Ideas behind parton showers 1984-2015

Davison E. Soper University of Oregon

QDC@LHC, London September 2015

Factorization

 \bullet For an observable $\mathcal S$ we have

$$\sigma(\mathcal{S}) = \sum_{a,b} \int_0^1 d\eta_a \int_0^1 d\eta_b \ f_{a/A}(\eta_a, \mu^2) f_{b/A}(\eta_b, \mu^2)$$
$$\times \hat{\sigma}(a, b, \eta_a, \eta_b, \mathcal{S}, \mu^2)$$
$$+ \mathcal{O}(1 \text{ GeV}^2/Q^2(\mathcal{S}))$$

- μ^2 is an adjustable factorization scale.
- $Q^2(\mathcal{S})$ is a hard scale corresponding to the observable \mathcal{S} .
- Errors are power suppressed when $Q^2(\mathcal{S})$ is large.

The observable

$$\hat{\sigma}(a, b, \eta_{a}, \eta_{b}, \mathcal{S}, \mu^{2}) = \sum_{m} \frac{1}{m!} \int dy_{1} \prod_{j=2}^{m} \int dp_{\perp,j} \, dy_{j} \, d\phi_{j}$$

$$\times \frac{d\hat{\sigma}}{dy_{1} \, dp_{\perp,2} \, dy_{2} \, d\phi_{2} \cdots dp_{\perp,m} \, dy_{m} \, d\phi_{m}}$$

$$\times \mathcal{S}_{m}(p_{1}, p_{2}, \dots p_{m})$$

- \mathcal{S} defines, for instance, three jets with given P_{\perp} values.
- By adding flavor indices, we could describe leptons, photons.
- We can choose $S_m(p_1, p_2, ..., p_m)$ to be symmetric under interchange of its arguments.

Infrared safety

- \bullet For our discussion, \mathcal{S} needs to be infrared safe.
- We can be (a little) more precise by saying that S is infrared safe at scale $Q^2(S)$.
- For partons m and m+1 becoming collinear,

$$p_m \to zp$$

$$p_{m+1} \to (1-z)p$$

$$p_{m+1}$$

when they are sufficiently collinear,

$$(p_m + p_{m+1})^2 < Q^2(\mathcal{S})$$

we ask that combining the partons leave \mathcal{S} unchanged:

$$S_{m+1}(p_1,\ldots,p_{m-1},p_m,p_{m+1}) \approx S_m(p_1,\ldots,p_{m-1},p)$$

• Also when one parton is becoming to aligned to the beam axis

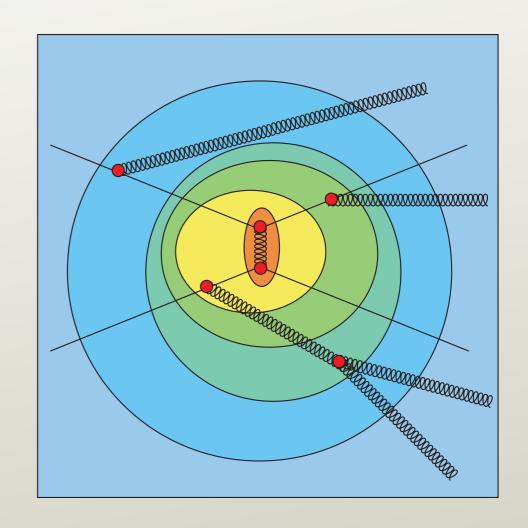
$$\boldsymbol{p}_{m+1,\perp}^2 < Q^2(\mathcal{S})$$

we ask that leaving it out leaves S unchanged:

$$S_{m+1}(p_1,\ldots,p_{m-1},p_m,p_{m+1}) \approx S_m(p_1,\ldots,p_{m-1},p_m)$$

Pythia (1985)

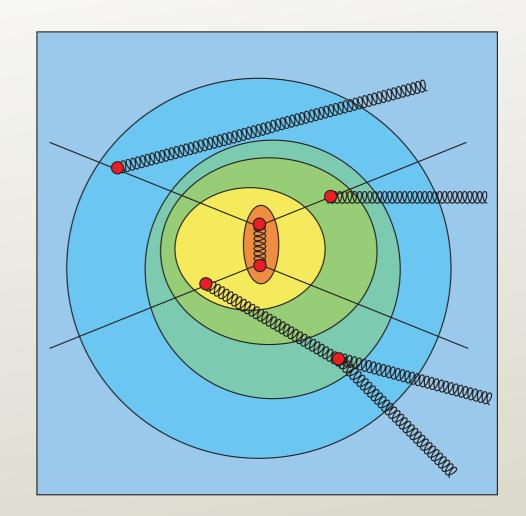
- Torbjörn Sjöstrand proposed starting at the hardest interaction.
- Then one generates parton splittings that are softer and softer.
- For initial state splittings, this means going backwards in time.



- In 1985, this was quite counterintuitive.
- In 2015, it is standard.
- The ordering variable was the virtuality of the splitting.

Relation to factorization

- Suppose that we stop the shower at scale Q_1^2 and measure an observable \mathcal{S} with $Q_1^2 < Q^2(\mathcal{S})$.
- Then we continue the shower and measure S again.



- Since the later splittings have $Q^2 < Q_1^2 < Q^2(\mathcal{S})$, they are unresolvable by \mathcal{S} .
- So $\sigma(S)$ is unchanged.
- Other observables will register a change.

The perturbative expansion

$$\sigma(S) = \sum_{a,b} \int_{0}^{1} d\eta_{a} \int_{0}^{1} d\eta_{b} f_{a/A}(\eta_{a}, \mu^{2}) f_{b/A}(\eta_{b}, \mu^{2})$$

$$\times \hat{\sigma}(a, b, \eta_{a}, \eta_{b}, S, \mu^{2})$$

$$+ \mathcal{O}(1 \text{ GeV}^{2}/Q^{2}(S))$$

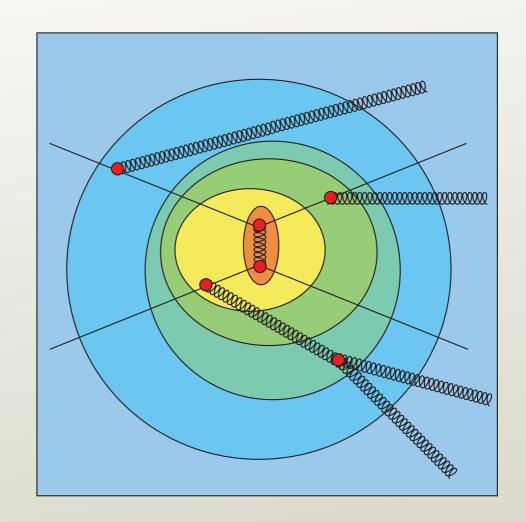
• The function $\hat{\sigma}(a, b, \eta_a, \eta_b, \mathcal{S}, \mu^2)$ has a perturbative expansion:

$$\hat{\sigma}(a, b, \eta_{\mathrm{a}}, \eta_{\mathrm{b}}, \mathcal{S}, \mu^{2}) = \sum_{n} \alpha_{\mathrm{s}}(\mu^{2})^{n} \hat{\sigma}_{n}(a, b, \eta_{\mathrm{a}}, \eta_{\mathrm{b}}, \mathcal{S}, \mu^{2})$$

- However, a parton shower does not evaluate this exactly.
- Rather, each splitting is approximated as being very collinear or very soft compared to the hardness of the previous splitting.

NLO matching (2002-2004)

- The hardest scattering is LO order only.
- The hardest splitting gives an approximate NLO correction.
- We can correct this to give NLO exactly plus some yet higher order corrections.



- Then running the simple shower further does not affect the result for $\sigma(S)$ for a large $Q^2(S)$ jet cross section.
- This is the basis of NLO matching schemes.
 - MC@NLO (Frixione, Webber)
 - POWHEG (Nason)

θ and z

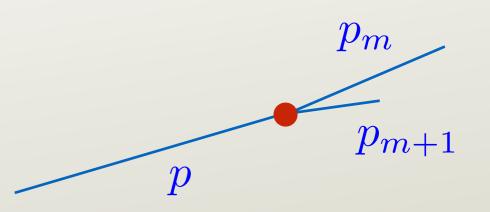
• For a small angle splitting,

$$p^{2} = 2p_{m} \cdot p_{m+1}$$

$$= 2E_{m}E_{m+1}(1 - \cos \theta)$$

$$= 2E^{2}z(1 - z)(1 - \cos \theta)$$
so
$$p^{2} \approx E^{2}z(1 - z)\theta^{2}$$

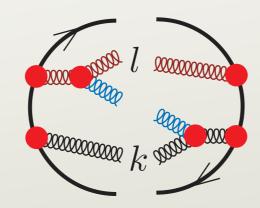
$$(1 - z) \gtrsim p^{2}/E^{2}$$



• Also $\mathbf{k}_{\perp}^2 = z(1-z)p^2$. Then $\mathbf{k}_{\perp}^2 > 1 \text{ GeV}^2$ implies $(1-z) \gtrsim 1 \text{ GeV}^2/p^2$.

Why wasn't Pythia perfect?

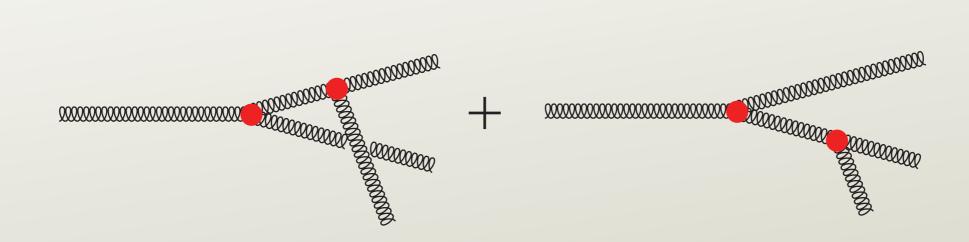
• There is quantum interference between soft gluon emission from parton l and gluon emission from parton k.



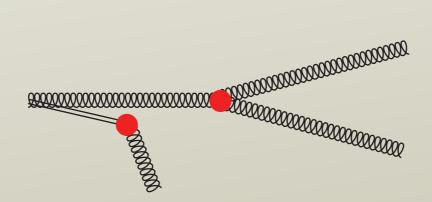
- The interference is destructive when $\theta > \theta_{lk}$.
- So radiation from the l-k "dipole" is limited to $\theta \lesssim \theta_{lk}$.
- In (old) Pythia, the only limit was $\theta \lesssim 1$ (that is, $(1-z) \gtrsim p^2/E^2$).
- Thus soft, wide angle radiation was completely wrong.

How Herwig fixed this (1984)

- Suppose that a gluon splits into two almost collinear gluons.
- Then each daughter radiates a soft, wide angle gluon.

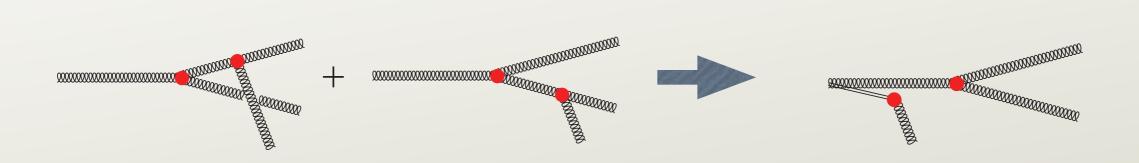


• This is as if the soft gluon were emitted from the mother.



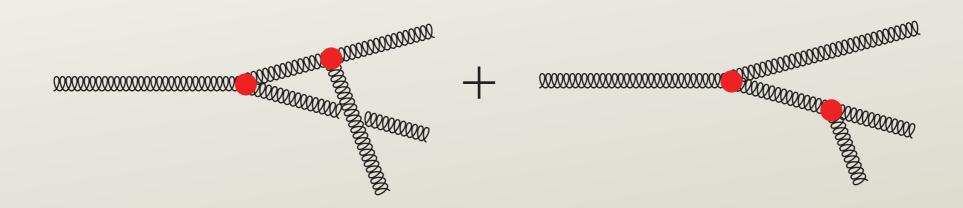
• Or, rather, to an on-shell approximation to the mother.

Implementing color coherence



- Webber and Marchesini (1984) showed how to implement this in an event generator.
- This became the basis of Herwig (Webber, 1984).
- Put the wide angle splittings first.
- This involves an approximation for the azimuthal angle distributions.

What about Pythia?



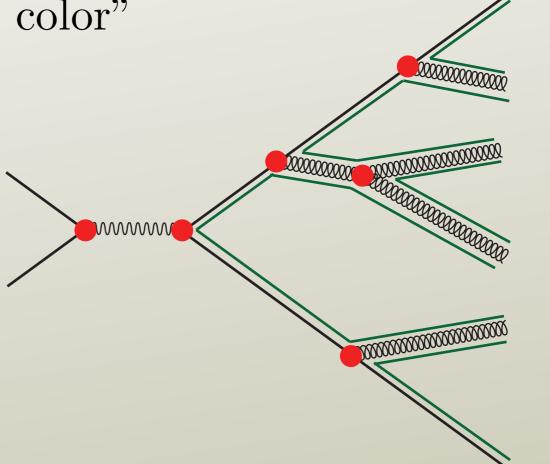
- Early Pythia just imposed a cut on angles.
- This roughly simulates the coherence effect.

Color

• Parton shower event generators track color.

• Mostly they use the "leading color" approximation.

- Gluons carry color $\mathbf{3} \times \overline{\mathbf{3}}$ rather than $\mathbf{8}$.
- Corrections are order $1/N_c^2$ $(N_c = 3)$.



Doing better with color

• A parton shower should track the color density matrix,

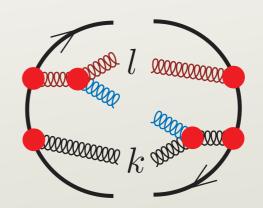
$$\sum_{\{c\}_m, \{c'\}_m} \rho(\{c\}_m, \{c'\}_m) |\{c\}_m\rangle \langle \{c'\}_m|$$

$$|\{c\}_m\rangle |\{c\}_m\rangle |\{c'\}_m|$$

- But this gives exponentials of large matrices.
- So implementing full color in a parton shower is an unsolved problem.
- Deductor (Nagy-Soper 2014) has an improved color treatment, "LC+."

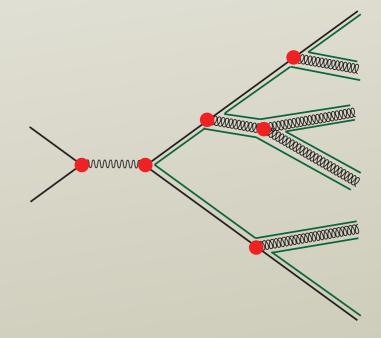
Color and dipoles

- A gluon line has two ends.
- So we can always consider it to be radiated by a dipole.



• In general, we need color matrices, T_l^a T_k^a .

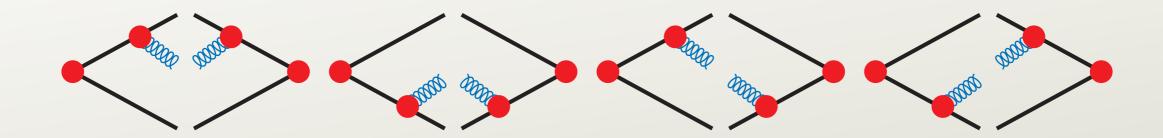
• In the leading color approximation, we consider only pairs of partons that are color connected.



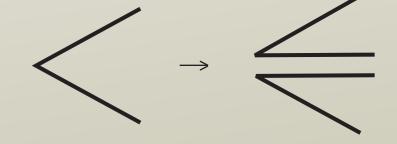
• Then we have just $C_{\rm F}$ or $C_{\rm A}$ instead of matrices.

Ariadne (1988, 1992)

• For gluon emission from a (leading color) dipole, there are four possible graphs.



- We can combine all four into one.
- Use the approximation that the emitted gluon is soft or collinear to one of the constituent partons.
- Then one dipole splits to two dipoles.

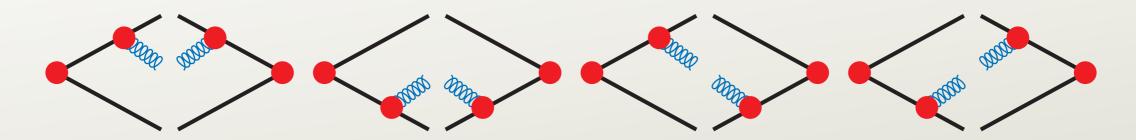


- That is, two partons split to three partons.
- Splittings can be organized by decreasing hardness.

- This was proposed by Gustafson and Petersson (1988).
- It was implemented as Ariadne by Lönnblad (1992).
- I like to call this the dipole antenna picture.
- Note that it nicely captures quantum interference (at leading color).
- This works well for final state splittings, but not so well for splittings with an initial state parton.
- Winter and Krauss (2008) devised a reasonable extension for initial state partons.
- Giele, Kosower, Skands implemented a dipole antenna shower in Vincia (2008).
- Ritzmann, Kosower and Skands extended Vincia to cover initial state dipoles (2013).

Partitioned dipoles

• For emission of a soft gluon with momentum q from a dipole with parton momenta p_l , p_k , there are four possible graphs.



• The sum is the soft eikonal factor

$$\psi_{lk}^{\text{dipole}} = \frac{2 p_l \cdot p_k}{q \cdot p_l \ q \cdot p_k}$$

• Multiply this by $1 = A'_{lk} + A'_{kl}$ where (for example)

$$A'_{lk} = \frac{q \cdot p_k \ Q \cdot p_l}{q \cdot p_k \ Q \cdot p_l + q \cdot p_l \ Q \cdot p_k}$$

and Q is the total final state momentum after the splitting.

• This partitions the dipole radiation into two terms.

• The first of the two terms is

$$\psi_{lk}^{\text{dipole}} A'_{lk} = \frac{2 p_l \cdot p_k}{q \cdot p_k} \frac{q \cdot p_k Q \cdot p_l}{q \cdot p_k Q \cdot p_l + q \cdot p_l Q \cdot p_k}$$

- This has a collinear singularity when q is collinear with p_l .
- It has no collinear singularity when q is collinear with p_k .
- We associate this term with emission from parton l with parton k as helper.
- The other term describes emission from parton k with parton l as helper.
- Thus each emission has a definite emitter.
- But we keep the quantum interference.

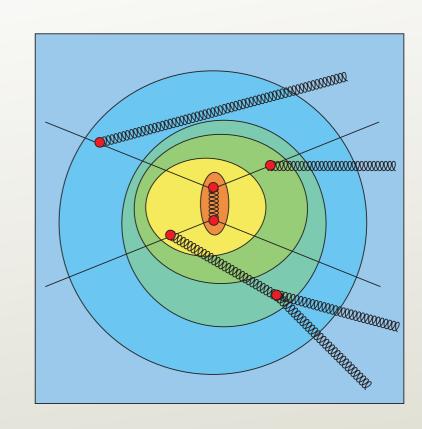
Partitioned dipole showers

• Deductor is a partitioned dipole shower.

- Pythia-8 is similar to a partitioned dipole shower for the final state.
 - But not for initial state emissions.

Partitioned dipole showers Catani-Seymour style

- The splitting functions of a properly formulated shower capture the collinear and soft gluon singularities of QCD.
- So full shower has the singularities removed.



- So the shower splitting functions can serve as the subtractions in an NLO calculation.
- Also, the subtraction terms for an NLO calculation can serve as the splitting functions for a shower.
- Catani and Seymour (1997) created a subtraction scheme based on dipoles for doing NLO calculations.
- There are some advantages to using this subtraction scheme to define splitting functions of a shower (Nagy-Soper, 2006).

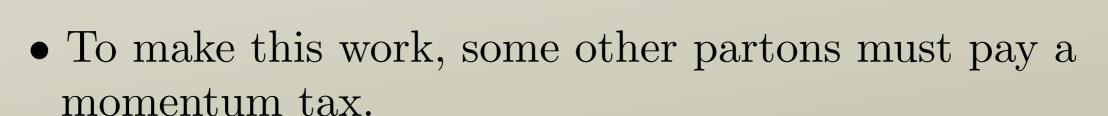
Catani-Seymour dipole showers

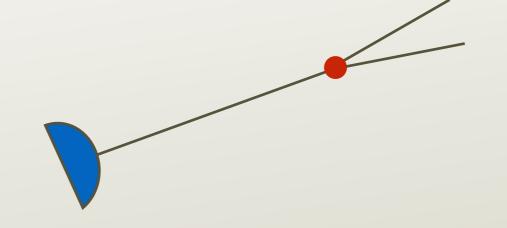
- There are small variations among these.
- 1. Dinsdale, Ternick and Weinzierl (2007).
- 2. Schumann and Krauss (2008) (default in Sherpa).
- 3. Plätzer and Gieseke (2011, 2012) (available in Herwig).
- 4. Höche and Prestel (2015) (available in Sherpa and Pythia).

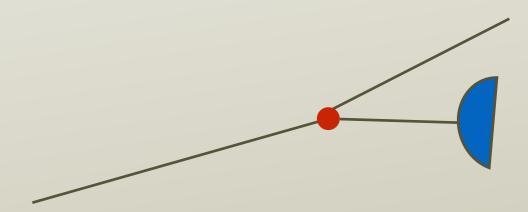
Choices in partitioned dipole showers

Momentum mapping

- In a final state splitting, the mother parton was on-shell.
- Afterwards, we see that mother parton is off-shell.
- In an initial state splitting, the mother parton had zero p_{\perp} .
- ullet Afterwards, we see that the mother parton must have non-zero $oldsymbol{p}_{\perp}$







- In Deductor, all of the other final state partons pay according to their momentum wealth.
- In the Catani-Seymour scheme, this also applies for an IS splitting with an IS spectator.
- Otherwise in the Catani-Seymour scheme, a *single parton* pays the momentum tax: the dipole partner parton.

but

- Plätzer and Gieseke take the momentum from all final state particles for *all* initial state splittings.
- For the p_{\perp} distribution in the Drell-Yan process, this allows the vector boson to recoil against all initial state radiation.

The partitioning function

• Deductor uses

$$A'_{lk} = \frac{q \cdot p_k \ Q \cdot p_l}{q \cdot p_k \ Q \cdot p_l + q \cdot p_l \ Q \cdot p_k}$$

In the $\vec{Q} = 0$ frame, this is a function only of the directions of \vec{q} , \vec{p}_l and \vec{p}_k .

• The Catani-Seymour dipole subtraction scheme uses

$$A'_{lk} = \frac{q \cdot p_k}{q \cdot p_k + q \cdot p_l}$$

This is simple.

Splitting functions

- The splitting functions have to match QCD in the soft and collinear collinear limits.
- This implies that the splitting functions approach the DGLAP kernels $P_{a,b}(z)$ in the collinear limit.
- Away from the soft and collinear collinear limits there are no sure guidelines.
- Catani and Seymour have a simple choice.

Evolution variable

- One needs a hardness variable to order splittings from hardest to softest.
- The hardness variable needs to vanish for an exactly collinear splitting and for emission of a zero momentum parton.
- k_{\perp}^2 is the most popular choice.
- Usually k_{\perp} is defined in the rest frame of a dipole.
- DEDUCTOR uses q^2/E where q^2 is the virtuality and E is the energy of the mother parton as measured in a fixed frame.
- To my knowledge, no choice is demonstrably best.

Conclusions

- There has been considerable development of parton shower algorithms since the beginning, but especially in the past ten years.
- The essential physics input is factorization and quantum interference.
- There are choices that are not fixed by this input.
- Partons carry quantum spin, but I have skipped a discussion of spin issues.
- Partons carry quantum color, which I have discussed.
- Implementing full color is an outstanding problem.

There is more to understand

- What is the relation of parton showers to summing large logarithms?
 - In particular, what is the relation of parton showers to threshold logarithms?
 - Can parton showers account for rapidity logarithms, as in High Energy Jets (Andersen and Smillie, 2010)?

• What would one mean by a parton shower algorithm with the splitting functions defined beyond order α_s .