# The CT14 Global Analysis of Q.C-D.

# Daniel Stump

# Department of Physics and Astronomy Michigan State University

Sayipjamal Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel Nadolsky, Jon Pumplin, Carl Schmidt, Daniel Stump, C.-P. Yuan, "The CT14 Global Analysis of Quantum Chromodynamics," arXiv:1506.07443v1 [hep-ph]

(CTEQ-TEA group)

# 1. Overview of the CT14 PDFs

# CT14 central PDFs at Q = 2 GeV CT14 central PDFs at Q = 100 GeV



### CT14 central u-quark PDF at all Q

$$1.3 \text{ GeV} < Q < 100 \text{ GeV}$$



(contour plot)

(surface plot)

# CT14 central ub-quark PDF at all Q

# 1.3 GeV < Q < 100 GeV



To compare different PDF models, it is useful to define...

Four PDF moments For  $f = \{g, d, u, s, db, ub, sb\}$ ,  $J1 (f) = \int_0^1 f(x,Q) x dx \quad \text{sensitive to mid } x$   $J2 (f) = \int_0^1 f(x,Q) x^2 dx \quad \text{sensitive to large } x$   $J1 (f) = \int_0^1 f(x,Q) x \ln(1/x) dx \quad \text{sensitive to small } x$ 

J2 (f) =  $\int_0^1 f(x,Q) x^2 dx$  sensitive to large x JL1 (f) =  $\int_0^1 f(x,Q) x \ln(1/x) dx$  sensitive to small x JL2 (f) =  $\int_0^1 f(x,Q) x \ln(1/x)^2 dx$  sensitive to smaller x and compare the moments of the different models.





# CT14 PDF moments; J1, J2, JL1, JL2 @ Q=2 GeV



### Note:

- central values;
- the uncertainty ranges are calculated from the CT14 hessian error pdfs;
- green ~ small xblue ~ large x

### Use *moment ratios* to compare CT14 and CT10 (central) PDFs @ Q = 2.0 GeV.



#### Changes from CT10 to CT14:

• The biggest change is in the strange quark.

The CT14 strange PDF is approximately 20% smaller than the CT10 strange PDF (at 2 GeV) (Why?)

• The d-antiquark has changed at large x.

The CT14 d-bar PDF is approximately 15% larger that the CT10 d-bar PDF at large x. (Why?)

- The gluon has increased at mid and large x.
- Other changes are less than 5%.

# 2.

# LHC data that is used in the CT14 global analysis

LHC measurements of inclusive jet production; for example, CMS root-s = 7 TeV L =  $5.0 \text{ [fb]}^{-1}$ 



Data and CT14 NNLO theory for CMS 7 TeV inclusive jet production

### LHC measurements of inclusive jet production;

for example, CMS root-s = 7 TeV  $L = 5.0 \text{ [fb]}^{-1}$ 



# Measurements of inclusive jet production in the CT14 global analysis

(Tevatron)

(and LHC)

|     | Experiment                                     | $N_{pt}$ | $\chi_e^2$ | $\chi^2/N$ |
|-----|------------------------------------------------|----------|------------|------------|
| 504 | CDF Run-2 inclusive jet prod.                  | 72       | 105        | 1.45       |
| 514 | DØ Run-2 inclusive jet prod.                   | 110      | 120        | 1.09       |
| 535 | $ATLAS 7 TeV 35 pb^{-1} incl. jet prod.$       | 90       | 50         | 0.55       |
| 538 | CMS 7 TeV $5 \mathrm{fb^{-1}}$ incl. jet prod. | 133      | 177        | 1.33       |

$$\chi_{e}^{2} = \min \left\{ \sum_{i=1}^{N} \left[ \frac{sD_{i} - T_{i}}{\sigma_{i}} \right]^{2} + \sum_{k=1}^{N_{ey}} r_{k}^{2} \right\}$$

$$R = \left\{ r_{k} ; k = 1 \dots N_{sy} \right\} \quad "nuisance pars."$$

$$SD_{i} = D_{i} - \sum_{k=1}^{N_{ey}} \sigma_{ik} r_{k} \quad "shifted data"$$

LHC measurements of W<sup>±</sup> and Z<sup>0</sup> production;

for example, CMS root-s = 7 TeV  $L = 4.7 [fb]^{-1}$ ; W/lepton charge asymmetry



LHC measurements of  $W^{\pm}$  and  $Z^{0}$  production; for example, LHCb root-s = 7 TeV  $L = 35 \text{ [pb]}^{-1}$ ;  $W/\mu$  charge asymmetry



# Data related to W<sup>±</sup> and Z<sup>0</sup> production in the CT14 global analysis

#### (Tevatron)

|     | Experiment                                                              | $N_{pt}$ | $\chi_e^2$ | $\chi^2/N$ |
|-----|-------------------------------------------------------------------------|----------|------------|------------|
| 225 | CDF Run-1 electron $A_{\text{ch.}}, p_{T\ell} > 25 \text{GeV}$          | 11       | 8.9        | 0.81       |
| 227 | CDF Run-2 electron $A_{\text{ch.}}, p_{T\ell} > 25 \text{GeV}$          | 11       | 14         | 1.24       |
| 234 | DØ Run-2 muon $A_{\text{ch.}}, p_{T\ell} > 20 \text{GeV}$               | 9        | 8.3        | 0.92       |
| 260 | DØ Run-2 Z rapidity                                                     | 28       | 17         | 0.59       |
| 261 | CDF Run-2 Z rapidity                                                    | 133      | 177        | 1.33       |
| 281 | DØ Run-2 9.7 fb <sup>-1</sup> electron $A_{\rm ch.}$ , $> 25 {\rm GeV}$ | 13       | 35         | 2.67       |

#### (LHC)

|     | Experiment                                                                       | $N_{pt}$ | $\chi_e^2$ | $\chi^2/N$ |
|-----|----------------------------------------------------------------------------------|----------|------------|------------|
| 240 | LHCb 7 TeV 35 pb <sup>-1</sup> , $W/Z d\sigma/dy_{\ell}$                         | 14       | 9.9        | 0.71       |
| 241 | LHCb 7 TeV 35 pb <sup>-1</sup> , $A_{\rm ch.}~(\geq 20{\rm GeV})$                | 5        | 5.3        | 1.06       |
| 266 | CMS 7 TeV 4.7 fb <sup>-1</sup> , muon $A_{\rm ch.}$ ( $\geq 5  {\rm GeV}$ )      | 11       | 12.1       | 1.10       |
| 267 | CMS 7 TeV 840 pb <sup>-1</sup> , electron $A_{\rm ch.}$ ( $\geq 35  {\rm GeV}$ ) | 11       | 10.1       | 0.92       |
| 268 | ATLAS 7 TeV 35 pb <sup>-1</sup> , $W/Z$ cross sec., $A_{\rm ch.}$                | 41       | 51         | 1.25       |



W/e charge asymmetry at Tevatron Run 2.

 $A_{e}$ 





These measurements should tell us something about the u flavor versus d flavor.

(Good agreement with the Run-2 data)

#### Comment on the strange quark PDF.

For CT14,  $s(x,Q) \le s_{CT10}(x,Q)$ , roughly 20% smaller @ 2 GeV. (Why?)

Examine data that is sensitive to the strange quark:

NuTeV and CCFR dimuon production by neutrinos and antineutrinos.

E.g., one fourth of the experiments:



# Another process that is sensitive to the strange quark: W + charm production at the LHC



Comparison of the CT14 calculation for  $W^{+/-}$  + c differential cross sections, compared to the CMS measurements, for 7 TeV.

# 3. Impact of CT14 PDFs on Predictions at the LHC









Top-quark differential cross sections; predictions for CT14NNLO PDFs.

7 TeV 8 TeV 13 TeV



pT



4. A *preliminary* and *partial* look at the HERA1+2 data



# Comparison of data and theory (CT14)

Theory (CT14) and data; positron DIS, N.C.

Points where data/theory is large.





# Better comparison of data and theory (CT14)

To account for the systematic errors, we should compare

the "shifted data" (sD)

to the theory (T)

in units of the *uncorrelated* error  $(\sigma_{unc})$ ;

i.e.,

$$(sD-T)/\sigma_{unc}$$

which should be normally distributed.

#### Points with $|(sD - T)/\sigma| > 2$



# *The residuals*: data is displaced by optimized systematic errors ("sD"); then compared to theory with CT14 PDFs













**The nuisance parameters:** i.e., the normalized coherent displacements;  $sD_i = D_i + \delta D_i$  and  $\delta D_i = Sum_k \sigma_{ki}$ 







# Challenge for a bright young person ...

Analyze the histogram of residuals using

"Pearson's chi-squared goodnessof-fit test".



### **Conclusions**

/1/ It is important to test QCD; and to seek new physics. The CT14 NNLO PDFs will be used to compare data and theory for the 8 TeV and 13 TeV LHC.

/2/ The best way to compare data and theory is to use <u>Pearson's</u> <u>chi-squared goodness-of-fit test</u>.

(Just using  $\chi^2/N$  is not good enough.)

# Topics where more work is needed

/1/ Systematic errors.

The current method is practical, and seems to give reasonable results; but it has some limitations.

/2/ Parametrization. (Val: 8; Glu: 5; Sea: 13; =26) "Flexible parameterizations" are important. (See the Appendix.) Can we make "parametrization" less *ad hoc*?