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Loop-tree duality (LTD) 
3 Introduction and motivation 

 KLN theorem suggests that virtual and real contributions have the same IR 

divergent structure (because they cancel in IR-safe observables) 

 Cut contributions are similar to tree-level scattering amplitudes, if all the 

loops are cut. At one-loop, 1-cuts are tree-level objects (higher-cuts are 

products of unconnected graphs) 

 Objetive: Combine real and virtual contributions at integrand level and 

perform the computation in four-dimensions (take e to 0 with DREG) 

 Write virtual contributions as real radiation phase-space integrals of «tree-

level» objects  1-cut = sum over «tree level» contributions 

 Loop measure is related with extra-radiation phase-space 

 

                   Loop-Tree Duality 
 

 

 

 

 

Catani et al, JHEP 09 (2008) 065 



Loop-tree duality (LTD) 
4 Dual representation of one-loop integrals 

Loop  

Feynman 

integral 

Dual  

integral 

Sum of phase-

space integrals! 

Catani et al, JHEP 09 (2008) 065 



Loop-tree duality (LTD) 
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 Idea: «Sum over all possible 1-cuts» (but with a modified i0 prescription…) 

 Apply Cauchy residue theorem to the Feynman integral: 

 

 

 Select the residue of the poles with negative imaginary part: 

 

 

 

 

Set internal propagators on-shell 
Introduction of «dual propagators» (h 

prescription, a future- or light-like vector) 

Derivation 

Catani et al, JHEP 09 (2008) 065 



Loop-tree duality (LTD) 
6 Threshold and IR singularities 

 Feynman integrands develop singularities when propagators go on-shell. 

LTD allows to understand it as soft/collinear divergences of real radiation.  

 

 

 

 

 

 

• Forward (backward) on-shell hyperboloids 

associated with positive (negative) energy solutions. 

 

 

 

 

• LTD equivalent to integrate along the forward on-

shell hyperboloids.  

• Degenerate to light-cones for massless propagators. 

• Dual integrands become singular at intersections 

(two or more on-shell propagators) 

Buchta et al, JHEP 11 (2014) 014 

Massive case: hyperboloids 



Loop-tree duality (LTD) 
7 Threshold and IR singularities 

 Feynman integrands develop singularities when propagators go on-shell. 

LTD allows to understand it as soft/collinear divergences of real radiation.  

 

 

 

 

 

 

• Forward (backward) on-shell hyperboloids 

associated with positive (negative) energy solutions. 

 

 

 

 

• LTD equivalent to integrate along the forward on-

shell hyperboloids.  

• Degenerate to light-cones for massless propagators. 

• Dual integrands become singular at intersections 

(two or more on-shell propagators) 

Buchta et al, JHEP 11 (2014) 014 

Massless case: light-cones 
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 Reference example: Massless scalar three-point function in the time-like region 

 

 

 

 

 

 

 

 

 

 

IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

IR regularization in LTD 

Dual integrals 

(graphical 

definition) 

Original loop 

integral (internal 

momenta flows 

counter-clockwise) 
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 Reference example: Massless scalar three-point function in the time-like region 

 

 

 

 

 

 

 

 

 This integral is UV-finite; there are only IR-singularities, associated to soft and 

collinear regions 

 OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at 

integrand level (i.e. no epsilon should appear, 4D representation)  

 

 

 

 

LTD 

To regularize 

threshold 

singularity 

IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

IR regularization in LTD 

Integration measure in DREG: 

loop energy and polar angle 



 Analize the integration region: Application of LTD converts loop-integrals 

into PS: integrate in forward light-cones. 

 

 

 

 

 

 

 

 

 

 This structure suggests how to perform real-virtual combination! Also, how to 

overcome threshold singularities (integrable but numerically inestable) 

IR regularization in LTD 
10 IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

• Only forward-backward interference 

originate threshold or IR poles. 

• Forward-forward cancel among dual 

contributions 

• Threshold and IR singularities associated 

with finite regions (i.e. contained in a 

compact region) 

• No threshold or IR singularity at large loop 

momentum 



 Analize the integration region: Application of LTD converts loop-integrals 

into PS: integrate in forward light-cones. 

 

 

 

 

 

 

 

 

 

 This structure suggests how to perform real-virtual combination! Also, how to 

overcome threshold singularities (integrable but numerically inestable) 

IR regularization in LTD 
11 IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

• Only forward-backward interference 

originate threshold or IR poles. 

• Forward-forward cancel among dual 

contributions 

• Threshold and IR singularities associated 

with finite regions (i.e. contained in a 

compact region) 

• No threshold or IR singularity at large loop 

momentum 



IR regularization in LTD 
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IR-divergent contributions (x0<1+w) 

• Originated in a finite region of the loop 

three-momentum 

• All the IR singularities of the original 

loop integral 

Forward integrals (v<1/2,x0>1) 

• Free of IR/UV poles 

• Integrable in 4-dimensions! 

Backward integrals (v>1/2,x0>1+w) 

• Free of IR/UV poles 

• Integrable in 4-dimensions! 

IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

 From the previous plot, we define three contributions: 



IR regularization in LTD 
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 Let’s stop and make some remarks about the structure of these expressions: 

 Introduction of an arbitrary cut w to include threshold regions. 

 Forward and backward integrals can be performed in 4D because the sum does 

not contain poles. 

 Presence of extra Log’s in (F) and (B) integrals. They are originated from the 

expansion of the measure in DREG, i.e. 

 

 

for both v and x (keep finite terms only). It is possible to avoid them! 

 IR-poles isolated in IIR!  IR divergences originated in compact region 

of the three-loop momentum!!! 

 

 

 

 

 

 

Can be 

done in 4D! 

Explicit poles 

still present… 

IR singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 



IR regularization in LTD 
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 Now, we must add real contributions. Suppose one-loop scalar scattering 

amplitude given by the triangle 

 

 

 1->2 one-loop process  1->3 with unresolved extra-parton 

 Add scalar tree-level contributions with one extra-particle; consider 

interference terms: 

 

 

 

 

 Generate 1->3 kinematics starting from 1->2 configuration plus the loop 

three-momentum     !!! 

 

 

 

 

 

Finite real+virtual integration 

Virtual 

Real 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

Opposite sign! 



IR regularization in LTD 
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 Mapping of momenta: generate 1->3 real emission kinematics (3 

external on-shell momenta) starting from the variables available in the 

dual description of 1->2 virtual contributions (2 external on-shell 

momenta and 1 free three-momentum) 

 

 

 

 Mapping optimized for               ; analogous expression in the complement 

 Express interference terms using this map  Real and virtual 

contributions are described using the same integration variables! 

 

 

 

 

 

Finite real+virtual integration 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

Only required for I1 and I2 (I3 singularities cancel among dual terms) 



IR regularization in LTD 
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 Mapping of momenta: crucial for the cancellation of IR singularities! 

 It relates IR singular regions in real and dual contributions. A precise definition is 

requested to achieve exact cancellation. Extensible for n-particle final states! 

 Allows to recover the finite result by taking the limit e->0 at integrand level! 

 

 

 

 Remainders of the dual integrals: only partial use of dual integrands to 

cancel real IR singularities; define backward and forward integrals! 

 Cross-cancellation of collinear and UV singularities among dual integrands. 

 Unify the coordinate system to avoid the introduction of extra Log’s terms and take the 

limit e->0 at integrand level! 

 

Finite real+virtual integration 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

Implemented 

directly in 4D! 



 Reference example: two-point function with massless propagators 

 

 

 

 

 

 

 

 

 In this case, the integration regions of dual integrals are two energy-displaced 

forward light-cones. This integral contains UV poles only 

 OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV 

counter-terms, and find a purely 4-dimensional representation of the loop 

integral 
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To regularize 

threshold 

singularity 

UV singularities 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

UV renormalization in LTD 

LTD 
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 Divergences arise from the high-energy region (UV poles) and can be 
cancelled with a suitable renormalization counter-term.  For the scalar 
case, we use 

 

 

 

 Dual representation (new: double poles in the                                     
loop energy Bierenbaum et al. JHEP 03 (2013) 025) 

 

 

 

 

 

 Loop integration for loop energies larger                                                   
than µUV 

UV counter-term 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

UV renormalization in LTD 

Becker, Reuschle, Weinzierl, 

JHEP 12 (2010) 013 
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 Using the standard parametrization we define 

 

 

 

 

 Since it is finite, we can express the regularized two-point function in terms 

of 4-dimensional quantities (i.e. no epsilon required!!) 

 

 Physical interpretation of  renormalization scale: Separation between on-shell 

hyperboloids in UV-counterterm is 2µUV. To avoid intersections with forward 

light-cones associated with I1 and I2, the renormalization scale has to be 

larger or of the order of the hard scale. So, the minimal choice that fulfills 

this agrees with the standard choice (i.e. ½ of the hard scale). 

 

 

 

 

 

 

 

 

 

Cancellation of UV singularities 

Regularized 

two-point 

function 

Hernández-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation 

UV renormalization in LTD 
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 Introduced new method based on the Loop-Tree Duality (LTD) that 

allows to treat virtual and real contributions in the same way: 

simultaneous implementation and no need of IR subtraction 

 Physical interpretation of IR/UV singularities in loop integrals  

 Presented proof of concept of LTD with reference examples 

 

 Perspectives: 

 Apply the technique to compute full multileg NLO physical 

observables 

 Extend the procedure to higher orders: NNLO and beyond 

 

 

 



Thanks!!! 


