 $0.92 < |V_{tb}| \le 1@95\%$ CL (7+8 TeV)

Overview of $|V_{tb}|$ measurements

Charge ratio $R_t = \frac{\sigma_t}{\sigma_2}$

- More top than anti-top guarks produced due to initial valence guark distribution
- Cross section ratio $R_t = \frac{\sigma_t}{\sigma_t}$ depends on u(d) quark PDF, but also sensitive to new physics

 W^+

- Template fit to $|\eta_{i'}|$ separately for positive/negative charged leptons
- Systematic uncertainties estimated with pseudo experiments
 - Luminosity uncertainty cancels, JES/JER/MET uncertainty reduced due to ratio

Charge ratio results (19.7/fb 8 TeV)

$$\begin{split} \sigma_{t\text{-ch.,top}} &= 53.8 \pm 1.5 (\text{stat.}) \pm 4.4 (\text{syst.}) \, \text{pb.} \\ \sigma_{t\text{-ch.,anti-top}} &= 27.6 \pm 1.3 (\text{stat.}) \pm 3.7 (\text{syst.}) \, \text{pb.} \\ R_{t\text{-ch.}} &= 1.95 \pm 0.10 (\text{stat.}) \pm 0.19 (\text{syst.}) \end{split}$$

Good agreement with SM prediction

Ratio could be used for PDF fits (higher precision needed)

JHEP 06 (2014) 090

Motivation for differential cross section measurement

t-channel modeling

- Difficult to correctly model second b quark from gluon splitting
- NLO precision needed for correct kinematics

Differential cross section measurement at 8 TeV

Events / 0.

4000

2000

4000

3000

2000

1000

- Train neural network uncorrelated to top p_T and |y|
- Validate and also fit in ttbar control region
- Cut on NN output for signal-enriched sample
- Subtract backgrounds, data-driven QCD estimation in sideband

Unfolding

- Differences between generated and reconstructed distributions
- Correct detector and reconstruction effects with unfolding technique

Differential cross section results

- Unfolded distributions of top p_T and |y| agree well with different MC predictions
- More data in top p_T tail will allow to differentiate better
- Preliminary results published in CMS PAS TOP-14-004

Outlook on 13 TeV data

Single top quark *t*-channel candidate event with MET of 27 GeV, two jets, whereas one is b-tagged and the other very forward with $\eta = -4.3$. The reconstructed top quark mass is 177 GeV.

CMS DP-2015/019

Conclusions and outlook

Conclusions:

- All single top quark measurements consistent with SM
- Precise direct measurement and limit on |V_{tb}|
- Charge ratio with higher precision can be used to constrain u(d) quark PDF

Outlook:

- Single top quark measurements are starting to enter precision regime
- More data allows higher precision and interesting property measurements
- 13 TeV results in the pipeline for TOP2015

Backup

Top quark decay and reconstruction

- Top quark decays immediately due to high mass / large width ($t \rightarrow Wb$)
- $\textit{W}
 ightarrow \ell^{\pm}
 u, \, \textit{BR} pprox$ 32%, here only \textit{e}, μ
- Spin information passed to decay products

Top quark reconstruction in t-channel:

- Reconstructed from detector: jets, leptons, E_T^{miss}
- Top quark candidate reconstructed from W boson and b-tagged jet
- W boson from lepton and E^{miss}_T: p_{z,v} from E^{miss}_T by constraint on W boson mass
 - Two real solutions: Choose the one with smallest |p_{z,v}|
 - Imaginary solution: Minimal variation of E_T^{miss} so that $M_T^W = M_W$
- Assign b-tagged jet to top quark decay

7 TeV t-channel cross section - Systematic uncertainties

		Uncertainty source	NN	BDT	$\eta_{j'}$
		Statistical	-6.1/+5.5%	-4.7/+5.4%	±8.5%
	ert	Limited MC data	-1.7/+2.3%	±3.1%	±0.9%
	2	Jet energy scale	-0.3/+1.9%	$\pm 0.6\%$	-3.9/+4.1%
-		Jet energy resolution	-0.3/+0.6%	±0.1%	-0.7/+1.2%
N, BDT)	ant a	b tagging	-2.7/+3.1%	±1.6%	±3.1%
	Ĕ.	Muon trigger + reco.	-2.2/+2.3%	±1.9%	-1.5/+1.7%
	Der 1	Electron trigger + reco.	-0.6/+0.7%	±1.2%	-0.8/+0.9%
	ă	Hadronic trigger	-1.3/+1.2%	±1.5%	±3.0%
Sec. 1		Pileup	-1.0/+0.9%	±0.4%	-0.3/+0.2%
la		MET modeling	-0.0/+0.2%	±0.2%	$\pm 0.5\%$
-ig-		W+jets	-2.0/+3.0%	-3.5/+2.5%	$\pm 5.9\%$
E S	ŝ	light flavor (u, d, s, g)	-0.2/+0.3%	±0.4%	n/a
	rate	heavy flavor (b, c)	-1.9/+2.9%	-3.5/+2.5%	n/a
	ö	tī	-0.9/+0.8%	±1.0%	$\pm 3.3\%$
	Š	QCD, muon	±0.8%	$\pm 1.7\%$	±0.9%
	ä	QCD, electron	±0.4%	±0.8%	-0.4/+0.3%
		s-, tW ch., dibosons, Z+jets	±0.3%	$\pm 0.6\%$	$\pm 0.5\%$
	Total	marginalised uncertainty	-7.7/+7.9%	-7.7/+7.8%	n/a
		Luminosity		±2.2%	•
be d		Scale, tt	-3.3/+1.0%	±0.9%	-4.0/+2.1%
ile i	Ť.	Scale, W+jets	-2.8/+0.3%	-0.0/+3.4%	n/a
- E	ē	Scale, t-, s-, tW channels	-0.4/+1.0%	$\pm 0.2\%$	-2.2/+2.3%
Jar		Matching, tt	±1.3%	$\pm 0.4\%$	±0.4%
5	60	t-channel generator	±4.2%	±4.6%	±2.5%
ž	f	PDF	±1.3%	±1.3%	±2.5%
		Total theor. uncertainty	-6.3/+4.8%	-4.9/+5.9%	-5.6/+4.9%
Syst.	Syst. + theor. + luminosity uncert.		-8.1/+7.8%	-8.1/+8.4%	±10.8%
Total	(stat. +	syst. + theor. + lum.)	-10.1/+9.5%	-9.4/+10.0%	±13.8%

8 TeV t-channel cross section - Event yield

Process	Muon		Electron	
	SR	SB	SR	SB
ttbar	17214 ± 49	8238 ± 35	11162 ± 38	8036 ± 33
WZjets	10760 ± 104	9442 ± 97	4821 ± 69	6512 ± 81
QCD	765 ± 5	271 ± 4	1050 ± 6	1350 ± 6
Diboson	179 ± 4	161 ± 4	95 ± 3	134 ± 3
tW	1914 ± 28	969 ± 20	1060 ± 28	858 ± 18
<i>s</i> -channel	343 ± 1	118 ± 1	180 ± 1	96 ± 1
t-channel	6792 ± 25	944 ± 9	3616 ± 17	753 ± 8
Total expected	37967 ± 121	20143 ± 106	21984 ± 85	17740 ± 90
Data	38202	20237	22597	17700

8 TeV t-channel cross section - Systematic uncertainties

Lincortainty agurag	- (9/)
Uncertainty source	$\sigma_{t-ch.}$ (%)
Statistical uncertainty	± 2.7
JES, JER, MET, and pileup	\pm 4.3
b-tagging and mis-tag	\pm 2.5
Lepton reconstruction/trig.	\pm 0.6
QCD estimation	± 2.3
Wjets, ttbar estimation	± 2.2
Other backgrounds ratio	\pm 0.3
Signal modeling	\pm 5.7
PDF uncertainty	± 1.9
Simulation sample size	± 0.7
Luminosity	\pm 2.6
Total systematic	\pm 8.9
Total uncertainty	± 9.3
Measured cross section	83.6 ± 7.8 pb

Charge ratio systematic uncertainties

Uncertainty source	$\sigma_{t-ch.}(t)$ (%)	$\sigma_{t-ch.}(\overline{t})$ (%)	$R_{t-ch.}$ (%)
Statistical uncertainty	± 2.7	\pm 4.9	± 5.1
JES, JER, MET, and pileup	± 4.2	\pm 5.2	± 1.1
b-tagging and mis-tag	± 2.6	\pm 2.6	\pm 0.2
Lepton reconstruction/trig.	\pm 0.5	\pm 0.5	±0.3
QCD estimation	± 1.6	\pm 3.5	±1.9
W+jets, ttbar estimation	± 1.7	\pm 3.6	\pm 3.0
Other backgrounds ratio	± 0.1	\pm 0.2	\pm 0.6
Signal modeling	± 4.9	\pm 9.4	\pm 6.1
PDF uncertainty	\pm 2.5	\pm 4.8	\pm 6.2
Simulation sample size	± 0.6	\pm 1.1	\pm 1.2
Luminosity	± 2.6	\pm 2.6	—
Total systematic	± 8.2	\pm 13.4	\pm 9.6
Total uncertainty	± 8.7	\pm 14.2	± 10.9
Measured cross section or ratio	53.8 ± 4.7 pb	$\textbf{27.6} \pm \textbf{3.9pb}$	$\textbf{1.95} \pm \textbf{0.21}$

CMS detector

 Single top analyses need information from all detector subsystems to reconstruct (forward) jets, leptons, and missing transverse energy (E^{miss}_T)