Vector boson production in association with jets and heavy flavor quarks from CMS

Jelena Luetić on behalf of the CMS collaboration

Institute Ruđer Bošković, Zagreb, Croatia
Motivation

• Vector boson + jets studies essential for the LHC physics program:
 • Probe into **perturbative QCD** calculations, testing predictions at high energies and jet multiplicities
 • Important for **tuning MC generators** and theoretical calculations
 • Probing strange and heavy content of the proton and **constraining** PDFs
 • **Background** to many interesting processes (Higgs, BSM...)

![Production Cross Section, \(\sigma \text{ [pb]}\)](image)}
Vector boson + jets
Signal selection:

- **W**: $M_T > 50 \text{ GeV}$, $|\eta| < 2.4$
- **µ**: $p_T > 25 \text{ GeV}$, $|\eta| < 2.1$, isolated
- **at least one jet**: $p_T > 30 \text{ GeV}$, $|\eta| < 2.4$

Results compared to:
- MadGraph+Pythia
- Sherpa
- NLO calculations from BlackHat+Sherpa

Differential cross section as a function of:
- jet multiplicity
- p_T and η of the four leading jets
- $\Delta \phi$ between muon and each of the jets
- scalar sum of the jet transverse momenta

- Luminosity: 5 fb$^{-1}$
- $\sqrt{s} = 7 \text{ TeV}$
W + jets differential cross section

- differential cross section as a function of:
 - jet multiplicity
 - p_T and η of the four leading jets
 - $\Delta\phi$ between muon and each of the jets
 - scalar sum of the jet transverse momenta

overestimated in high p_T regions

OK for all 4 leading jets
W + jets differential cross section

- differential cross section as a function of:
 - jet multiplicity
 - p_T and η of the four leading jets
 - $\Delta \phi$ between muon and each of the jets
 - scalar sum of the jet transverse momenta

underestimated in low $\Delta \phi$ region
Z + jets differential cross section

Signal selection:

I: \(p_T > 20 \text{ GeV}, |\eta| < 2.4 \), isolated

at least one jet:

Z: \(70 < M < 110 \text{ GeV} \)

\(p_T > 30 \text{ GeV}, |\eta| < 2.4 \)

Differential cross section as a function of:

- \(p_T \) and \(\eta \) up to 5 leading jets
- exclusive and inclusive jet multiplicities
- scalar sum of the jet transverse momenta

Results compared to:

- MadGraph+Pythia 6
- Sherpa 2

• Luminosity: 19.6 fb\(^{-1}\)
• \(\sqrt{s} = 8 \) TeV
Z + jets double differential cross section

- Signal selection similar to previous measurement with extended rapidity range $|y|<4.7$
- Only for muons

MadGraph overestimates xsec in almost all η bins and $p_T>100$ GeV
Sherpa shows large disagreement in several bins

Results compared to:
- MadGraph+Pythia 6
- Sherpa 2
Z+ jets/γ+jets cross section ratio

• Differential cross sections as a function of p_T of the vector boson measured

Results compared to:
• MadGraph+Pythia 6
• Sherpa 2
• Blackhat

- Luminosity: 19.7 fb$^{-1}$
- $\sqrt{s} = 8$ TeV

19.7 fb$^{-1}$ (8 TeV)
Z+ jets/γ+jets cross section ratio

- Ratio expected to become constant at high p_T of the vector boson and LO in pQCD
- Test of the higher order pQCD corrections
- Used for Z+jets modelling where $Z\rightarrow vv$

- Measurement performed for different kinematic selections:

\[\text{~ 20\% difference between data & theory} \]
W + 2 jets, EWK production

Signal selection:
- centrally produced electron or muon
- two jets with invariant mass of the dijet system $m_{jj} > 1000$ GeV

Important as test of SM predictions and background to Higgs VBF studies

<table>
<thead>
<tr>
<th>$\sigma(W\rightarrow l\nu+2j, l=e,\mu)$</th>
<th>0.42±0.04(stat)±0.09(syst)±0.01(lumi) pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madgraph + Pythia6</td>
<td>0.50±0.02(scale)±0.02(PDF) pb</td>
</tr>
</tbody>
</table>

Result in agreement with SM prediction

Luminosity: 19.3 fb⁻¹
$\sqrt{s} = 8$ TeV
Signal selection:

- Luminosity: 19.7 fb⁻¹
- √s = 8 TeV

Results

<table>
<thead>
<tr>
<th>Event</th>
<th>Cross-section (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z+2 jets</td>
<td>174±15(stat)±40(syst)</td>
</tr>
<tr>
<td>Madgraph + Pythia6</td>
<td>208±9(scale)±7(PDF)</td>
</tr>
</tbody>
</table>

Result in agreement with SM prediction
Vector boson + heavy flavor
W + 2b jets

Fiducial region:

- μ: $p_T > 25$ GeV, $|\eta| < 2.1$
- Two jets: $p_T > 25$ GeV, $|\eta| < 2.4$, both b-tagged
- B hadron $p_T > 5$ GeV

- Sensitive to gluon splitting
- **Background** to many interesting processes like Higgs and BSM
- In agreement with SM

- Luminosity: 5 fb$^{-1}$
- $\sqrt{s} = 7$ TeV

CMS L=5/fb $\sqrt{s} = 7$ TeV

- MCFM MSTW08
- $P_T^{\mu} > 25$ GeV/c, $|\eta^{\mu}| < 2.1$
- $P_T^{b\text{-jet}} > 25$ GeV/c, $|\eta^{b\text{-jet}}| < 2.4$
- $P_T^{b\text{-hadron}} > 5$ GeV/c
- anti-K_T $R=0.5$

Data: 0.53 ± 0.05 (stat) ± 0.09 (syst)
± 0.06 (th) ± 0.01 (lumi) pb
W + c jets

sensitive to **strange quark** content of the proton

- Luminosity: 5 fb$^{-1}$
- $\sqrt{s} = 7$ TeV

Fiducial region:
- jet $p_T > 25$ GeV, $|\eta|<2.5$
- lepton $p_T > 35$ GeV, $|\eta|<2.1$

Predictions:
NLO MCFM + NNLO PDF

CMS 2011
84.1 ± 2.0 (stat.) + 4.9 (syst.) pb

- MSTW08
 78.7 ± 11.4$_{\text{PDF}}$ pb
- CT10
 87.3 ± 5.2$_{\text{PDF}}$ pb
- NNPDF23
 78.2 ± 3.3$_{\text{PDF}}$ pb
- NNPDF23$_{\text{coll}}$
 102.7 ± 11.8$_{\text{PDF}}$ pb

CMS 2011
0.938 ± 0.019 (stat.) ± 0.006 (syst.)

- MSTW08
 0.904 ± 0.018$_{\text{PDF}}$
- CT10
 0.942 ± 0.004$_{\text{PDF}}$
- NNPDF23
 0.923 ± 0.015$_{\text{PDF}}$
- NNPDF23$_{\text{coll}}$
 0.936 ± 0.022$_{\text{PDF}}$
Z + b jets cross sections

Fiducial region:
\[p_T > 20 \text{ GeV}, |\eta| < 2.4 \]

Z: \(76 < M_{ll} < 106 \) GeV

at least one jet: \(p_T > 25 \) GeV

|\(|\eta| < 2.1, \) b-tagged |

- Luminosity: 5 fb\(^{-1}\)
- \(\sqrt{s} = 7 \) TeV

Z->BB+X angular correlations:

- Luminosity: 5 fb\(^{-1}\)
- \(\sqrt{s} = 7 \) TeV

- Underestimated in low \(\Delta R \) region

- Total uncertainties
- Statistical uncertainties
- Systematic uncertainties

Figure 5: Differential cross sections for all \(p_{T} \) bins.

<table>
<thead>
<tr>
<th>CMS</th>
<th>L=5/fb</th>
<th>(\sqrt{s} = 7) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>data: 3.52 (\pm 0.02) (stat) (\pm 0.2) (syst) pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Differential cross sections for all \(\Delta R \) bins.

<table>
<thead>
<tr>
<th>CMS</th>
<th>L=5/fb</th>
<th>(\sqrt{s} = 7) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>data: 0.36 (\pm 0.01) (stat) (\pm 0.07) (syst) pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Differential cross sections for all \(\eta \) bins.

<table>
<thead>
<tr>
<th>CMS</th>
<th>L=5/fb</th>
<th>(\sqrt{s} = 7) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>data: 3.52 (\pm 0.02) (stat) (\pm 0.2) (syst) pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: Differential cross sections for all \(\phi \) bins.

<table>
<thead>
<tr>
<th>CMS</th>
<th>L=5/fb</th>
<th>(\sqrt{s} = 7) TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>data: 0.36 (\pm 0.01) (stat) (\pm 0.07) (syst) pb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Z + b jets differential cross sections

Differential cross section as a function of:
- p_T and η of the leading b jet
- Z boson p_T
- angular distance between Z and b jet
- scalar sum of the jet transverse momenta
- in case of Z+2b: M_{jj}, angular distances between jets...

Results compared to:
- MadGraph+Pythia 6 (4FS and 5FS)
- Powheg + Pythia 6

Preliminary

Z+1b

- $Z/\gamma^* +$ at least 1 b jet
- anti-k_T (R = 0.5) jets
- $p_T^{jet} > 30$ GeV, $|\eta^{jet}| < 2.4$

Z+2b

- $Z/\gamma^* +$ at least 2 b jets
- anti-k_T (R = 0.5) jets
- $p_T^{jet} > 30$ GeV, $|\eta^{jet}| < 2.4$

CMS Preliminary

19.8 fb$^{-1}$ (8 TeV)

Luminosity: 19.8 fb$^{-1}$

$\sqrt{s} = 8$ TeV
Conclusions

• Measurements of V+jets processes are important as a test of SM predictions and a background to BSM

• Various measurements performed by CMS using data collected during 2011 and 2012

• Measured results show good agreement with theoretical predictions

• Analyses of the Run 2 data at 13 TeV already ongoing

• Looking forward to the new results in yet unprobed phase space