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Loop-tree duality (LTD)

Introduction and motivation

KLN theorem suggests that virtual and real contributions have the same IR
divergent structure (because they cancel in IR-safe observables)

Cut contributions are similar to tree-level scattering amplitudes, if all the
loops are cut. At one-loop, 1-cuts are tree-level objects (higher-cuts are
products of unconnected graphs)

Objetive: Combine real and virtual contributions at integrand level and
perform the computation in four-dimensions (take ¢ to O with DREG)

O Write virtual contributions as real radiation phase-space integrals of «(free-
level» objects |:> 1-cut = sum over «(tree level» contributions

O Loop measure is related with extra-radiation phase-space

mmmm) Loop-Tree Duality  Cotaniet al, JHEP 09 (2008) 065



Loop-tree duality (LTD)
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Loop-tree duality (LTD)

Idea: «(Sum over all possible 1-cuts» (but with a modified iO prescription...)

O Apply Cauchy residue theorem to the Feynman integral:
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Introduction of «dual propagators» (7)

Set internal propagators on-shell prescription, a future- or light-like vector)

Catani et al, JHEP 09 (2008) 065



Loop-tree duality (LTD)

Feynman integrands develop singularities when propagators go on-shell.
LTD allows to understand it as soft/collinear divergences of real radiation.

* Forward (backward) on-shell hyperboloids
associated with positive (negative) energy solutions.

Gr'(@) =i —mi+i0=0

1l = i\/(l? +m7 — il

* LTD equivalent to integrate along the forward on-

shell hyperboloids.
* Degenerate to light-cones for massless propagators.
* Dual integrands become singular at intersections

(two or more on-shell propagators)

Massive case: hyperboloids

Buchta et al, JHEP 11 (2014) 014
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IR regularization in LTD

IR singularities

Reference example: Massless scalar three-point function in the time-like region
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IR regularization in LTD

IR singularities

Reference example: Massless scalar three-point function in the time-like region
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O This integral is UV-finite; there are only IR-singularities, associated to soft and
collinear regions

o OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at
integrand level (i.e. no epsilon should appear, 4D representation)

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



IR regularization in LTD

Analize the integration region: Application of LTD converts loop-integrals
into PS: integrate in forward light-cones.

* Only forward-backward interference
originate threshold or IR poles.

* Forward-forward cancel among dual
contributions

* Threshold and IR singularities associated
with finite regions (i.e. contained in a
compact region)

* No threshold or IR singularity at large loop
momentum

This structure suggests how to perform real-virtual combination! Also, how to
overcome threshold singularities (integrable but numerically inestable)

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation
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IR regularization in LTD

From the previous plot, we define three contributions:

IR-divergent contributions (£,<1+w) y
* Originated in a finite region of the loop M o= 19419419 = E—P (_31;2_ E'U)
12
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* All the IR singularities of the original % [
loop integral

Forward integrals (v<1/2,£,>1) 3 L
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* Integrable in 4-dimensions! i=1 512

Backward integrals (v>1/2,£,>1+w)
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Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



IR regularization in LTD

Let’s stop and make some remarks about the structure of these expressions:
O Introduction of an arbitrary cut w to include threshold regions.

O Forward and backward integrals can be performed in 4D because the sum does
not contain poles.

O Presence of extra Log’s in (F) and (B) integrals. They are originated from the
expansion of the measure in DREG, i.e.

—1-2¢  _ _Q§26~ 1 In (&) 2

for both v and ¢ (keep finite terms only). It is possible to avoid them!

o IR-poles isolated in IRl |:> IR divergences originated in compact region
of the three-loop momentum!!

LO(p1,po,—pe) = 1™+ 1)+ 10
\ )

Y
Explicit poles Can be
still present... done in 4D!

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



IR regularization in LTD

Finite real+virtual integration

Now, we must add real contributions. Suppose one-loop scalar scattering
amplitude given by the triangle

P1

: T M (py,pa;p3)) = ig — Re (MO D)
Virtual ] - X e | )
e R . MY (pr.paips)) = —ig” K (p1.pa. —ps)
1->2 one-loop process 1->3 with unresolved extra-parton

Add scalar tree-level contributions with one extra-particle; consider
interference terms:
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Generate 1->3 kinematics starting from 1->2 configuration plus the loop
three-momentum [ Il

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



IR regularization in LTD

Finite real+virtual integration

Mapping of momenta: generate 1->3 real emission kinematics (3
external on-shell momenta) starting from the variables available in the
dual description of 1->2 virtual contributions (2 external on-shell
momenta and 1 free three-momentum)

R T i et I ps—p1 + p2 = p3s— Py + Ph +
H =11 —aq)p ] = 1 g =£f+m + 1
Da { }pg EQE'PE

O Mapping optimized for Y1, < ¥, ; analogous expression in the complement

O Express interference terms using this map Real and virtual
contributions are described using the same integration variables!

Only required for |, and I, (l; singularities cancel among dual terms)
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IR regularization in LTD

Finite real+virtual integration

Mapping of momenta: crucial for the cancellation of IR singularities!

o It relates IR singular regions in real and dual contributions. A precise definition is
requested to achieve exact cancellation. Extensible for n-particle final states!

0 Allows to recover the finite result by taking the limit £->0 at integrand level!
1 1
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Remainders of the dual integrals: only partial use of dual integrands to
cancel real IR singularities; define backward and forward integrals!

Implemented
directly in 4D!

Al

o Cross-cancellation of collinear and UV singularities among dual integrands.

o Unify the coordinate system to avoid the introduction of extra Log’s terms and take the
limit £->0 at integrand level!

, 5 o (i 14+ &(1 —2v)
(& 01) — (\/E + 2¢(1 2,.)+1.2 (1 \/£2+2£(1—22,‘)+1))
(§2,02) — (&0) ; (&,03) — (&)

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



UV renormalization in LTD

UV singularities

Reference example: two-point function with massless propagators
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O In this case, the integration regions of dual integrals are two energy-displaced

forward light-cones. This integral contains UV poles only

O OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV
counter-terms, and find a purely 4-dimensional representation of the loop

integral

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



UV renormalization in LTD

Divergences arise from the high-energy region (UV poles) and can be
cancelled with a suitable renormalization counter-term. For the scalar
case, we use
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Dual representation (new: double poles in the
loop energy Bierenbaum et al. JHEP 03 (2013) 025)
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UV renormalization in LTD

Cancellation of UV singularities
Using the standard parametrization we define

Regularized .
function ‘uUV

Since it is finite, we can express the regularized two-point function in terms
of 4-dimensional quantities (i.e. no epsilon required!!)

Physical interpretation of renormalization scale: Separation between on-shell
hyperboloids in UV-counterterm is 2/.4,,,. To avoid intersections with forward
light-cones associated with |, and |,, the renormalization scale has to be
larger or of the order of the hard scale. So, the minimal choice that fulfills
this agrees with the standard choice (i.e. /2 of the hard scale).

Herndndez-Pinto, Rodrigo and GS, arXiv:2015.04617 [hep-ph], Rodrigo et al, in preparation



Conclusions
e

Introduced new method based on the Loop-Tree Duality (LTD) that
allows to treat virtual and real contributions in the same way:
simultaneous implementation and no need of IR subtraction

Physical interpretation of IR/UV singularities in loop integrals

Presented proof of concept of LTD with reference examples

Perspectives:

= Apply the technique to compute full multileg NLO physical
observables

= Extend the procedure to higher orders: NNLO and beyond






